测量放大器实验报告

测量放大器实验报告
测量放大器实验报告

目录

摘要 (1)

Abstract (2)

1. 设计准备 (3)

1.1 引言 (3)

1.2 Multisim简单介绍 (3)

2. 测量放大器原理图设计 (5)

2.1 设计任务及要求 (5)

2.2 设计原理 (5)

2.3 设计方案及实现 (7)

2.3.1 方案1及电路图 (7)

2.3.2 方案2及电路图 (8)

2.3.3 方案3及电路图 (9)

2.3.4 方案4及电路图 (9)

2.4 比较后选择的方案及合适器件 (13)

2.5 部分功能电路 (10)

3. 电路的仿真、测量波形及实物图 (13)

3.1 电路的仿真 (13)

3.2 测量波形 (15)

3.2.1输入差模信号 (19)

3.2.1输入共模信号 (20)

3.3 实物图和调试波形图 (20)

3.3.1实物图 (20)

3.3.1调试波形图 (21)

4. 设计过程的问题和解决办法........................................................................ . (19)

4.1 元器件的选择............................................................................................... .19

4.2 实验发现的问题和解决方法....................................................................... .19

5. 元器件清单............................................................................................................ .21

6. 小结........................................................................................................................ .22

7. 参考文献................................................................................................................ .23

摘要

测量放大器又称为数据放大器或仪表放大器,常用于热电偶,应变电桥.流量计,生物电测量以及其他有较大共模干扰的支流缓变微弱信号的检测。

测量放大器是一种高增益、直流耦合放大器,它具有差分输入、单端输出、高输入阻抗和高共模抑制比等特点,因此得到广泛的应用。

在工业自动控制等领域中,常需要对远离运放的多路信号进行测量,由于信号远离运放,两者地电位不统一,不可避免地存在长线干扰和传输网络阻抗不对称引入的误差。为了抑制干扰,运放通常采用差动输入方式。对测量电路的基本要求是:高输入阻抗, 高共模抑制比, 高增益及宽的增益调节范围。

本次设计通过采用仪用放大器的改造来实现设计一测量放大器,并满足其高输入阻抗和高共模抑制比及高通频带的要求。

关键词:测量放大器,集成运算放大器,数据放大器,高共模抑制比,高通频带,低噪声

Abstract

Amplifier is an important component of electronic systems to understand and master the amplifier for the learning and application of electronic systems of great help. Signal detection amplifier circuit there are many types of real systems are often used in measurement amplifiers and isolation amplifiers.Signal detection amplifier circuit there are many types of real systems are often used in measurement amplifiers and isolation amplifiers.

Instrumentation Amplifier is also known as data amplifiers or instrumentation amplifiers, commonly used in thermocouples, strain bridge. Flowmeters, bio-electrical measurements, and other tributaries of a larger common-mode interference in weak signal detection of slow changes.

Instrumentation Amplifier is a high-gain, DC-coupled amplifiers, it has a differential input, single-ended output, high input impedance and high common-mode rejection ratio and other characteristics, it is widely used.

In the industrial automation and other areas, often far from the op amp need for multi-channel signals are measured, because the signal away from the op amp, the two ground potential are not unified, there is inevitably long-term interference and transmission network impedance asymmetry introduced error. In order to suppress interference, commonly used op amp differential input mode. The basic requirements of the measuring circuit are: high input impedance, high common-mode rejection ratio, high gain and wide gain adjustment range.

The design through the use of instrumentation amplifier designed to achieve the transformation of a measuring amplifier and its regulated power supply used, and to meet their high input impedance and high common-mode rejection ratio and high-pass band requirements.

Key words: measurement amplifier, integrated operational amplifiers, data amplifier, high common-mode rejection ratio, high-pass band, low-noise

1. 设计准备

1.1 引言

在工业自动控制等领域中,常需要对远离运放的多路信号进行测量,由于信号远离运放,两者地电位不统一,不可避免地存在长线干扰和传输网络阻抗不对称引人的误差。为了抑制干扰,运放通常采用差动输人方式。对测量电路的基本要求是:高输人阻抗, 高共模抑制比, 高增益及宽的增益调节范围。

本次设计通过采用仪用放大器的改造来实现设计一测量放大器及其所用的稳压电源,并满足其高输入阻抗和高共模抑制比及高通频带的要求.。

1.2 Multisim简单介绍

Multisim是加拿大图像交互技术公司(Interactive Image Technoligics 简称IIT公司)推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。

工程师们可以使用Multisim交互式地搭建电路原理图,并对电路行为进行仿真。Multisim提炼了SPICE仿真的复杂内容,这样工程师无需懂得深入的SPICE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。通过Multisim和虚拟仪器技术,PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。

图1 Multisim登陆画面

2.测量放大器原理图设计

2.1 设计任务及要求

1.基本功能:

(1)差模电压放大倍数A VD=1~500,可手动调节;

(2)最大输出电压为± 10V,非线性误差< 0.5%;

(3)在输入共模电压+7.5V~-7.5V范围内,共模抑制比K CMR >105 ;

(4)在A VD=500时,输出端噪声电压的峰-峰值小于1V;

(5)通频带0~10Hz ;

(6)直流电压放大器的差模输入电阻≥2MW。

2.扩展功能:

(1)提高差模电压放大倍数至A VD=1000,同时减小输出端噪声电压。

(2)在满足基本要求(1)中对输出端噪声电压和共模抑制比要求的条件下,将通频带展宽为0~100Hz以上。

(3)提高电路的共模抑制比。

(4)差模电压放大倍数A VD可预置并显示,预置范围1~1000,步距为1,同时应满足基本要求(1)中对共模抑制比和噪声电压的要求。

2.2 设计原理

放大器是电子系统的重要组成部分,了解和掌握放大器对于学习和应用电子系统有很大的帮助。信号检测中的放大电路有很多种类型,实际系统中常采用的有测量放大器和隔离放大器。

测量放大器又称为数据放大器或仪表放大器,常用于热电偶,应变电桥,流量计,生物电测量以及其他有较大共模干扰的支流缓变微弱信号的检测。

测量放大器是一种高增益、直流耦合放大器,它具有差分输入、单端输出、高输入阻抗和高共模抑制比等特点,因此得到广泛的应用。差分放大器和测量放大器所采用的基础部件(运算放大器)基本相同,它们在性能上与标准运算放大器有很大的不同。标准运算放大器是单端器件,其传输函数主要由反馈网络决定;

而差分放大器和测量放大器在有共模信号条件下能够放大很微弱的差分信号,因而具有很高的共模抑制比。它们通常不需要外部反馈网络。

测量放大器的第一级只对差摸信号有一定的放大作用,而对共摸信号几乎没有抑制作用,对公摸信号几乎没有抑制作用主要由第二级电路来完成,而且放大器的共摸抑制比约为第一级电路的差摸电压增和第二级电路的共摸抑制比的乘积。

在工业自动控制等领域中,常需要对远离运放的多路信号进行测量,由于信号远离运放,两者地电位不统一,不可避免地存在长线干扰和传输网络阻抗不对称引入的误差。为了抑制干扰,运放通常采用差动输入方式。

对测量电路的基本要求是:

