概率论与数理统计(B卷)

概率论与数理统计(B卷)
概率论与数理统计(B卷)

(3)0.5000 (4)0.9545

11、设随机变量)50.0,19(~b X ,那么X 最可能取到的数值为【 】。 (1)9.5 (2)10.9 (3)10 (4)9

12、n X X X ,,,21 是总体X~N(2

,σμ)的一个样本,)1/()(21

2

--=∑=n X X S n

i i 。那么统

计量2χ= (n-1)2S /2σ~【 】。

(1))n (2χ (2))1,0(N (3))1n (2-χ (4))1n (t -

13、参数θ的置信区间为【1?θ,2?θ】,且P {1?θ<θ<2?θ}=0.99,那么置信度为【 】。

(1)0.99 (2)99 (3)0.01 (4)不能确定

14、设 X 1, X 2 …,X n 是总体X~)(λP 的样本,则 X 1, X 2 …,X n 相互独立,且【 】 。

(1)),(~2i σμN X (2)i X ~)(λP

(3))(~e i λG X (4)),0(~i λU X

15、下列分布中,具备“无后效性”的分布是【 】。

(1)二项分布 (2)均匀分布 (3)指数分布 (4)泊松分布

二、多项选择题(从每题后所备的5个选项中,选择至少2个正确的并将代码填题后的括号内,每题1分,本题满分5分)

16、如果事件A 、B 相互独立,且P (A )=0.40,P (B )=0.30,那么【 】。

(1)P (B A -)=0.72 (2)P (A ?B )=0.58 (3)P (A-B )=0.28 (4)P (AB )=0.12 (5)P (A/B )=0.40

17、设随机变量X ~b (20,0.70),那么以下正确的有【 】。

(1)EX =14 (2)X 最可能取到14和13 (3)DX = 4.2 (4))0(=X P =2070.0 (5)X 最可能取到15 18、随机变量)144,10(~N X ,那么【 】。

(1)EX =12 (2)144=DX (3)12=DX (4)12=σ (5)2/1)10()10(=<=>X P X P 19、设)25(~,)15(~22χχY X ,且X 与Y 独立,则【 】。

(1)25=EX (2)15=EY (3)15=EX (4)50=DY

(5)Y X +~)40(2χ

20、以下关于置信区间的说法中,正确的有【 】。 (1)置信度越高,准确性越高(2)置信度越高,准确性越低

(3)用对称位分位数构造的区间最短 (4)用对称位分位数构造的区间最长 (5)置信度越高,误差越大

三、判断题1分,本题满分15分) 【 】21、互相对立的事件A,B 之间不一定互斥。

【 】22、40.0)B (P ,60.0)A (P ==,那么B A ?。 【 】23、概率为1是事件为必然事件的充分条件。

【 】24、分布相同的随机变量数字特征相等,数字特征相等的随机变量分布必相同。

【 】25、设随机变量U X ~(4,12 ),则3/16,8==DX EX 。 【 】26、设随机变量X ~ N ( μ,2σ),则σπμ2/1)(max ==f f 。

【 】27、棣莫佛—拉普拉斯定理表明,离散型分布可以转换为连续型分布。 【 】28、若(1/1000)~e X ,那么)400X (P )300X |700(>=>>X P 。 【 】29、如果10=DX ,那么90.0)10|(|≥<-EX X P 。

【 】30、离散型随机变量与连续型随机变量的数学期望有着本质区别。 【 】31、点估计的优越性主要体现在简单直观、易于被人理解。

【 】32、“小概率事件在一次试验中,被认为不可能发生”的合理性在于:它本就不可能发生。

【 】33、如果事件n A A A ,,,21 的部分组事件相互独立,那么也n A A A ,,,21 独立。 【 】34、如果一个变量的1、2、3阶矩存在,那么其4阶矩一定存在。 【 】35、估计量的无偏性与有效性都是小样本性质,二者等价。 四、计算题(每题8分,本大题共40分):

36、箱中有10个外观形状完全相同的小球,其中3个为红球、5个黑球以及2个白球。从中任取3个。求:(1)全为黑球的概率。(2)每种颜色的球各一个的概率。 37、一所大学设有经济学院、理学院、法学院和文学院,人数分别占35%,25%和22%和18%。各学院学生的体育爱好者依次为30%,65%,55%和40%。从中随意调查一

个学生,问(1)此人为体育爱好者的概率。(2)若此人为体育爱好者,来自经济学院的概率是多少?

