音频功率放大器实验报告_音频功率放大器课程设计报告.docx
音频功率放大电路实验报告分析

实验报告课程名称: 电路与模拟电子技术实验 指导老师: 成绩:__________________实验名称: 音频功率放大电路 实验类型: 研究探索型实验 同组学生姓名:__________一、实验目的和要求1、理解音频功率放大电路的工作原理。
2、学习手工焊接和电路布局组装方法。
3、提高电子电路的综合调试能力。
4、通过myDAQ 来分析理论数据和实际数据之间的关系。
二、实验内容和原理(必填)音频功率放大电路,也即音响系统放大器,用于对音频信号的处理和放大。
按其构成可分为前置放大级、音调控制级和功率放大级三部分。
作为音响系统中的放大设备,它接受的信号源有多种形式,通常有话筒输出、唱机输出、录音输出和调谐器输出。
它们的输出信号差异很大,因此,音频功放电路中设置前置放大级以适应不同信号源的输入。
为了满足听众对频响的要求和弥补设置了音调控制放大器,希望能对高音、低音部分的频率特性进行调节扬声器系统的频率响应不足,。
为了充分地推动扬声器,通常音响系统中的功率放大器能输出数十瓦以上功率,而高级音响系统的功放最大输出功率可达几百瓦以上。
扩音机的整机电路如下图所示,按其构成,可分为前置放大级,音调控制级和功率放大级三部分。
专业: 姓名:学号: 日期: 地点: 桌号装订线点名册上的序号前置 放大级 音调控制 放大级 功率 放大级前置放大电路:前置放大级输入阻抗较高,输出阻抗较低。
前置放大级的性能对整个音频功放电路的影响很大,为了减小噪声,前置级通常要选用低噪声的运放。
由A1组成的前置放大电路是一个电压串联负反馈同相输入比例放大器。
理想闭环电压放大倍数为:231R R A vf +=输入电阻:1R R if = 输出电阻:0of =R 功率放大级:对于功率放大级,除了输出功率应满足技术指标外,还要求电路的效率高、非线性失真小、输出与音箱负载相匹配,否则将会影响放音效果。
集成功率放大器通常有OTL 和OCL 两种电路结构形式。
音频功率放大器设计实验报告

题目:音频功率放大器电路音频功率放大器设计任务1、基本要求(1)频带范围 200Hz —— 10KHz,失真度 < 5%。
(2)电压增益 >= 20dB。
(3)输出功率 >= 1 W (8欧姆负载)。
(4)功率放大电路部分使用分立元件设计。
发挥部分(1)增加音调控制电路。
(2)增加话筒输入接口,灵敏度 5mV,输入阻抗 >> 20欧姆。
(3)输出功率 >= 10W (8欧姆负载)。
(4)其他。
目录1 引言·····························································2 总体设计方案·····················································2.1 设计思路·······················································2.2 总体设计框图···················································3 设计原理分析·····················································3.1设计总原理图3.2设计的PCB电路图···1 引言在现代音响普及中,人们因生活层次、文化习俗、音乐修养、欣赏口味的不同,令对相同电气指标的音响设备得出不同的评价。
(完整word版)功率放大器实验报告(终)

南昌大学实验报告学生姓名: 王晟尧 学号: 6102215054 专业班级: 通信152班 实验类型:□验证 □综合 □设计 □创新 实验日期: 实验成绩:音频功率放大电路设计一、设计任务设计一小功率音频放大电路并进行仿真。