①高输入阻抗,以抑制信号源与传输网络电阻不对称引入的误差。

②高共模抑制比,以抑制各种共模干扰引入的误差。

③高增益及宽的增益调节范围,以适应信号源电平的宽范围。

以上这些要求通常采用多运放组合的电路来满足,典型的组合方式有以下几种:同相串联式高阻测量放大器,同相并联式高阻测量放大器,高共模抑制测量放大器。

用分离元件构建测量放大器需要花费很多的时间和精力,而采用集成运放放大器或差分放大器则是一种简便而又可行的替换方案。

用集成运算放大器放大信号的主要优点:

(1)电路设计简化,组装调试方便,只需适当配外接元件,便可实现输入输出的各种放大关系。

(2)由于运放得开环增益都很高,用其构成的防大电路一般工作的深度负反馈的闭环状态,则性能稳定,非线性失真小。

(3)运放的输入阻抗高,失调和漂移都很小,故很适合于各种微弱信号的放大。又因其具有很高的共模抑制比,对温度的变化,电源的波动以及其他外界干扰独有很强的抑制能力。

运算放大器组成的放大电路,按电路的性质可分为反相放大器,同相放大器和差分放大器三种。按输入信号性质又可分为直流放大器和交流放大器两类。

差分放大器分为(1)单端输入、单端输出(2)双端输入、单端输出(3)单端输入、双端输出三种,而双端输入、单端输出型差动放大器常用于多级差分放大电路的中间极或末极。

2.3 设计方案及实现

以下设计了四种方案,现在通过比较选择出最好的一种。

2.3.1 方案1及电路图

同相关联式高阻测量放大器。线路前级为同相差动放大结构,要求两运放的性能完全相同。这样,线路除具有差模、共模输入电阻大的特点外,两运放的共模增益、失调及其漂移产生的误差也相互抵消,因而不需精密匹配电阻。后级的作用是抑制共模信号,并将双端输出转变为单端放大输出,以适应接地负载的需要,后级的电阻精度则要求匹配。增益分配一般前级取高值,后级取低值。

该方案电路结构简单,易于定位和控制。但要调节增益不能实现,不能满足能连续调节的要求。

FREQ = 1kHz VAMPL = 5mV VOFF = 0V 7

图2 方案1电路图

该测量放大器由运放U1和U2按同相输入接法组成第一级差分放大电路,运放U3组成第二级差分放大电路,Rw和R3、R4组成反馈网络,因而引入了负反馈。

U16-U26=(V1-V2)(2R3+R W)/R W=(1+2R3/R W)(V1-V2) (公式1)又由第二级差分放大电路中的反相比例器的输入输出关系知

V0=-R7/R5(U16-U26) (公式2)综合以上关系可知

A V=V0/(V1-V2)=-R7/R5(1+2R3/R W) (公式3)

K CMR=V0/V i(公式4)2.3.2 方案2及电路图

电路结构与方案一基本相同,只是采用电位器来替代R w,以实现增益的连续调节。也可以用电位器来代替R7或者R8,就没能实现更大幅度的增益的调节,以满足不同的需要。电路图如下(注:此为输入差模信号时的接法,若需要改为共模信号,只需将A2的引脚2接函数发生器负极的线改接到正极即可!):

图3 方案2电路图

2.3.3 方案3及电路图

电路结构与方案二基本相同,只是为了达到增益调节的要求,考虑用两片R-2R 的D/A 代替上图中的Rw ,结合单片机通过改革D/A 的电阻网络来改变公式中Rw 值,从而改变增益。其优点是输入电阻大,两运放的共模增益、失调及漂移产生的误差也相互抵消。其缺点是由于电阻匹配的要求而使用了两片D/A ,即增加了控制的工作量,又提高了成本,而且精度也不能满足要求。

FREQ = 1kHz VAMPL = 5mV VOFF = 0V 7

图4 方案3电路图

2.3.4 方案4及电路图

简单的测量放大器是由仪器放大器和可变增益放大器级联而成。如将R-2R 的D/A 看成一个可数控的电阻网络来实现增益可变放大,其放大倍数将由单片机送到D/A 的数据决定。

该种方法的优点是电路简单,单片机控制也不复杂,易于实现,但是其电路结构决定了它不能满足发挥部分提出的放大倍数步距为1的要求,该电路的Di 和放大倍数的关系图略,它的前级零漂会影响后级,

特别是在后级放大倍数很大时,影响更大。

2.4 比较后选择的方案及合适器件

综合以上四种方案分析可知.:

第一种方案电路结构简单,易于定位和控制。测量放大器的第一级由两个同相放大器采用并联方式,组成同相并联差动,该电路具有输入阻抗高的特点但要调节增益不能实现,不能满足能手动调节的要求。

第二种方案基本包含了方案一的优点,在此基础上增加了一电位器,使得能方便的调节。由于在实际中很难达到电阻的精确匹配,运算放大器也不可能达到完全一样,而通过电位器调节既方便有节约成本,总体上能满足设计的需求,也由于其对称性方便调试。

第三种方案的优点是输入电阻大,两运放的共模增益、失调及漂移产生的误差也相互抵消。其缺点是由于电阻匹配的要求而使用了两片D/A,增加了控制的工作量,又提高了经济成本,而且精度也不能满足要求。

第四种方案的优点是电路简单,单片机控制也不复杂,比较易实现,但是其电路结构决定了它所需要的技术要求与经济成本要更高,它的前级零漂会影响后级,特别是在后级放大倍数很大时,影响更大。

故经过对比其优缺点后,第二种方案最为合理经济。

2.5 部分功能电路

图5 差放(减法器)电路图

图6 带有同相放大器输入的差放

图7 带有同相放大器输入的差放输入共模时

输入共模时计算公式如下:

Vsc=(Vsr1-Vsr2)+ ((Vsr1-Vsr2)/Rw)*RF1+ ((Vsr1-Vsr2)/Rw)*RF2 (公式5)当RF1= RF2= RF时,

Vsc=(Vsr1-Vsr2)*(1+RF/Rw/2)(公式6)KCMR=AVD1/AVCOM=(1+RF/Rw/2)/1 (公式7)

图8 用3只OP07构成的测量放大器的实际电路

如需要增益可调,则可将100KΩ增益调节电阻用适当阻值的可调电阻实现。

此测量放大器所用的主要功能图就是这些,我设计的测量放大器电路中省略了OP07的调零电路,因为调零对于这个测量来说,不是必需的。

在负极与地之间接有2.2微法旁路电容的作用:改善集成运算放大器的电源阻抗。

增益可调电阻由三只不同阻值的可调电阻串联而成,作用:为达到1~1000

倍的增益可调,并且是精确调节。

3 电路的仿真、波形及实物图

3.1 电路的仿真

在电路准备好之后,首先按动。双击函数信号发生器,调节频率和幅值。如图:

图9 电路仿真

3.2 测量波形

调节好频率和幅值后,双击示波器,观察波形,如下图(其中红线为输入,绿线为输出;A通道为输出,B通道为输入):

3.2.1输入差模信号

图10 输入差模信号

图11 差模960Hz,100mVp

放大倍数=268.938/232.579=1.159

图12 差模3KHz,100mVp 放大倍数=1.153

图13 差模1KHz,10Vp 放大倍数=0.591 失真波形

图14 差模1KHz,4.9Vp 放大倍数=1.122 失真波形

图15 差模1KHz,4.8Vp 放大倍数=1.159 恰好不失真结论:

①观察发现,输入共模信号时,电路有放大功能,正常工作放大倍数约1.6,非正常工作即失真时放大倍数大大降低。

②频率的改变不影响放大倍数。

③幅值的改变可以引起失真,测得最大不失真幅值为4.8V。

3.2.1输入共模信号

图16 共模1KHz,1Vp 放大倍数=0.5

结论:输入共模信号时,输出几乎为零

3.3实物图及实物调试波形图

3.3.1实物图

图17 电路板

3.3.2实物调试波形图

图18 一开始图形出现失真、噪声较多

图19 输入共模信号

图20 输入差模信号 放大倍数很小,有微小相位差

4 设计过程的问题和解决办法

4.1 元器件的选择

在本设计中,充分的利用了集成运放OP07芯片,选用74系列芯片实现的理由:

就选型考虑,应尽可能少地选择集成运算放大器的型号。从理解的电子升级竞赛试题来看,关于击沉滚算放大器,仅需要高精度集成放大器、高速集成运算发达区和地电源电压的满幅集成运算放大器即可,即精密运算放大器OP07、告诉运算放大器LM318或其他容易买到的型号、满幅集成运算放大器OPA333或其他容易买到的型号即可。至于最常见的LM741,最好是不予采用的,因为OP07的一般性能并不比LM741差,可以用OP07替代LM741。

差放的输入电阻、反馈电阻和匹配电阻精度应为0.1%,否则不能获得很好的放大倍数。

元器件的选择是高性能放大的保证,图中运放的参数必须尽可能相同,其他的运放也应选共模抑制比高的。同时,为了提高共模抑制比,对称的电阻必须精密匹配,可用电桥测量法找出阻值最接近的电阻。由于对放大电路的频带也有要求,所以选运放和调试时还必须注意其频响。为达到输入阻抗较高的要求,R1=R2=R3=R4=R5=R6=10k,这样达到对称,根据增益公式Av D1= (1+R F/Rw/2),选择Rw的最大阻值为1M,最低增益略大于1,且能连续向上增大调节。而第一级的双运算放大器采用一对OP07型,以达到运放的精确匹配,以实现对差模信号的放大作用,后一级差分运放也用OP07型,以实现共摸的抑制的良好效果。4.2 实验发现的问题和解决方法

1.做实物时不知道OP07的引脚图,后来在网上查后确保了引脚没接错。焊电路板时一开始没意识到芯片的座子也是有正负的,在他人指导下改正了。接线时,发现导线用刀片刮后比较容易焊上。做好后检查电路板时,发现有些地方的导线被电烙铁的温度熔破,有两根线已经接触,造成短路情况,幸好及时发现。通过这次自己的亲手操作,发现了很多自己不会的问题,通过老师同学和网络的帮助,这些问题被解决了,我也从中学到了很多。

单管放大电路实验报告—王剑晓

单管放大电路实验报告 电03 王剑晓 2010010929 单管放大电路报告

一、实验目的 (1)掌握放大电路直流工作点的调整与测量方法; (2)掌握放大电路主要性能指标的测量方法; (3)了解直流工作点对放大电路动态特性的影响; (4)掌握发射极负反馈电阻对放大电路动态特性的影响; (5)掌握信号源内阻R S对放大电路频带(上下截止频率)的影响; 二、实验电路与实验原理 实验电路如课本P77所示。 图中可变电阻R W是为调节晶体管静态工作点而设置的。 (1)静态工作点的估算与调整; 将图中基极偏置电路V CC、R B1、R B2用戴维南定理等效成电压源,得到直流通路, 如下图1.2所示。其开路电压V BB和内阻R B分别为: V BB= R B2/( R B1+R B2)* V CC; R B= R B1// R B2; 所以由输入特性可得: V BB= R B I BQ+U BEQ+(R E1+ R E2)(1+Β) I BQ; 即:I BQ=(V BB- U BEQ)/[Β(R E1+ R E2)+ R B]; 因此,由晶体管特性可知: I CQ=ΒI BQ; 由输出回路知: V CC= R C I CQ + U CEQ+(R E1+ R E2) I EQ; 整理得: U CEQ= V CC-(R E1+ R E2+ R C) I CQ; 分析:当R w变化(以下以增大为例)时,R B1增大,R B增大,I BQ减小;I CQ减小; U CEQ增大,但需要防止出现顶部失真;若R w减小变化相反,需要考虑底部失真(截 止失真); (2)放大电路的电压增益、输入电阻和输出电阻 做出电路的交流微变等效模型: 则: 电压增益A i=U O/U i=-?(R C// R L)/r be; 输入电阻R i=R B1//R B2//r be; 输出电阻R O= R C; 其中r be=r bb’+(1+?)U T/ I EQ,体现了直流工作点对动态特性的影响; 分析:当R C、R L选定后,电压增益主要决定于r be,受到I EQ,即直流工作点的影 响。由上面对直流工作点的分析可知,R w变化(以下以增大为例)时I CQ减小, 那么r be增大,电压增益A i减小,输入电阻R i增大,输出电阻R O基本不变,与直 流无关; 如果将发射极旁路电容C E改为与R E2并联,R E1成为交流负反馈电阻,电路的动态 参数分别变为 电压增益A i=U O/U i=-?(R C// R L)/[r be+(1+?) R E1];

实验一小信号调谐(单调谐)放大器实验指导

实验一高频小信号单调谐放大器实验 一、实验目的 1.掌握小信号单调谐放大器的基本工作原理; 2.熟悉放大器静态工作点的测量方法; 3.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算; 4.了解高频单调谐小信号放大器幅频特性曲线的测试方法。 二、实验原理 小信号单谐振放大器是通信接收机的前端电路,主要用于高频小信号的线性放大。其实验原理电路如图1-1所示。该电路由晶体管BG、选频回路(LC并联谐振回路)二部分组成。它不仅对高频小信号进行放大,而且还有一定的选频作用。 1.单调谐回路谐振放大器原理 单调谐回路谐振放大器原理电路如图1-1所示。图中,R B1、R B2、R E用以保证晶体管工作于放大区域,从而放大器工作于甲类。C E是R E的旁路电容,C B、C C 是输入、输出耦合电容,L、C是谐振回路,R C是集电极(交流)电阻,它决定了回路Q值、带宽。为了减轻负载对回路Q值的影响,输出端采用了部分接入方式。 2.单调谐回路谐振放大器实验电路 单调谐回路谐振放大器实验电路如图1-2所示。其基本部分与图1-1相同。图中,C3用来调谐,K1、K2、K3用以改变集电极电阻,以观察集电极负载变化对谐振回路(包括电压增益、带宽、Q值)的影响。K4、K5、K6用以改变射极偏置电阻,以观察放大器静态工作点变化对谐振回路(包括电压增益、带宽、Q值)的影响。