38、设随机变量X~)(λP ,且)5()4(===X P X P ,问(1)?)3(==X P (2)X 最有可能取到的数值是多少?)0067.0(5=-e 39、设随机变量X 的概率密度函数为:

??

?<<=其他

0103)(2x x x f

求:(1))(2X E ;(2))10002(+X D 。

40、据统计某种品牌鞋的日销售量~X (μ,2σ )。从销售的历史数据中随机抽取7天的销量,结果为:27,34,20,26,25,30,45。要求估计:(1)日销售量标准差σ的

95%置信区间。(2)平均日销售量的95%置信区间。( 1.237)6(,14.449)6(2975.02025.0==χχ,

,690.17(,013.16)7(2975.02025.0==)χχ9432.1)6(,4469.2)6(05.0025.0==t t )。

五、应用题(每题10分,共10分):

41、假设电话的通话时长)(~λe X (单位:分钟),即其密度函数为:

??

?<<=-其他

10),(x e x f x λλλ

其中0>λ(未知)。从客户通话记录中随机挑选10次通话时长,结果为:0.70,1.20,2.20,1.90,4.50,6.80,4.20,6.20,5.70和3.50。求:(1)λ的矩估计。(2)估计)0.4(>X P 。 六、综合题(本题满分15分)

42、保险公司在一项寿险业务中吸纳了200000名同类保户,每名保护收费160元。若年内发生责任事故,受益人可以获赔250000元。据调查这类保户年内发生责任事故的概率为0.0004。要求:(1)计算盈利超过1000000元的概率;(2)若将盈利超过1000000元的概率定为0.80,其他条件不变,确定收费标准。(3)若将盈利1000000元的概率定为0.75,其他条件不变,确定赔付标准(不考虑经营费用)(,.00001)4.92(≈Φ

)

7486.0)67.0(,7517.0)68.0(,7995.0)84.0(,8023.0)85.0(====ΦΦΦΦ

概率论与数理统计期末考试试卷(B)评分标准

云南财经大学期末考试试题答案及评分标准

学年学期:2011~2012(上)

专业:会计、金融、项目管理及理财

班级:2010511A班等

课程:概率论与数理统计

教学大纲:《概率论与数理统计》

教学大纲(2011年版)

使用教材:概率与数理统计学

教材作者:吴赣昌

出版社:中国人民大学出版社

云南财经大学国际工商管理学院

《概率论与数理统计》试题(B 卷)参考答案及评分标准

一、单项选择题(每题1分,本题共15分): 1、(1) 2、(2) 3、(3) 4、(4) 5、(1) 6、(2) 7、(3) 8、(4) 9、(4) 10、(3) 11、(2) 12、(1) 13、(1) 14、(2) 15、(3) 二、多项选择题(每题1分,本题共5分) 16、(1)(2)(3)(4)(5) 17、(1)(3)) 18、(2)(4)(5) 19、(3)(4)(5) 20、(2)(3)(5) 三、判断题(每题1分,本题15分):

21、F 22、F 23、F 24、T 25、F 26、T 27、T 28、T 29、T 30、F 31、T 32、F 33、F 34、F 35、F 四、计算题(每题8分,本题共40分) 36、解:(1)设=A {3个全为黑球}

n = 120310

=C m =103

5=C 12

1

12010)(===

n m A P (4分) (2)B={每种颜色的球歌一个} 4

1

120)(131512==

C C C B P (4分) 37、解: 设B={抽到的学生是体育爱好者}

321,,A A A ,4A 分别表示选到的学生是经济学院、理学院、法学院和文学院的,显然这

四个事件构成完备事件组。

(1)由全概率公式有:

=?+?+?+?==∑=40.018.055.022.065.025.003.035.0)/()()(4

1i i i A B P A P B P 0.4495(4

分)

(2)由贝叶斯公式有

2336.04495

.030

.035.0)

/()()

()/(4

1

11=?=

=

∑=i i

i

A B P A P A P B A P (4分)

38、解:

λλ

λλ--=

e e

!

4!

54

5

5=∴λ (3分)

(1)1404.0!