二、设计要求已知条件:电源9±V 或12±V;输入音频电压峰值为5mV ;8Ω/0.5W 扬声器;集成运算放大器(TL084);三极管(9012、9013);二极管(IN4148);电阻、电容若干基本性能指标:P o ≥200mW (输出信号基本不失真);负载阻抗R L =8Ω;截止频率f L =300Hz,f H =3400Hz扩展性能指标:P o ≥1W (功率管自选)三、设计方案音频功率放大电路基本组成框图如下:话音放大器滤波器功率放大器话筒输出扬声器音频功放组成框图由于话筒的输出信号一般只有5mV左右,通过话音放大器不失真地放大声音信号,其输入阻抗应远大于话筒的输出阻抗;滤波器用来滤除语音频带以外的干扰信号;功率放大器在输出信号失真尽可能小的前提下,给负载R L(扬声器)提供一定的输出功率.应根据设计要求,合理分配各级电路的增益,功率计算应采用有效值。
基于运放TL084构建话音放大器与宽带滤波器,频率要求详见基本性能指标。
功率放大器可采用使用最广泛的OTL (Output Transformerless)功率放大电路和OCL(Output Capacitorless)功率放大电路,两者均采用甲乙类互补对称电路,这种功放电路在具有较高效率的同时,又兼顾交越失真小,输出波形好,在实际电路中得到了广泛的应用.对于负载来说,OTL电路和OCL电路都是射极跟随器,且为双向跟随,它们利用射极跟随器的优点——低输出阻抗,提高了功放电路的带负载能力,这也正是输出级所必需的。
由于射极跟随器的电压增益接近且小于1,所以,在OTL电路和OCL电路的输入端必须设有推动级,且为甲类工作状态,要求其能够送出完整的输出电压;又因为射极跟随器的电流增益很大,所以,它的功率增益也很大,这就同时要求推动级能够送出一定的电流。
音频功率放大器课程设计报告

课程设计报告设计题目:音频功率放大器系别:电子工程系专业:信息工程班级:09信工班学生姓名:2011年09月29日课程设计任务书目录一、设计要求二、设计总体方案2.1设计思路2.2 音频功放各级的作用和电路结构特征2.3简要原理分析三、选择器件及参数计算3.1电路元件参数及介绍3.2参数计算3.2.1参数计算3.2.2功率的计算四、用multisim仿真音频功率放大器五、实物电路安装调试及使用5.1电路调整与测试5.2通电观察六、设计体会与总结七、参考文献一、设计要求音频功率放大器具体要求:功率5W到10W。
电源电压20V以下。
最后一级功率放大级必须采用三极管电路,中间级可以采用运放等集成电路。
(可选功能)加分频器,输出高频低频两路信号(用于接高音喇叭和低音喇叭)。
最后要算出功耗、输出功率和频率响应曲线。
二、设计总体方案2.1设计思路音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。
声音源的种类有很多种,故输出信号的电压差别很大,从零点几毫伏到几百毫伏。
一般动率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器的话,对于输入信号过低的,功率放大器功率输出不足,不能充分发挥功放的作用;加入输入信号的幅值过大,功率放大器的输出信号将严重过载失真。
这样就失去了音频放大的意义了,所以一个实用音频功率放大系统必须设置前置放大器,以便使放大器适应不同的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。
最后音频放大器由前置放大器和音调控制电路和功率放大器三部分组成。
组成框架如下图:2.2 音频功放各级的作用和电路结构特征本次设计是基于10瓦音频放大器,由于时间有限,上网找了一些电路图,下幅电路图稍微修改后是最合适的。
由于电路采用NE5532芯片,芯片内部已包含了放大功能和音量控制功能,故省去了前置放大的一部分电路,使电路不用那么复杂。
图中前置放大由芯片NE5532实现,并通过变阻器P1实现音调的控制,最后一级采用互补功率放大电路。
音频功率放大器(课程设计)

音频功率放大器的设计任务书1 设计指标(1)直接耦合的功率放大器,额定输出功率10W,负载阻抗8Ω;(2)具有频响宽、保真度度、动态特性好及易于集成化;(3)采用分立元件设计;(4)所设计的电路具有一定的抗干扰能力。
2 设计要求(1)画出电路原理图;(2)确定元器件及元件参数;(3)进行电路模拟仿真;(4)S C H文件生成与打印输出。
3 编写设计报告写出设计的全过程,附上有关资料和图纸,有心得体会。
4 答辩在规定时间内,完成叙述并回答问题。