图1-2 单调谐回路谐振放大器实验电路 高频小信号调谐放大器的主要性能指标有谐振频率f 0,谐振电压放大倍数A u0,放大器的通频带BW 0.7及选择性(通常用矩形系数K 0.1来表示)等。 放大器各项性能指标及测量方法如下: 1.谐振频率 放大器的调谐回路谐振时所对应的频率f 0称为放大器的谐振频率,对于图1所示电路(也是以下各项指标所对应电路),f 0的表达式为 ∑=LC f π21 式中,L 为调谐回路电感线圈的电感量; ∑C 为调谐回路的总电容,∑C 的表达式为 21oe C C n C ∑=+ 式中, C oe 为晶体管的输出电容; n 1(注:此图中n 1=1)为初级线圈抽头系数;n 2为次级线圈抽头系数。 谐振频率f 0的测量方法是: 用扫频仪作为测量仪器,测出电路的幅频特性曲线,微调C3,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。 2.电压放大倍数 放大器的谐振回路谐振时,所对应的电压放大倍数A u0称为调谐放大器的电压放大倍数。A u0的表达式为

音频功率放大器设计实验报告

题目:音频功率放大器电路 音频功率放大器设计任务 1、基本要求 (1)频带范围 200Hz —— 10KHz,失真度 < 5%。 (2)电压增益 >= 20dB。 (3)输出功率 >= 1 W (8欧姆负载)。 (4)功率放大电路部分使用分立元件设计。 发挥部分 (1)增加音调控制电路。 (2)增加话筒输入接口,灵敏度 5mV,输入阻抗 >> 20 欧姆。 (3)输出功率 >= 10W (8欧姆负载)。 (4)其他。 目录 1 引言····························································· 2 总体设计方案·····················································2.1 设计思路······················································· 2.2 总体设计框图··················································· 3 设计原理分析·····················································3.1设计总原理图 3.2设计的PCB电路图 ··· 1 引言 在现代音响普及中,人们因生活层次、文化习俗、音乐修养、欣赏口味的不同,令对相同电气指标的音响设备得出不同的评价。所以,就高保真度功放而言,应该达到电气指标与实际听音指标的平衡与统一。

音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。本次设计旨在熟悉设计流程,达到基本指标。 2 总体方案 根据实验要求,本次设计主要是也能够是用集成功放TDA2030为主的电路 一、电路工作原理 图1所示电路为音频功率放大器原理图,其中TDA2030是高保真集成功率放大器芯片,输出功率大于10W,频率响应为10~1400Hz,输出电流峰值最大可达3.5A。其内部电路包含输入级、中间级和输出级,且有短路保护和过热保护,可确保电路工作安全可靠。TDA2030使用方便、外围所需元器少,一般不需要调试即可成功。 RP是音量调节电位器,C1是输入耦合电容,R1是TDA2030同相输入端偏置电阻。 R2、R3决定了该电路交流负反馈的强弱及闭环增益。该电路闭环增益为 (R2+R3)/R2=(0.68+22)/0.68=33.3倍,C2起隔直流作用,以使电路直流为100%负反馈。静态工作点稳定性好。 C4、C5为电源高频旁路电容,防止电路产生自激振荡。R4、R5称为茹贝网路,用以在电路接有感性负载扬声器时,保证高频稳定性。VD1、VD2是保护二极管,防止输出电压峰值损坏集成块TDA2030。 2.电流反馈 电流反馈是指在一个反馈电路中,若反馈量与输出电流成正比则为电流反馈;若反馈量与输出电压成正比则为电压反馈。通常可以采用负载短路法来判断。 从概念上说,若反馈量与输出电压(有时不一定是输出电压,而是取样处的电压)成正比则为电压反馈;若反馈量与输出电流(有时不一定是输出电流,而是取样处的电流)成正比则为电流反馈。在判断电压反馈和电流反馈时,除了上述方法外,也可以采用负载短路法。负载短路法实际上是一种反向推理法,假设将放大电路的负载电阻RL短路(此时,),若

设计一个射频小信号放大器[1]要点

射 频 课 程 设 技 论 文 院系:电气信息工程学院 班级:电信2班 姓名:贾珂 学号:541101030211

1射频小信号放大器概述 射频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,所谓小信号,一是信号幅度足够小,使得所有有源器件(晶体三极管,场效应管或IC)都可采用二端口Y参数或线性等效电路来模型化;二是放大器的输出信号与输入信号成线性比例关系.从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。 小信号放大器的分类:按元器件分为:晶体管放大器、场效应管放大器、集成电路放大器; 按频带分为:窄带放大器、宽带放大器; 按电路形式分为:单级放大器、多级放大器; 按负载性质分为:谐振放大器、非谐振放大器;. 小信号谐振放大器除具有放大功能外,还具有选频功能,即具有从众多信号中选择出有用信号,滤除无用的干扰信号的能力.从这个意义上讲,高频小信号谐振放大电路又可视为集放大,选频一体,由有源放大元件和无源选频网络所组成的高频电子电路.主要用途是做接收机的高频放大器和中频放大器. 其中射频小信号调谐放大器广泛应用于通信系统和其它无线电系统中,特别是在发射机的接收端,从天线上感应的信号是非常微弱的,这就需要用放大器将其放大。高频信号放大器理论非常简单,但实际制作却非常困难。其中最容易出现的问题是自激振荡,同时频率选择和各级间阻抗匹配也很难实现。本文以理论分析为依据,以实际制作为基础,用LC振荡电路为辅助,来消除高频放大器自激振荡和实现准确的频率选择;另加其它电路,实现放大器与前后级的阻抗匹配。2电路的基本原理 图2-1所示电路为共发射极接法的晶体管高频小信号单级单调谐回路谐振放大器。它不仅要放大高频信号,而且还要有一定的选频作用,因此,晶体管的集电极负载为LC并联谐振回路。在高频情况下,晶体管本身的极间电容及连接导线的分布参数等会影响放大器输出信号的频率或相位。晶体管的静态工作点由电阻R b1、R b2及Re决定,其计算方法与低频单管放大器相同。

模电仿真实验 共射极单管放大器

仿真实验报告册 仿真实验课程名称:模拟电子技术实验仿真仿真实验项目名称:共射极单管放大器 仿真类型(填■):(基础■、综合□、设计□) 院系:专业班级: 姓名:学号: 指导老师:完成时间: 成绩:

一、实验目的 (1)掌握放大器静态工作点的调试方法,熟悉静态工作点对放大器性能的影响。 (2)掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 (3)熟悉低频电子线路实验设备,进一步掌握常用电子仪器的使用方法。 二、实验设备及材料 函数信号发生器、双踪示波器、交流毫伏表、万用表、直流稳压电源、实验电路板。 三、实验原理 电阻分压式共射极单管放大器电路如图所示。它的偏置电路采用(R W +R 1)和R 2组成的分压电路,发射极接有电阻R 4(R E ),稳定放大器的静态工作点。在放大器的输入端加入输入微小的正弦信号U i ,经过放大在输出端即有与U i 相位相反,幅值被放大了的输出信号U o ,从而实现了电压放大。 在图电路中,当流过偏置电阻R 1和R 2的电流远大于晶体管T 的基极电流I B 时(一般5~10倍),则它的静态工作点可用下式进行估算(其中U CC 为电源电压): CC 21W 2 BQ ≈ U R R R R U ++ (3-2-1) C 4 BE B EQ ≈I R U U I -= (3-2-2) )(43C CC CEQ R R I U U +=- (3-2-3) 电压放大倍数 be L 3u ||=r R R β A - (3-2-4) 输入电阻 be 21W i ||||)(r R R R R += (3-2-5) 图 共射极单管放大器