35}3{5

3===-e X P (3分)

(2)5=λ ,X ∴最可能取值为1,-λλ,即4,5。 (2分)

39、解:(1)?=

=1

022253

3)(dx x x X E (4分)

(2)?==10243

3)(dx x x X E

80/3)4/3(5/3)()()(222=-=-=EX X E X D

20/34)10002(==+DX X D (4分)

40、解:(1)4844.0)4(,1433.11)4(,95.01,95.64,57.292

975.0025.022===-==χχαS x

日销售量标准差的α-1置信区间为:???

?

????-----)1()1(,)1()1(2

212222

n S n n S n ααχχ (2分) 日销售量标准差的置信度为95%的置信区间 为:[5.19, 17.75]. (2分) (2)平均销售量αμ-1的置信区间为: ))

1(,)

1((2/2/n

s n t X n

s n t X -+--αα (2分)

平均日销量的95%置信区间为:(22.12,37.03) (2分) 五、应用题:(每题10分,共10分)

41、解:(1) ?∞+-===0

11

λ

λμλdx e x EX x

X A =1 令 X A =?

μ1

1

1 (2分)

∴ X

1?=λ

(4分) 69.3/==∑n X X ∴27.069.3/1?==λ

(2分) (2)3382.027.0)4(?4

27.0==>?

+∞-dx e X P x (2分) 六、综合题(每题15分,本题15分):

1、解: 记X 为200000名保户中年内发生事故的人数,则 )0004.0,200000(b ~X (3分) (1)依题意,所求为:

))(0.0004-10.00042000000.0004

200000124(

)124X (P )1000000200000X 200000160(P ??-≈<=>-?Φ=

1.00004.92≈)(Φ (4分)

(2)设费率应为a 元,依题意有

)

8.9425

84

-0.8a (

)0.0004)

-0.0004(12000000.0004200000100.8a X (P )1000000250000X 200000a (P Φ≈??--<=>-?=0.85 115a 50.114a 85

.08.9425

84

0.8a =?=?=-?

(元) (4分)

(3)设赔付标准应为b 元,依题意有

85.0)31000000

(80.0)1000000200000160(=-?b

X P bX P 即3463.36012668.09425

.880

/3100000075

.0)9425

.880

/31000000(

=?=-?

=-b b b Φ

360126=b (元) (4分)

概率论与数理统计期末复习资料(学生)

概率论与数理统计期末复习资料 一 填空 1.设A ,B 为两个随机事件,若A 发生必然导致B 发生,且P (A )=0.6,则P (AB ) =______. 2.设随机事件A 与B 相互独立,且P (A )=0.7,P (A -B )=0.3,则P (B ) = ______. 3.己知10件产品中有2件次品,从该产品中任意取3件,则恰好取到一件次品的概率等于______. 4.已知某地区的人群吸烟的概率是0.2,不吸烟的概率是0.8,若吸烟使人患某种疾病的概率为0.008,不吸烟使人患该种疾病的概率是0.001,则该人群患这种疾病的概率等于______. 5.设连续型随机变量X 的概率密度为? ??≤≤=,,0; 10,1)(其他x x f 则当10≤≤x 时,X 的分布函数F (x )= ______. 6.设随机变量X ~N (1,32 ),则P{-2≤ X ≤4}=______.(附:)1(Φ=0.8413) 7.设二维随机变量(X ,Y )的分布律为 则P {X <1,Y 2≤}=______. 8.设随机变量X 的期望E (X )=2,方差D (X )=4,随机变量Y 的期望E (Y )=4,方差D (Y )=9,又E (XY )=10,则X ,Y 的相关系数ρ= ______. 9.设随机变量X 服从二项分布)3 1,3(B ,则E (X 2 )= ______. 10.中心极限定理证明了在很一般条件下,无论随机变量Xi 服从什么分布,当n →∞时,∑=n i i X 1 的极限分布是 _________________ 11.设总体X ~N (1,4),x 1,x 2,…,x 10为来自该总体的样本,∑== 10 110 1 i i x x ,则)(x D = ______.· 12.设总体X ~N (0,1),x 1,x 2,…,x 5为来自该总体的样本,则 ∑=5 1 2i i x 服从自由度为______ 的2χ分布. 15.对假设检验问题H 0:μ=μ0,H 1:μ≠μ0,若给定显著水平0.05,则该检验犯第一类错误的概率为______. 16.设A ,B 为两个随机事件,且A 与B 相互独立,P (A )=0.3,P (B )=0.4,则P (A B )=__________. 17.盒中有4个棋子,其中2个白子,2个黑子,今有1人随机地从盒中取出2个棋子,则这2个棋子颜色相同的 概率为_________. 18.设随机变量X 的概率密度?? ???≤≤=,,0; 10 ,A )(2其他x x x f 则常数A=_________.