音频功率放大器设计摘要:这款功放采用了典型的OC L功放电路,为全互补对称式纯甲类DC结构,功放的每一级放大均工作于甲类状态。
输入级和电压放大级采用线性较好的沃尔漫电路,差分管及电流推动管分别为很出名的K170、J74(可用K389、J109孪生对管对换)对管和K214、J77中功率M OS管,功率输出级为2SC5200和2S A1943大功率东芝管并联输出,功率强劲,驱动阻抗2Ω的喇叭也轻松自如,毫不费力。
综合运用了我们前面所学的知识。
设计完全符合要求。
关键字:沃尔漫电路T IM共源-共基电路共射-共基电路1 引言在现代音响普及中,人们因生活层次、文化习俗、音乐修养、欣赏口味的不同,令对相同电气指标的音响设备得出不同的评价。
所以,就高保真度功放而言,应该达到电气指标与实际听音指标的平衡与统一。
2设计思路甲类放大器作为一种最古老,效率最低,最耗电,最笨重,最耗资,失真最小的放大器它有吸引人的音质。
甲类放大器输出电路图1前置放大电路框图本身具有抵消奇次谐波失真,且甲类放大器管子始终工作在线性曲线内,晶体管自始自终处于导通状态。
因此,不存在开关失真和交越失真等问题。
甲类放大器始终保持大电流的工作状态。
所以对猝发性声音瞬间升降能迅速反映。
因而输出功率发生急剧变化时,电12源电流变化微乎其微。
由这种强大的驱动者来推动扬声器就能轻而易举的获得高保真的重放效果。
为了能得到好的音质,在设计时,我采用了前后级分离。
音频功率放大电路的设计 实验报告

课程名称:电路与电子技术实验Ⅱ指导老师:成绩:__________________实验名称:音频功率放大电路的设计类型:___________________同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求1.了解复杂电子电路的设计方法。
2了解集成功率放大器的基本特点。
3了解放大电路的频率特性及音调控制原理。
4.学习复杂电子电路的分模块调试方法。
5. 学习扩音机电路的特性参数的测试方法。
二、实验内容和原理1. 整机电路设计整机电路主要分为:前置电路、音调电路、功放电路、音量调节、退耦电路、电路负载、电源保护电路几部分。
其中主要部分为前置放大电路、音量调节电路、功率放大电路。
2.前置放大电路前置放大级的主要功能是:进行功率放大,同时消除自激震荡。
为了减小噪声,前置级通常选用低噪声的运放。
由A1组成的前置放大级是一个同相比例放大器,具有较高的输入电阻。
前置放大级的放大倍数:输入电阻Rif=R1,输出电阻Rof=03.音调控制级电路音调控制级的主要功能是:分别对高音和低音的信号进行调节,来满足不同声音的要求。
音调控制级通过不同的负反馈网络和输入网络,使得放大器的Af随信号频率的不同而改变,从而达到音调控制的目的。
音调控制级由音调控制网络和运算放大器A2组成,为电压并联型负反馈电路。
调节RP1和RP2可以改变放大器的Af,达到音调控制的效果。
(1)低音部分在低频区,C6、R7支路可视为开路,反馈网络主要由上半部分电路起作用,R5的影响可忽略;低音时上半部分电路实质上是一个一阶有源低通滤波器。
①RP1活动端移至A点转折频率为:②RP1活动端移至B点时转折频率为:(2)高音部分高音时,下半部分电路实质上是一个一阶有源高通滤波器。
①RP2活动端移至C点转折频率为:②RP2活动端移至D点转折频率为:4.功率放大级功率放大级的主要功能:主要进行功率放大。
音频功率放大器(课程设计报告)

1 概述在介绍音频功率放大器的文章中,有时会看到“THD+N”,THD+N是英文Total Hormonic Distortion +Noise 的缩写,译成中文是“总谐波失真加噪声”。
它是音频功率放大器的一个主要性能指标,也是音频功率放大器的额定输出功率的一个条件。
THD+N性能指标THD+N表示失真+噪声,因此THD+N自然越小越好。
但这个指标是在一定条件下测试的。
同一个音频功率放大器,若改变其条件,其THD+N的值会有很大的变动。
这里指的条件是,一定的工作电压VCC(或VDD)、一定的负载电阻RL、一定的输入频率FIN(一般常用1KHZ)、一定的输出功率Po下进行测试。
若改变了其中的条件,其THD+N值是不同的。