实验一 高频小信号调谐放大器实验.doc

实验一高频小信号调谐放大器实验 一、实验目的 1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。 2、熟悉谐振回路的调谐方法及测试方法。 3、掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。 二、实验内容 1、谐振频率的调整与测定。 2、主要技术性能指标的测定:谐振频率、谐振放大增益Avo及动态范围、通频带 BW0.7、矩形系数Kr0.1。 三、实验仪器 1、高频信号发生器1台 2、2号板小信号放大模块1块 3、频率计1台 4、双踪示波器1台 5、万用表1台 6、扫频仪(可选)1台 四、实验原理 (一)单调谐小信号放大器

图1-1 单调谐小信号放大电路图 小信号谐振放大器是接收机的前端电路,主要用于高频小信号或微弱信号的线形放大。图1-1为单调谐回路小信号谐振放大器的原理电路,实验单元电路由晶体管N1和选频回路T1组成,不仅对高频小信号放大,而且还有选频作用。其中W1,R5,R6,R7为直流偏置电阻(因与C3并联相接,所以C3仅有直流负反馈作用),同时调节W1可为放大器选择合适的静态工作点。C5为输入信号的耦合电容,E4,C3,C5为旁路滤波电容,R1为中周初级负载。C1与电感L 组成并联谐振回路,调节C1或改变中周T1磁芯的位置可以使回路谐振在信号中心频率上。本实验中单调谐小信号放大的谐振频率为fs=10.7MHz 。因此频率为10.7的小信号自C5耦合输入,经选频、放大后,中周次级将获得最大输出。 放大器各项性能指标及测量方法如下: 1、谐振频率 放大器的调谐回路谐振时所对应的频率f 0称为放大器的谐振频率,对于图1-1所示电路(也是以下各项指标所对应电路),f 0的表达式为 ∑ = LC f π210 式中,L 为调谐回路电感线圈的电感量;

音频功率放大器实验报告_音频功率放大器课程设计报告.docx

音频功率放大器实验报告_音频功率放大器课程设计报告 本科实验报告 课程名称:姓名:学院:系:专业:学号:指导教师: 电子电路安装与调试 信息与电子工程学院 电子科学与技术 一、实验目的二、实验任务与要求 三、实验方案设计与实验参数计算(3.1 总体设计、3.2 各功能电路设计与计算、3.3完整的实验电路……)四、主要仪器设备五、实验步骤与过程六、实验调试、实验数据记录七、实验结果和分析处理八、讨论、心得 一、实验目的 1、学习并初步掌握音频功率放大器的设计、调试方法。 2、学习并掌握电路布线、元器件安装和焊接。 3、掌握音频功率放大器各项主要性能及指标的调试方法。 二、实验任务与要求 1、设计 (1)设计一音频功率放大器,使其达到如下主要技术指标:负载阻抗:R L =4Ω额定功率:P o =10W 带宽:BW ≥(50~15000) Hz 音调控制: 低音:100Hz ±12dB 高音:10kHz ±12dB 失真度:γ≤3% 输入灵敏度:U " i (2)设计满足以上设计要求的稳压电源。 2、在Altium Designer中画出原理图, 并进行PCB 板的编辑与设计。 3、根据给定的功率放大器的原理图(三),做如下工作: (1)分析计算晶体管前置放大器的直流工作电压、电流、输入电阻、输出电阻、各级放大器的交流增益。 (2)分析音调控制电路的工作原理,计算4个极端情况下的交流增益。(3)安装实验电路板 (4)调试和测试实验电路的增益、频响特性曲线、输入电阻和输出电阻、以及改变某实验名称:音频功率放大器的设计、安装和调试姓名:陈肖苇学号:3140104580_ 些电路参数后的性能测试(电路图中括号内的数字)。 (5)分析实验数据,并与理论计算值比较,讨论二者之间的误差和产生误差的原因。三、实验原理和实验方案设计 作为音频放大器的音源部分,其输出电平既有高至数百毫伏(如调谐器:50~500mV,线路输出:100~500mV),也有低至1mV (如话筒:1~5mV),相差达几百倍。音频放大器就是要把这些不同大小的音源放大后驱动喇叭,发出同等强度的声音。因此,根据不同音源的需要,可以画出音频放大器的原理框图,如图1所示。 P.2 装订线 图1音频功率放大器框图 1、各部分电路电压增益的确定 根据额定输出功率P o =10W和负载R L =4Ω,可求得输出电压为 : V o ===6.32V 所以整机中频电压增益为:A O um =

通信电子电路课程设计小信号放大器

通信电子线路课程设计-- 高频小信号谐振放大器 学校: 姓名: 学号: 班级: 指导老师:

目录 一、刖言 (3) 二、电路基本原理................................................. .3 三、主要性能指标及测量方法....................................... .5 1谐振频率 (7) 2、电压增益 (7) 3、通频带 (8) 4、矩形系数 (9) 四、设计方案 (10) 1设置静态工作点 (10) 2、计算谐振回路参数 (10) 3、电路图、仿真图和PCB图 (11) 五、电路装调与测试.......................................... ??13 六、心得体会................................................. ??14 七、参考文献............................................... ???15

一、前言高频调谐放大器广泛应用于通信系统和其它无线电系统中,特别是在发射机的接收端,从天线上感应的信号是非常微弱的,这就需要用放大器将其放大。高频信号放大器理论非常简单,但实际制作却非常困难。其中最容易出现问题是自激震荡,同时频率选择和各级建阻抗匹配也恶化你难实现。 Protel DXP 软件能实现从电学概念设计到输出物理生产数据,以及这之间的所有分析、验证、和设计数据管理。今天的Protel DXP 软件已不是单纯的PCB 设计工具,而是一个系统,它覆盖了以PCB 为核心的全部物理设计。使用Protel、等计算机软件对产品进行辅助 设计在很早以前就已经成为了一种趋势,这类软件的问世也极大地提高了设计人员在机械、电子等行业的产品设计质量与效率。 通过《通信电子线路》的学习,使用Protel DXP 软件设计了一个高频小信号放大器。 二、电路的基本原理高频小信号放大器的功用就是五失真的放大某一频率范围内的信号。按其频带宽度可以分为窄带和宽带放大器。高频小信号放大器是通信电子设备中常用的功能电路,它所放大的信号频率在数百千赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大 电路实验报告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

实验二 晶体管共射极单管放大器 一、实验目的 1.学会放大器静态工作点的调式方法和测量方法。 2.掌握放大器电压放大倍数的测试方法及放大器参数对放大倍数的影 响。 3.熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2—1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。 三、实验设备 1、信号发生器 2、双踪示波器 3、交流毫伏表 4、模拟电路实验箱 5、万用表 四、实验内容 1.测量静态工作点 实验电路如图2—1所示,它的静态工作点估算方法为: U B ≈ 2 11B B CC B R R U R +?