全国历自学考试概率论与数理统计(二)试题与答案

全国2011年4月自学考试概率论与数理统计(二) 课程代码:02197 选择题和填空题详解 试题来自百度文库 答案由王馨磊导师提供 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设A , B , C , 为随机事件, 则事件“A , B , C 都不发生”可表示为( A ) A .C B A B .C B A C .C B A D .C B A 2.设随机事件A 与B 相互独立, 且P (A )=5 1, P (B )=5 3, 则P (A ∪B )= ( B ) A .253 B .2517 C .5 4 D .2523 3.设随机变量X ~B (3, 0.4), 则P {X ≥1}= ( C ) A .0.352 B .0.432 C .0.784 D .0.936 解:P{X ≥1}=1- P{X=0}=1-(1-0.4)3=0.784,故选C. 4.已知随机变量X 的分布律为 , 则P {-2<X ≤4}= ( C ) A .0.2 B .0.35 C .0.55 D .0.8 解:P {-2<X ≤4}= P {X =-1}+ P {X =2}=0.2+0.35=0.55,故选C. 5.设随机变量X 的概率密度为4 )3(2 e 2 π21)(+-= x x f , 则E (X ), D (X )分别为 ( ) A .2,3- B .-3, 2 C .2,3 D .3, 2 与已知比较可知:E(X)=-3,D(X)=2,故选B. 6.设二维随机变量 (X , Y )的概率密度为? ??≤≤≤≤=,,0, 20,20,),(其他y x c y x f 则常数 c = ( A ) A .4 1 B .2 1 C .2 D .4 解:设D 为平面上的有界区域,其面积为S 且S>0,如果二维随机变量 (X ,Y )的概率密度为 则称 (X ,Y )服从区域D 上的均匀分布,

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

完整word版,概率论与数理统计(B)试卷及答案,推荐文档

概率论与数理统计(B ) 一.选择题 1. 设事件A 和B 的概率为 12 (),()23 P A P B == 则()P AB 可能为() (A) 0; (B) 1; (C) 0.6; (D) 1/6 2. 从1到5中等可能地、有放回地接连抽取两个数字,则这两个数字不相同的概率为() (A) 12; (B) 225; (C) 4 25 ; (D)以上都不对 3.投掷两个均匀的骰子,已知点数之和是偶数,则点数之和为6的概率为( ) (A) 518 ; (B) 13; (C) 12 ; (D) 536 4. 设随机变量 X 满足:E(2x )=8,D(X)=4,EX>0,则 EX=( ) (A) 1 ; (B) 2 ; (C) 3 ; (D) 4; 5.一口袋中有3个红球和2个白球,某人从该口袋中随机摸出一球,摸得红球 得5分,摸得白球得2分,则他所得分数的数学期望为( ) (A) 2.5; (B) 3.5; (C) 3.8; (D)4; 6. 设随机变量 X 的密度函数为 f(x)= 20x x A ≤≤???( 0)其他,则A=( ) (A) 1/4; (B) 1/2; (C) 1; (D) 2; 二.填空题 7.设 X~N(μ,2 σ) ,且概率密度2 (2)6f ()x x --=,则μ=_______,σ=________ 8.若事件 A 与B 相互独立,且 P(A)=0.4,P(A ∪B)=0.6, 则 P(B)_______,P(AB)=________ 9.设随机变量~(,), ()3, () 1.2B n p E D ξξξ==,则n=________ 10.若随机变量 X 服从泊松分布,且 P{X=1}=P{X=2},则 P{X=3}=_________ 11.二维随机变量(X,Y)的联合分布律为:P{X=i x ,Y=j y }=1/12,(i=1,2,3,4; j=1,2,3),则 P{X=1x }=_________ 12.设随机变量 X 服从(1,3)上的均匀分布,则,13 ()22 P x ≤≤=___________ 三.计算题 1.某射手有 3 发子弹,射一次命中的概率为 2/3,如果命中了就停止射击,则一直独立地射到 子弹用尽,求(1)耗用子弹 X 的分布列;(2)EX 。

《概率论与数理统计》讲义#(精选.)