例如,某一音频功率放大器,在VDD=3V、FIN=1kHz、RL=32Ω、Po=25mW条件下测试,其TDH+N=0.003%,若将RL改成16欧,使Po增加到50mW,VDD及FIN不变,所测的TDH+N=0.005%。
一般说,输出功率小(如几十mW)的高质量音频功率放大器(如用于MP3播放机),它的THD+N指标可达10-5,具有较高的保真度。
输出几百mW的音频功率放大器,要用扬声器放音,其THD+N一般为10-4;输出功率在1~2W,其THD+N更大些,一般为0.1~0.5%.THD+N这一指标大小与音频功率放大器的结构类别有关(如A类功放、D类功放),例如D类功放的噪声较大,则THD+N的值也较A类大。
这里特别要指出的是资料中给出的THD+N这个指标是在FIN=1kHz下给出的,在实际上音频范围是20Hz~20kHz,则在20Hz~20kHz范围测试时,其THD+N要大得多。
例如,某音频功率放大器在1kHz时测试,其TDH+N=0.08%。
若FIN改成20Hz-20kHz,,其他条件不变,其THD+N变为小于0.5%。
输出额定功率的条件过去有用“不失真输出功率是多少”这种说法来说明其输出功率大小。
课程设计报告--音频功率放大器设计

课程设计报告--音频功率放大器设计音频功率放大器设计报告一、引言音频功率放大器是电子工程领域中的一个重要组成部分,它能将输入信号放大并驱动扬声器输出高质量的音频信号。
音频功率放大器设计的主要目标是提高音频信号的功率,同时保持音频信号的稳定和高保真度。
本报告将介绍一个音频功率放大器的设计过程,包括电路设计、原理图设计、仿真和测试结果等。
二、电路设计1. 器件选择首先需要选择适合的放大器芯片和其他必要的元件。
在音频功率放大器设计中,常用的芯片有TDA2030、TDA2050等,选择芯片时需考虑芯片的功率输出、输入电压、高保真度等参数。
2. 电路图设计根据所选芯片的数据手册和设计要求,进行电路图的设计。
电路图设计主要包括输入电路、放大电路、输出功率放大电路等部分。
在设计过程中应注意信号的阻抗匹配、滤波等问题。
三、原理图设计根据电路设计,绘制电路的原理图。
原理图将各个部分的连接关系以及元件的数值等信息展示出来,为后续的仿真和测试提供便利。
四、仿真基于设计好的原理图,进行电路仿真。
使用仿真软件(如Proteus、Multisim等)对电路进行仿真,验证放大器的性能指标,包括功率输出、频率响应、失真度等参数。
五、测试结果根据仿真结果,制作音频功率放大器的实物电路,并进行测试。
测试包括输入信号的幅值、频率、输出功率、失真度等参数的测量。
根据测试结果,评估设计的音频功率放大器的性能和有效性。
六、总结通过本次课程设计,了解了音频功率放大器的设计过程,掌握了电路设计、原理图设计、仿真和测试等技能。
同时也深入了解了音频功率放大器的重要性和应用领域。
在今后的学习和工作中,将进一步拓展音频功率放大器设计的知识,不断提高设计水平,为音频领域的发展做出更大的贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
音频功率放大器实验报告_音频功率放大器课程设计报告本科实验报告课程名称:姓名:学院:系:专业:学号:指导教师:电子电路安装与调试信息与电子工程学院电子科学与技术一、实验目的二、实验任务与要求三、实验方案设计与实验参数计算(3.1 总体设计、3.2 各功能电路设计与计算、3.3完整的实验电路……)四、主要仪器设备五、实验步骤与过程六、实验调试、实验数据记录七、实验结果和分析处理八、讨论、心得一、实验目的1、学习并初步掌握音频功率放大器的设计、调试方法。
2、学习并掌握电路布线、元器件安装和焊接。
3、掌握音频功率放大器各项主要性能及指标的调试方法。
二、实验任务与要求 1、设计(1)设计一音频功率放大器,使其达到如下主要技术指标:负载阻抗:R L =4Ω额定功率:P o =10W 带宽:BW ≥(50~15000) Hz 音调控制:低音:100Hz ±12dB 高音:10kHz ±12dB 失真度:γ≤3%输入灵敏度:U " i(2)设计满足以上设计要求的稳压电源。
2、在Altium Designer中画出原理图, 并进行PCB 板的编辑与设计。