图2—1 共射极单管放大器实验电路图 I E = E BE B R U U -≈Ic U CE = U C C -I C (R C +R E ) 实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。 1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V 电源位置)。 2)检查接线无误后,接通电源。 3)用万用表的直流10V 挡测量U E = 2V 左右,如果偏差太大可调节静态工作点(电位器RP )。然后测量U B 、U C ,记入表2—1中。 表2—1 测 量 值 计 算 值 U B (V ) U E (V ) U C (V ) R B2(K Ω) U BE (V ) U CE (V ) I C (mA ) 2 60 2 B2所有测量结果记入表2—1中。 5)根据实验结果可用:I C ≈I E = E E R U 或I C =C C CC R U U -

实验一_高频小信号调谐放大器实验报告

本科生实验报告 实验课程高频电路实验 学院名称信科院 专业名称物联网工程 学生姓名刘鑫 学生学号201313060108 指导教师陈川 实验地点6C1001 实验成绩 二〇年月二〇年月

高频小信号调谐放大器实验 一、实验目的 1.掌握小信号调谐放大器的基本工作原理; 2.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算; 3.了解高频小信号放大器动态范围的测试方法; 二、实验仪器与设备 高频电子线路综合实验箱; 扫频仪; 高频信号发生器; 双踪示波器 三、实验原理 (一)单调谐放大器 小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。其实验单元电路如图1-1所示。该电路由晶体管Q1、选频回路T1二部分组成。它不仅对高频小信号放大,而且还有一定的选频作用。本实验中输入信号的频率f S=12MHz。基极偏置电阻R A1、R4和射极电阻R5决定晶体管的静态工作点。可变电阻W3改变基极偏置电阻将改变晶体管的静态工作点,从而可以改变放大器的增益。 表征高频小信号调谐放大器的主要性能指标有谐振频率f0,谐振电压放大倍数A v0,放大器的通频带BW及选择性(通常用矩形系数K r0.1来表示)等。 放大器各项性能指标及测量方法如下: 1.谐振频率 放大器的调谐回路谐振时所对应的频率f0称为放大器的谐振频率,对于图1-1所示电路(也是以下各项指标所对应电路),f0的表达式为

∑ = LC f π210 式中,L 为调谐回路电感线圈的电感量; ∑ C 为调谐回路的总电容,∑ C 的表达式为 ie oe C P C P C C 2221++=∑ 式中, C oe 为晶体管的输出电容;C ie 为晶体管的输入电容;P 1为初级线圈抽头系数;P 2为次级线圈抽头系数。 谐振频率f 0的测量方法是: 用扫频仪作为测量仪器,用扫频仪测出电路的幅频特性曲线,调变压器T 的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。 2.电压放大倍数 放大器的谐振回路谐振时,所对应的电压放大倍数A V0称为调谐放大器的电压放大倍数。A V0的表达式为 G g p g p y p p g y p p v v A ie oe fe fe i V ++-=-=- =∑2 22 1212100 式中,g Σ为谐振回路谐振时的总电导。要注意的是y fe 本身也是一个复数,所以谐振时输出电压V 0与输入电压V i 相位差不是180o 而是为(180o + Φfe )。 A V0的测量方法是:在谐振回路已处于谐振状态时,用高频电压表测量图1-1中R L 两端的电压V 0及输入信号V i 的大小,则电压放大倍数A V0由下式计算: A V0 = V 0 / V i 或 A V0 = 20 lg (V 0 /V i ) d B 3.通频带 由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数A V 下降到谐振电压放大倍数A V0的0.707倍时所对应的频率偏移称为放大器的通频带BW ,其表达式为 BW = 2△f 0.7 = fo/Q L 式中,Q L 为谐振回路的有载品质因数。 分析表明,放大器的谐振电压放大倍数A V0与通频带BW 的关系为 ∑ = ?C y BW A fe V π20

OTL功率放大器实验报告(DOC)

课程设计 课程名称模拟电子技术 题目名称功率放大器 专业班级12网络工程本2 学生姓名郭能 学号51202032019 指导教师孙艳孙长伟 二○一三年十二月二十三日 目录 引言 (2)

一、设计任务与要求 (2) 1.1 设计任务 (2) 1.2 设计要求 (2) 二、方案设计 (3) 三、总原理图及元器件清单 (4) 四、电路仿真与调试 (6) 五、性能测试与分析 (7) 六、总结 (8) 七、参考文献 (8)

OTL功率放大器 引言:OTL(Output transformerless )电路是一种没有输出变压器的功率放大电路。过去大功率的功率放大器多采用变压器耦合方式,以解决阻抗变换问题,使电路得到最佳负载值。但是,这种电路有体积大、笨重、频率特性不好等缺点,目前已较少使用。OTL电路不再用输出变压器,而采用输出电容与负载连接的互补对称功率放大电路,使电路轻便、适于电路的集成化,只要输出电容的容量足够大,电路的频率特性也能保证,是目前常见的一种功率放大电路。它的特点是:采用互补对称电路(NPN、PNP参数一致,互补对称,均为射随组态,串联,中间两管子的射极作为输出),有输出电容,单电源供电,电路轻便可靠。两组串联的输出中点”可理解为采用互补对称电路(NPN、PNP参数一致,互补对称,均为射随组态,串联,中间两管子的射极作为输出)。 1:设计任务与要求 1.1设计任务: 1.学习基本理论在实践中综合运用的初步经验,掌握模拟电路设计的基本方法、设计步骤,培养综合设计与调试能力。 2.培养实践技能,提高分析和解决实际问题的能力。 3.掌握OTL音频功率放大器的设计方法,基本工作原理和性能指标测试方法。 4. 通过一个OTL功率放大器的设计、安装和调试,进一步加深对互补对称功率放大电路的理解,增强实际动手能力。 1.2 设计要求: 1.设计时要综合考虑实用,经济并满足性能指标的要求,合理选用元器件。 2.广泛查阅相关的资料,不懂的地方积极向老师同学请教,讨论。认真独立的完成课题的设计。 3.按时完成课程设计并提交设计报告。 2:方案设计 要求设计一个由二极管,三极管,电容,电阻等元件组合而成的OTL音频功

调谐某小信号放大器分析报告设计与仿真

实验室 时间段 座位号 实验报告 实验课程 实验名称 班级 姓名 学号 指导老师

小信号调谐放大器预习报告 一.实验目的 1.熟悉电子元器件和高频电子线路实验系统; 2.掌握单调谐和双调谐放大器的基本工作原理; 3.掌握测量放大器幅频特性的方法; 4.熟悉放大器集电极负载对单调谐和双调谐放大器幅频特性的影响; 5.了解放大器动态范围的概念和测量方法。 二.实验内容 调谐放大器的频率特性如图所示。 图1-1 调谐放大器的频率特性 调谐放大器主要由放大器和调谐回路两部分组成。因此,调谐放大器不仅有放大作用,而且还有选频作用。本章讨论的小信号调谐放大器,一般工作在甲类状态,多用在接收机中做高频和中频放大,对它的主要指标要求是:有足够的增益,满足通频带和选择性要求,工作稳定等。 二.单调谐放大器 共发射极单调谐放大器原理电路如图1-2所示。 放大倍数f o f 1f K 0.7o K o K 2o f ?通频带f ?2o f ?2o f ?