第一章 随机事件和概率 第一节 基本概念 1、排列组合初步 (1)排列组合公式 )! (! n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。 )! (!! n m n m C n m -= 从m 个人中挑出n 个人进行组合的可能数。 例1.1:方程 x x x C C C 765107 11=-的解是 A . 4 B . 3 C . 2 D . 1 例1.2:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,试问总共的场次是多少? (2)加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。 (3)乘法原理(两个步骤分别不能完成这件事):m ×n 某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。 例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法? 例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少? 例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜

色,且相邻区域的颜色必须不同,则共有不同的涂法 A.120种B.140种 C.160种D.180种 (4)一些常见排列 ①特殊排列 ②相邻 ③彼此隔开 ④顺序一定和不可分辨 例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单? ①3个舞蹈节目排在一起; ②3个舞蹈节目彼此隔开; ③3个舞蹈节目先后顺序一定。 例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法? 例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法? ①重复排列和非重复排列(有序) 例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法? ②对立事件 例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法? 例1.11:15人中取5人,有3个不能都取,有多少种取法? 例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?

概率论与数理统计试题库

《概率论与数理统计》试题(1) 一 、 判断题(本题共15分,每小题3分。正确打“√”,错误打“×”) ⑴ 对任意事件A 和B ,必有P(AB)=P(A)P(B) ( ) ⑵ 设A 、B 是Ω中的随机事件,则(A ∪B )-B=A ( ) ⑶ 若X 服从参数为λ的普哇松分布,则EX=DX ( ) ⑷ 假设检验基本思想的依据是小概率事件原理 ( ) ⑸ 样本方差2n S = n 121 )(X X n i i -∑=是母体方差DX 的无偏估计 ( ) 二 、(20分)设A 、B 、C 是Ω中的随机事件,将下列事件用A 、B 、C 表示出来 (1)仅A 发生,B 、C 都不发生; (2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。 三、(15分) 把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 四、(10分) 已知离散型随机变量X 的分布列为 2101 31111115651530 X P -- 求2 Y X =的分布列. 五、(10分)设随机变量X 具有密度函数|| 1()2 x f x e -= ,∞< x <∞, 求X 的数学期望和方差. 六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤. x 0 0.5 1 1.5 2 2.5 3 Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999 七、(15分)设12,,,n X X X 是来自几何分布 1 ()(1) ,1,2,,01k P X k p p k p -==-=<< , 的样本,试求未知参数p 的极大似然估计.

概率论与数理统计(B)卷参考答案

商学院课程考核试卷参考答案与评分标准 (B )卷 课程名称: 概率论与数理统计 学 分: 4 考核班级: 本部各本科专业 考核学期: 一、填空(每小题3分,共30分) 1.0.2; 2. 0.4(2/5); 3. 9 16; 4.(0.5,2); 5.2; 6. 13; 7. 7; 8. 16 ; 9. 45; 10.32 。 二、单项选择(每小题3分,共15分) 1. C .; 2. A .; 3. B .; 4. A .; 5. D .。 三、计算题(第1题10分,其余5小题每题9分,共55分) 1. 设A A ,分别表示生产情况正常和不正常,B 表示产品为次品。那么 8.0)(=A P ,2.0)(=A P ;03.0)|(=A B P ,2.0)|(=A B P 2分 (1)由全概率公式 064.02.02.003.08.0)|()()|()()(=?+?=+=A B P A P A B P A P B P ; 6分 (2)由Bayes 公式 375.0064 .003 .08.0)()|)(()|(=?== B P A B A P B A P 10分 2.(1)由于1)(,0)0(=+∞=F F ,可得1,1-==B A ?? ?≤>-=-0 1)(2x x e x F x 3分 (2)21)1()1(}11{--=--=<<-e F F X P 6分 (3)?? ?≤>='=-0 2)()(2x x e x F x f x 9分 3. (1)14),(== ? ? +∞∞-+∞ ∞ -c dxdy y x f ,所以,4=c 3分 (2)3 24)(1 1 2==??ydy dx x X E ;3 24)(1 21 ==??dy y xdx Y E 9 44)(1 021 2= =? ? dy y dx x XY E 6分 (3)0)()()(),(=-=Y E X E XY E Y X Cov 9分 4.先求他等车超过10分钟的概率}10{1}10{≤-=>X P X P 25110 051 1--=- =? e dx e x 3分 所以Y 服从5=n ,2-=e p 的二项分布,),5(~2-e B Y 6分 52)1(1}0{1}1{---==-=≥e Y P Y P 9分