3、根据给定的功率放大器的原理图(三),做如下工作:(1)分析计算晶体管前置放大器的直流工作电压、电流、输入电阻、输出电阻、各级放大器的交流增益。
(2)分析音调控制电路的工作原理,计算4个极端情况下的交流增益。
(3)安装实验电路板(4)调试和测试实验电路的增益、频响特性曲线、输入电阻和输出电阻、以及改变某实验名称:音频功率放大器的设计、安装和调试姓名:陈肖苇学号:3140104580_些电路参数后的性能测试(电路图中括号内的数字)。
(5)分析实验数据,并与理论计算值比较,讨论二者之间的误差和产生误差的原因。
三、实验原理和实验方案设计作为音频放大器的音源部分,其输出电平既有高至数百毫伏(如调谐器:50~500mV,线路输出:100~500mV),也有低至1mV (如话筒:1~5mV),相差达几百倍。
音频放大器就是要把这些不同大小的音源放大后驱动喇叭,发出同等强度的声音。
因此,根据不同音源的需要,可以画出音频放大器的原理框图,如图1所示。
P.2装订线图1音频功率放大器框图1、各部分电路电压增益的确定根据额定输出功率P o =10W和负载R L =4Ω,可求得输出电压为:V o ===6.32V所以整机中频电压增益为:A O um =V V =6.32V=63.2 i 100mV通常前置级产生的噪声对整个系统的影响最大,因此前置级的增益不宜太高,一般选取该级增益为:A um 1=5~10对音调控制电路无中频增益要求,一般选为:A um 2=1实验名称:音频功率放大器的设计、安装和调试姓名:陈肖苇学号:3140104580_因此,功放输出级电压增益应满足下式要求:A um 1A um 2A um 3≥A um对于话筒放大器,话筒输出约为5mV ,而音源线路输出约为100mV ,因此,话筒放大器的电压增益应为:A 100mVumic ≥5mV=20。
确定A um 1=10,A um 2=1,A um 3=6.32,A umic =20。
P.32、功放电源电压的确定为保证电路安全可靠工作,通常电路的最大输出功率P oM 比额定输出功率要大一些,一般取P oM =1.5P o 。
最大输出电压V om =≈7.75V ,峰峰值V pp =om =21.9V 。
考虑到功率管的饱和压降和串联电阻,电源电压必须大于输出峰-峰值电压。
使用双电源,则为±12~14V。
3、话筒放大器的设计话筒放大器电路图与给出图三相同,采用共射极放大电路放大,射极跟随器输出。
图2话筒放大电路3.1 I c 1、I c 2的确定电路的噪声系数与晶体管的工作点有关,晶体管I c 的选择应考虑噪声系数,9014型晶体管一般取几百微安。
实验名称:音频功率放大器的设计、安装和调试姓名:陈肖苇学号:3140104580_这里取900微安。
3.2 U C 1、U E 2的选择一般选取U C 1≈E C 1/2,U E 2≈E E 2/2 3.3 R 4、R 6、R 7的选取P.4R E C 1-U C 1I =E C 1,R E C 14=I E 2≈I C 2) 。
C 12I C 16+R 7≈2I C 1R 4=5KΩ,R 6=R 7=2.5KΩ3.4 R 2的确定增益A u 1=R 4/R 2=10, R 2=500Ω 3.5 R 8、C 4的确定R 3~58一般选取几百欧姆至几千欧姆,C 4≥2πf =3uFL R 8取R 8为5.1K ,C 4为3.3uF 。
3.6 补偿电容C 1的选择C 1为防止高频自激之用,一般取几十至几百pF 。
取C 1为270pF 。
3.7 耦合电容C 2C ~52≥32πf ,这里C 0取2.2uF 。
L R i 13.8 R 1的选择R 1的取值应与话筒的输出阻抗相当。
由图知为18K 。
3.9 R 3、R 5为反馈电路,这里R 3=R 5=20K。
C 6隔直,为2.2uF 。
实验名称:音频功率放大器的设计、安装和调试姓名:陈肖苇学号:3140104580_4、音调控制部分的设计4.1选择电路形式及其工作原理常用的音调控制电路有三种:一是衰减式RC 音调控制电路,其调节范围较宽,但容易产生失真;另一种是反馈型音调控制电路,其调节范围小一些,失真也小;第三种为图示式频率均衡电路,其电路复杂,多用于高级收录机和音响设备中。