图1-2 图中晶体管T 起放大信号的作用,R B1、R B2、R E 为直流偏置电阻,用以保证晶体管工作于放大区域,从而放大器工作于甲类。C E 是R E 的旁路电容,C B 、C C 是输入、输出耦合电容,L 、C 是谐振回路作为放大器的集电极负载起选频作用,它采用抽头接入法,以减轻晶体管输出电阻对谐振回路Q 值的影响,R C 是集电极(交流)电阻,它决定了回路Q 值、带宽。 三.双调谐回路放大器 图中,R B1、R B2、R E 为直流偏置电阻,用以保证晶体管工作于放大区域,且放大器工作于甲类状态,E C 为E R 的旁通电容,B C 和C C 为输入、输出耦合电容。图中两个谐振回路:11L C 、组成了初级回路,22L C 、组成了次级回路。两者之间并无互感耦合(必要时,可分别对12L L 、加以屏蔽),而是由电容3C 进行耦合,故称为电容耦合。

单管放大电路的设计与实现实验报告

华中科技大学 《电子线路设计、测试与实验》实验报告 实验名称:单管放大电路的设计与实现 院(系): 专业班级: 姓名: 学号: 时间: 地点:华中科技大学南一楼 实验成绩: 指导教师:

一、实验目的 1.掌握单管放大电路的工作原理。 2.掌握MOSFET共源放大电路以及BJT共射放大电路静态工作点的设置与调整方法。 3.了解电路参数变化对于电路静态工作点的影响。 4.学习使用PSpice或Multisim软件对模拟电子电路进行仿真分析。 5.掌握BJT单极共射放大电路主要性能指标(A v、R i、R o)的测量方法。 二、实验元器件 类型型号(参数)数量 三极管9013 1只 电位器100kΩ1只 电阻51Ω、1kΩ、100kΩ各1只; 10kΩ、10kΩ各2只; 电容10μF 2只 47μF 1只 三、实验原理及参考电路 1.参考电路 实验电路如图1所示。该电路采用自动稳定工作点的分压式射极偏置电路,其温度稳定性好。 图1 2.静态工作点的估算与调整 静态工作点是指输入交流信号为零时三极管的基极电流IBE、集电极电流I CQ、和管压降V CEQ。 根据上图所示的直流通路可得出: 开路电压V BB = R b12V CC/(R b11+R b12) 内阻R B = R b11//R b12

则I BQ =(V BB–V BEQ)/( R B +(1+β)( R e1 +R e2)) I CQ = βI BQ V CEQ ≈ V CC – (R C + R e1 +R e2)I CQ 当管子确定后,改变V CC、R B、R B2、R C、(或R E)中任一参数值,都会导致静态工作点的变化。当电路参数确定后,静态工作点主要通过R P调整。工作点偏高,输出信号易产生饱和失真;工作点偏低,输出波形易产生截止失真。但当输入信号过大时,管子将工作在非线性区,输出波形会产生双向失真。当输出波形不很大时,静态工作点的设置应偏低,以减小电路的表态损耗。 3.放大电路电压增益的测量 放大电路电压增益A v 是指输出电压与输入电压的有效值之比,即 A v =V o /V i。 对于该电路,放大电路的电压增益A v 为 A v= -β(R C // R L) /( r be + (1 + β)R e1) 当三极管跟负载电阻选定后,A v主要取决于静态工作点I CQ。 4.输入电阻的测量 对于上述参考电路图所示参数,放大电路输入电阻为: R i = R b11//R b12//[r be + (1 + β)R e1] 三极管输入电阻r be 为: r be = 300 + (1+β)CQ 测量原理为:在信号源与放大电路之间串一个已知阻值的电阻R,用万用表分别测出R 两端的电压V S,和V i,则输入电阻为: Ri = Vi / Ii = Vi R /( V s- V i) 5.输出电阻的测量 输出电阻的测量原理为:用万用表分别测量放大器的开路电压V O和负载电阻上的电压V OL,则输出电阻R O可通过计算求得。 R O =( V O – V OL)R L /V OL 当R L = R O 时,测量误差最小。 6.幅频特性的测量 放大器的幅频特性是指放大器的增益与输入信号频率之间的关系曲线。一般用逐点法进行测量。在保持输入信号幅值不变的情况下,改变输入信号的频率,住店测量不同频率点的电压增益。利用各点数据,在单对数坐标纸上描绘出幅频特性曲

音频功率放大器实验报告

一、实验目的 1)了解音频功率放大器的电路组成,多级放大器级联的特点与性能; 2)学会通过综合运用所学知识,设计符合要求的电路,分析并解决设计过程中遇到的问题,掌握设计的基本过程与分析方法; 3)学会使用Multisim、Pspice等软件对电路进行仿真测试,学会Altium Designer使用进行PCB制版,最后焊接做成实物,学会对实际功放的测试调试方法,达到理想的效果。 4)培养设计开发过程中分析处理问题的能力、团队合作的能力。 二、实验要求 1)设计要求 设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8Ω。要求直流稳压电源供电,多级电压、功率放大,所设计的电路满足以下基本指标: (1)频带宽度50Hz~20kHz,输出波形基本不失真; (2)电路输出功率大于8W; (3)输入阻抗:≥10kΩ; (4)放大倍数:≥40dB; (5)具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz 处有±12dB的调节范围; (6)所设计的电路具有一定的抗干扰能力; (7)具有合适频响宽度、保真度要好、动态特性好。 发挥部分: (1)增加电路输出短路保护功能; (2)尽量提高放大器效率; (3)尽量降低放大器电源电压; (4)采用交流220V,50Hz电源供电。 2)实物要求 正确理解有关要求,完成系统设计,具体要求如下: (1)画出电路原理图; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)SCH文件生成与打印输出;

(5)PCB文件生成与打印输出; (6)PCB版图制作与焊接; (7)电路调试及参数测量。 三、实验内容与原理 音频功率放大器是一种应用广泛、实用性强的电子音响设备,它主要应用于对弱音频信号的放大以及音频信号的传输增强和处理。按其构成可分为前置放大级、音调控制级和功率放大级三部分,如图1所示。 v 图1 音频功率放大器的组成框图 1)前置放大级 音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。声音源的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD 唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低噪声的晶体管,另外还要设置合适的静态工作点。由于场效应管的噪声系数一般比晶体管小,而且它几乎与静态工作点无关,在要求高输入阻抗的前置放大器的情况下,

高频小信号放大器实验报告

基于Multisim的通信电路仿真实验 实验一高频小信号放大器 1.1 实验目的 1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。 2、熟悉谐振回路的调谐方法及测试方法。 3、掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。 1.2 实验内容 1.2.1 单调谐高频小信号放大器仿真 图1.1 单调谐高频小信号放大器 1、根据电路中选频网络参数值,计算该电路的谐振频率ωp。 ωp=1/(L1*C3)^2=2936KHz fp=ωp/(2*pi)=467KHz 2、通过仿真,观察示波器中的输入输出波形,计算电压增益Av0。

下图中绿色为输入波形,蓝色为输出波形 Avo=Vo/Vi=1.06/0.252=4.206 3、利用软件中的波特图仪观察通频带,并计算矩形系数。 通频带BW=2Δf0.7=7.121MHz-28.631KHz=7.092MHz 矩形系数Kr0.1=(2Δf0.1)/( 2Δf0.7)= (14.278GHz-9.359KHz)/7.092MHz=2013.254 4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出