概率论与数理统计期末总结

第1章 概率论的基本概念 1.1 随机试验 称满足以下三个条件的试验为随机试验: (1)在相同条件下可以重复进行; (2)每次试验的结果不止一个,并且能事先明确所有的可能结果; (3)进行试验之前,不能确定哪个结果出现。 1.2 样本点 样本空间 随机事件 随机试验的每一个可能结果称为一个样本点,也称为基本事件。 样本点的全体所构成的集合称为样本空间,也称为必然事件。必然事件在每次试验中必然发生。 随机试验的样本空间不一定唯一。在同一试验中,试验的目的不同时,样本 空间往往是不同的。所以应从试验的目的出发确定样本空间。 样本空间的子集称为随机事件,简称事件。 在每次试验中必不发生的事件为不可能事件。 1.3 事件的关系及运算 (1)包含关系 B A ?,即事件A 发生,导致事件B 发生; (2)相等关系 B A =,即B A ?且A B ?; (3)和事件(也叫并事件) B A C ?=,即事件A 与事件B 至少有一个发生; (4)积事件(也叫交事件) B A AB C ?==,即事件A 与事件B 同时发生; (5)差事件 AB A B A C -=-=,即事件A 发生,同时,事件B 不发生; (6)互斥事件(也叫互不相容事件) A 、 B 满足φ=AB ,即事件A 与事件B 不同时发生; (7)对立事件(也叫逆事件) A A -Ω=,即φ=Ω=?A A A A ,。

1.4 事件的运算律 (1)交换律 BA AB A B B A =?=?,; (2)结合律 ()()()()C AB BC A C B A C B A =??=??,; (3)分配律 ()()()()()()C A B A BC A AC AB C B A ??=??=?,; (4)幂等律 A AA A A A ==?, ; (5)差化积 B A AB A B A =-=-; (6)反演律(也叫德·摩根律)B A AB B A B A B A B A ?==?=?=?,。 1.5 概率的公理化定义 设E 是随机试验,Ω为样本空间,对于Ω中的每一个事件A ,赋予一个实数P (A ),称之为A 的概率,P (A )满足: (1)1)(0≤≤A P ; (2)1)(=ΩP ; (3)若事件 ,,, ,n A A A 21两两互不相容,则有 () ++++=????)()()(2121n n A P A P A P A A A P 。 1.6 概率的性质 (1)0)(=φP ; (2)若事件n A A A ,, , 21两两不互相容,则())()()(2121n n A P A P A P A A A P +++=??? ; (3))(1)(A P A P -=; (4))()()(AB P B P A B P -=-。 特别地,若B A ?,则)()(),()()(B P A P A P B P A B P ≤-=-; (5))()()()(AB P B P A P B A P -+=?。

概率论与数理统计模拟试题

模拟试题A 一.单项选择题(每小题3分,共9分) 1. 打靶3 发,事件表示“击中i发”,i = 0,1,2,3。那么事件 表示( )。 ( A ) 全部击中;( B ) 至少有一发击中; ( C ) 必然击中;( D ) 击中3 发 2.设离散型随机变量x 的分布律为则常数 A 应为 ( )。 ( A ) ;( B ) ;(C) ;(D) 3.设随机变量,服从二项分布B ( n,p ),其中0 < p < 1 ,n = 1,2,…,那么,对 于任一实数x,有等于( )。 ( A ) ; ( B ) ; ( C ) ; ( D ) 二、填空题(每小题3分,共12分) 1.设A , B为两个随机事件,且P(B)>0,则由乘法公式知P(AB) =__________ 2.设且有 ,,则 =___________。 3.某柜台有4个服务员,他们是否需用台秤是相互独立的,在1小时内每人需用台秤的概 率为,则4人中至多1人需用台秤的概率为:__________________。 4.从1,2,…,10共十个数字中任取一个,然后放回,先后取出5个数字,则所得5个数字全不相同的事件的概率等于___________。 三、(10分)已知,求证 四、(10分)5个零件中有一个次品,从中一个个取出进行检查,检查后不放回。直到查 到次品时为止,用x表示检查次数,求的分布函数: 五、(11分)设某地区成年居民中肥胖者占10% ,不胖不瘦者占82% ,瘦者占8% ,又知肥胖者患高血压的概率为20%,不胖不瘦者患高血压病的概率为10% ,瘦者患高血压病的概率为