为使电路简单,信号失真小,本实验采用反馈型音调控制电路。
电路形式为一反相放大器,输入阻抗为Z i ,反馈阻抗为Z f ,P.5其增益为A =-Z f Z 。
i当信号频率不同时,Z i ,Z f 也不同,从而增益随信号频率的改变而改变。
电路图如图所示。
图3音调控制电路其中C28、C29较大,当低频时起作用,高频时可看作短路。
C13、C14较小,低频时刻看作开路。
所以在低频时,C13、C14看作开路,又因为,运放的开环增益很大,输入阻抗很高,因此R17的影响可忽略不计。
运放增益A R 15-2P 1/j ωC 29+R 18uL =R P 1/j ωC 。
15-128+R 14实验名称:音频功率放大器的设计、安装和调试姓名:陈肖苇学号:3140104580_分析极端情况,滑动变阻器滑到左端,A 29+R 18uL =R 15P 1/j ωC R ,增益最大,滑动14变阻器滑到右端,A R 18uL =R ,增益最小,可以看出滑动变阻器从左滑到15P 1/j ωC 28+R 14右,增益由大变小,在中间时为1,因此R15在低频时实现了低音的提升和衰减。
P.6在高频时C28、C29看作短路,分析电路可得到与低频时相同的规律,高音的最大衰减量为A 28+R 30u 2min=R 30R ,最大提升量为A u 2max=R 28+R 30R 。
304.2设计①确定转折频率,电路的带宽在50~15KHz之间f L =f L 1=50Hz , f H =f H 1=15000kHz②确定滑动变阻器数值。
因为运放的输入阻抗很高,一般R id >500k Ω,所以R15,R28选用100k Ω的线性电位器。
③C 28=C 29=12πR =32nF15f L 1R R 2814=R 17=R 18=f /f 1=11.1K ΩL 2L 1-④R 3R16=f H 2/f =3.7KH 1-1C 113=C 14=2πf nFH 2R =1.416⑤C30为综合电容,与运放增益有关,会影响到音调控制的高频截止频率,这里C30为10pF 。
⑥C31与R19共同组成同相输入的阻抗,平衡偏置电流,C31为1nF ,R19为39K 。
⑦R29,R30与高音提升的增益有关,设高音增益最高为10,最低为1/10,则R 29=R 30=11.1K5、集成功放级设计5.1根据额定功率Po 和负载RL 的要求来选择集成块。
这里Po=10W,RL=4Ω,集成功实验名称:音频功率放大器的设计、安装和调试姓名:陈肖苇学号:3140104580_放选择TDA2030。
5.2参数确定功放电路如图所示P.7图4集成功放电路增益为A 1/j ωC 17P R 23up =1+1/j ωC 。
18+R 24中频段,C17可以视为开路,C18可以视为短路。
低频段,C17可以视为开路。
高频段,C18可以视为短路。
①R 24的取值范围一般在几十欧姆至几千欧姆均可。
取R 24为1K Ω。
②根据中频增益确定R 23。
A um 3≤A R 23up =R +1,R 23≥(A um 3-1) R 24=5.32K 24取R 23为6K Ω。
③C 17的选取C 117≤2πR =1.7nF23f H实验名称:音频功率放大器的设计、安装和调试姓名:陈肖苇学号:3140104580_取C 17为300pF 。
P.8④根据低频响应f L 来确定C 18。
C 18≥12πR =3.2u24f L取C 18为4.7u 。
⑤R21的选取考虑到差分放大器的平衡性,R21为功放的直流反馈电阻,因此R21=R23=6K。
⑥D1、D2的作用是为防止输出脉冲电压损坏集成电路,一般选用开关二极管。
⑦C19、R25为了使负载喇叭在高频段仍为纯电阻,需要加补偿电阻R25和补偿电容C19,一般选取R25≈RL=4Ω,C 119=2πf =1.3uFH (R L +R 8)⑧R20,C36R20为音量控制电阻,控制输入功放的电压,从而控制输出功率,这里取20K 的滑动变阻器。
C36为耦合电容,取10uF 。
6、前置放大电路设计前置放大电路为运算放大器电路,为一同相放大电路,电路如图所示。
实验名称:音频功率放大器的设计、安装和调试姓名:陈肖苇学号:3140104580_P.9。