电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~Av 相应的图,根据图粗略计算出通频带。 Fo(KHz ) 65 75 165 265 365 465 1065 1665 2265 2865 3465 4065 Uo(mV ) 0.66 9 0.76 5 1 1.05 1.06 1.06 0.97 7 0.81 6 0.74 9 0.65 3 0.574 0.511 Av 2.65 5 3.03 6 3.96 8 4.16 7 4.20 6 4.20 6 3.87 7 3.23 8 2.97 2 2.59 1 2.278 2.028 5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。 2次谐波 4次谐波

音频功率放大电路实验报告分析

实验报告 课程名称: 电路与模拟电子技术实验 指导老师: 成绩:__________________ 实验名称: 音频功率放大电路 实验类型: 研究探索型实验 同组学生姓名:__________ 一、实验目的和要求 1、理解音频功率放大电路的工作原理。 2、学习手工焊接和电路布局组装方法。 3、提高电子电路的综合调试能力。 4、通过myDAQ 来分析理论数据和实际数据之间的关系。 二、实验内容和原理(必填) 音频功率放大电路,也即音响系统放大器,用于对音频信号的处理和放大。按其构成可分为前置放大级、音调控制级和功率放大级三部分。 作为音响系统中的放大设备,它接受的信号源有多种形式,通常有话筒输出、唱机输出、录音输出和调谐器输出。它们的输出信号差异很大,因此,音频功放电路中设置前置放大级以适应不同信号源的输入。 为了满足听众对频响的要求和弥补设置了音调控制放大器,希望能对高音、低音部分的频率特性进行调节扬声器系统的频率响应不足,。 为了充分地推动扬声器,通常音响系统中的功率放大器能输出数十瓦以上功率,而高级音响系统的功放最大输出功率可达几百瓦以上。 扩音机的整机电路如下图所示,按其构成,可分为前置放大级,音调控制级和功率放大级三部分。 装 订 线

前置放大电路: 前置放大级输入阻抗较高,输出阻抗较低。前置放大级的性能对整个音频功放电路的影响很大,为了减小噪声,前置级通常要选用低噪声的运放。 由A1组成的前置放大电路是一个电压串联负反馈同相输入比例放大器。 理想闭环电压放大倍数为:23 1R R A vf + = 输入电阻:1R R if = 输出电阻:0of =R 功率放大级: 对于功率放大级,除了输出功率应满足技术指标外,还要求电路的效率高、非线性失真小、输出与音箱负载相匹配,否则将会影响放音效果。 集成功率放大器通常有OTL 和OCL 两种电路结构形式。OTL 功放的优点是只需单电源供电,缺点是输出要通过大电容与负载耦合,因此低频响应较差;OCL 功放的优点是输出与负载可直接耦合,频响特性较好,但需要用双电源供电。(实验室提供本功能模块) 本实验电路的功率放大级由集成功率器件TDA2030A 连成OCL 电路输出形式。 TDA2030A 功率集成电路具有转换速率高,失真小,输出功率大,外围电路简单等特点,采用5脚塑料封装结构。其中1脚为同相输入端;2脚为反相输入端;3脚为负电源;4脚为输出端; 5脚为正电源。 功放级电路中,电容C15、C16用作电源滤波。D1和D2为防止输出端的瞬时过电压损坏芯片的保护二极管。R11、C10为输出端校正网络以补偿感性负载,其作用是把扬声器的电感性负载补偿接近纯电阻性,避免自激和过电压。 图中通过R10、R9、C9引入了深度交直流电压串联负反馈。由于接入C9,直流反馈系数F ′=1。对于交流信号而言,

高频小信号放大器的设计

高 频 小 信 号 放 大 器 设 计 学号:320708030112 姓名:杨新梅 年级:07电信本1班 专业:电子信息工程 指导老师:张炜 2008年12月3日

目录 一、选题意义 (3) 二、总体方案 (4) 三、各部分设计及原理分析 (7) 四、参数选择 (11) 五、实验结果 (17) 六、结论 (18) 七、参考文献 (19)

一、选题的意义 高频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。 高频小信号放大器的分类: 按元器件分为:晶体管放大器、场效应管放大器、集成电路放大器; 按频带分为:窄带放大器、宽带放大器; 按电路形式分为:单级放大器、多级放大器; 按负载性质分为:谐振放大器、非谐振放大器; 其中高频小信号调谐放大器广泛应用于通信系统和其它无线电系统中,特别是在发射机的接收端,从天线上感应的信号是非常微弱的,这就需要用放大器将其放大。高频信号放大器理论非常简单,但实际制作却非常困难。其中最容易出现的问题是自激振荡,同时频率选择和各级间阻抗匹配也很难实现。本文以理论分析为依据,以实际制作为基础,用LC振荡电路为辅助,来消除高频放大器自激振荡和实现准确的频率选择;另加其它电路,实现放大器与前后级的阻抗匹配。

二、总体方案 高频小信号调谐放大器简述: 高频小信号放大器的功用就是无失真的放大某一频率范围内的信号。按其频带宽度可以分为窄带和宽带放大器,而最常用的是窄带放大器,它是以各种选频电路作负载,兼具阻抗变换和选频滤波功能。对高频小信号放大器的基本要求是: (1)增益要高,即放大倍数要大。 (2)频率选择性要好,即选择所需信号和抑制无用信号的能力要强,通常用Q值来表示,其频率特性曲线如图-1所示,带宽BW=f2-f1= 2Δf0.7,品质因数Q=fo/2Δf0.7. 图-1频率特性曲线

晶体管共射极单管放大电路实验报告

实验二晶体管共射极单管放大器 一、实验目得 1.学会放大器静态工作点得调式方法与测量方法。 2.掌握放大器电压放大倍数得测试方法及放大器参数对放大倍数得影响。 3.熟悉常用电子仪器及模拟电路实验设备得使用。 二、实验原理 图2—1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E,以稳定放大器得静 态工作点。当在放大器得输入端加入输入信号后,在放大器得输出端便可 得到一个与输入信号相位相反、幅值被放大了得输出信号,从而实现了电 压放大。 三、实验设备 1、信号发生器 2、双踪示波器 3、交流毫伏表 4、模拟电路实验箱 5、万用表 四、实验内容 1.测量静态工作点 实验电路如图2—1所示,它得静态工作点估算方法为: UB≈

图2—1共射极单管放大器实验电路图 I E=≈Ic U CE=UCC-I C(RC+RE) 实验中测量放大器得静态工作点,应在输入信号为零得情况下进行。 1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V电源位置)。 2)检查接线无误后,接通电源。 3)用万用表得直流10V挡测量UE =2V左右,如果偏差太大可调节静态工作点(电位器RP)。然后测量U B、U C,记入表2—1中。 表2—1 测量值计算值UB(V) UE(V) UC(V)R B2(KΩ)U BE(V) UCE(V) I C(mA) 2、6 2 7、2 60 0、6 5、2 2 B2 量结果记入表2—1中。 5)根据实验结果可用:I C≈I E=或I C= UBE=U B-U E U CE=U C-UE 计算出放大器得静态工作点。 2.测量电压放大倍数

相关文档
最新文档