5%, 试求: ( 1 ) 该地区居民患高血压病的概率; ( 2 ) 若知某人患高血压, 则他属于肥胖者的概率有多大? 六、(10分)从两家公司购得同一种元件,两公司元件的失效时间分别是随机变量和,其概率密度分别是: 如果与相互独立,写出的联合概率密度,并求下列事件的概率: ( 1 ) 到时刻两家的元件都失效(记为A), ( 2 ) 到时刻两家的元件都未失效(记为B), ( 3 ) 在时刻至少有一家元件还在工作(记为D)。 七、(7分)证明:事件在一次试验中发生次数x的方差一定不超过。 八、(10分)设和是相互独立的随机变量,其概率密度分别为 又知随机变量 , 试求w的分布律及其分布函数。 九、(11分)某厂生产的某种产品,由以往经验知其强力标准差为 7.5 kg且强力服从正态分布,改用新原料后,从新产品中抽取25 件作强力试验,算 得,问新产品的强力标准差是否有显著变化?( 分别 取和0.01,已知, ) 十、(11分)在考查硝酸钠的可溶性程度时,对一系列不同的温度观察它在100ml 的水中溶解的硝酸钠的重量,得观察结果如下:

概率论与数理统计(B卷)

二、多项选择题(从每题后所备得5个选项中,选择至少2个正确得并将代码填题后得括号内,每题1分,本题满分5分) 16、如果事件A、B相互独立,且P(A)=0、40,P(B)=0、30,那么【】。 (1)P=0、72 (2)P(AB)=0、58 (3)P(AB)=0、28 (4)P(AB)=0、12 (5)P(A/B)=0、40 17、设随机变量~(20,0、70),那么以下正确得有【】。 (1)=14 (2)最可能取到14与13 (3)= 4、2 (4)= (5)最可能取到15 18、随机变量,那么【】。 (1)=12 (2) (3) (4) (5) 19、设,且X与Y独立,则【】。 (1) (2) (3) (4) (5)~ 20、以下关于置信区间得说法中,正确得有【】。 (1)置信度越高,准确性越高(2)置信度越高,准确性越低 (3)用对称位分位数构造得区间最短(4)用对称位分位数构造得区间最长 (5)置信度越高,误差越大 三、判断题每题1分,本题满分15分) 【】21、互相对立得事件A,B 之间不一定互斥。 【】22、,那么。 【】23、概率为1就是事件为必然事件得充分条件。 【√】24、分布相同得随机变量数字特征相等,数字特征相等得随机变量分布必相同。【】25、设随机变量(4,12 ),则。 【√】26、设随机变量X ~ N ( ,),则。 【√】27、棣莫佛—拉普拉斯定理表明,离散型分布可以转换为连续型分布。【√】28、若,那么。 【√】29、如果,那么。 【】30、离散型随机变量与连续型随机变量得数学期望有着本质区别。 【√】31、点估计得优越性主要体现在简单直观、易于被人理解。

(完整word版)概率论与数理统计期末试卷及答案

一、选 择 题 (本大题分5小题, 每小题4分, 共20分) (1)设A 、B 互不相容,且P(A)>0,P(B)>0,则必有( ) (A)0)(>A B P (B))()(A P B A P = (C)0)(=B A P (D))()()(B P A P AB P = (2)将3粒黄豆随机地放入4个杯子,则杯子中盛黄豆最多为一粒的概率为( ) 3311() () () ()32 8 168 A B C D (3)),4,(~2 μN X ),5,(~2 μN Y }5{},4{21+≥=-≤=μμY P p X P p ,则( ) (A)对任意实数21,p p =μ (B )对任意实数21,p p <μ (C)只对μ的个别值,才有21p p = (D )对任意实数μ,都有21p p > (4)设随机变量X 的密度函数为)(x f ,且),()(x f x f =-)(x F 是X 的分布函数,则对任意 实数a 成立的是( ) (A )? - =-a dx x f a F 0 )(1)( (B )?-= -a dx x f a F 0 )(21)( (C ))()(a F a F =- (D )1)(2)(-=-a F a F (5)已知1250,,,X X X L 为来自总体()2,4X N :的样本,记50 11,50i i X X ==∑ 则 50 21 1()4i i X X =-∑服从分布为( ) (A )4(2, )50N (B) 2 (,4)50 N (C )()250χ (D) ()249χ 二、填 空 题 (本大题5小题, 每小题4分, 共20分) (1) 4.0)(=A P ,3.0)(=B P ,4.0)(=?B A P ,则___________)(=B A P (2) 设随机变量X 有密度? ??<<=其它01 0,4)(3x x x f , 则使)()(a X P a X P <=> 的常数a = (3) 设随机变量),2(~2 σN X ,若3.0}40{=<

概率论与数理统计考研复习资料

概率论与数理统计复习 第一章 概率论的基本概念 一.基本概念 随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集. 必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算 1.A ?B(事件B 包含事件A )事件A 发生必然导致事件B 发生. 2.A ∪B(和事件)事件A 与B 至少有一个发生. 3. A ∩B=AB(积事件)事件A 与B 同时发生. 4. A -B(差事件)事件A 发生而B 不发生. 5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生. 6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B . 运算规则 交换律 结合律 分配律 德?摩根律 B A B A = B A B A = 三. 概率的定义与性质 1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ; (3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…), P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质 (1) P(Φ) = 0 , 注意: A 为不可能事件 P(A)=0 . (2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n , P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ?B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) . (5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n ()()() () +∑ + ∑ - ∑=≤<<≤≤<≤=n k j i k j i n j i j i n i i n A A A P A A P A P A A A P 111 21 …+(-1)n-1P(A 1A 2…A n ) 四.等可能(古典)概型 1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型. 2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率 1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0). 2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0). P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,有全概率公式 P(A)= ()()i n i i B A P B P ∑=1

概率论与数理统计试题库及答案(考试必做)

<概率论>试题A 一、填空题 1.设 A 、B 、C 是三个随机事件。试用 A 、B 、C 分别表示事件 1)A 、B 、C 至少有一个发生 2)A 、B 、C 中恰有一个发生 3)A 、B 、C 不多于一个发生 2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。则P(B )A U = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,U 则α= 4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为 5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和 0.5,现已知目标被命中,则它是甲射中的概率为 6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)k P X k A k ===???则A=______________ 7. 已知随机变量X 的密度为()f x =? ? ?<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________ b =________ 8. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________ 9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率

为8081 ,则该射手的命中率为_________ 10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥=,4{0}{0}7 P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<= 13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<= 14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分布,则(x,y )关于X 的边缘概率密度在x = 1 处的值为 。 15.已知)4.0,2(~2-N X ,则2(3)E X += 16.设)2,1(~),6.0,10(~N Y N X ,且X 与Y 相互独立,则(3)D X Y -= 17.设X 的概率密度为2 ()x f x -=,则()D X = 18.设随机变量X 1,X 2,X 3相互独立,其中X 1在[0,6]上服从均匀分 布,X 2服从正态分布N (0,22),X 3服从参数为λ=3的泊松分布,记Y=X 1-2X 2+3X 3,则D (Y )= 19.设()()25,36,0.4xy D X D Y ρ===,则()D X Y += 20.设12,,,,n X X X ??????是独立同分布的随机变量序列,且均值为μ,方差为2σ,那么当n 充分大时,近似有X ~ 或 X ~ 。特别是,当同为正态分布时,对于任意的n ,都精确有 X ~ 或~ . 21.设12,,,,n X X X ??????是独立同分布的随机变量序列,且i EX μ=,

概率论与数理统计B复习题

概率论与数理统计B 复习题 一、填空: 1、设A 、B 、C 是三个随机事件。试用A 、B 、C 分别表示事件 1)A 、B 、C 至少有一个发生。 2)A 、B 、C 中恰有一个发生。 3)A 、B 、C 中最多有一个发生。 2、已知8.0)(,6.0)(,5.0)(===B A P B P A P ,则=)(B A P 。 3、若事件A 和事件B 相互独立,α=)(A P ,3.0)(=B P ,7.0)(=?B A P ,则α=。 4、设随机变量X ~),4(~),,2(p b Y p b ,若,1)(=X E 则=)(Y E 。 5、设随机变量).1,3(~),1,2(~N Y N X -且X 与Y 独立,若Y X Z 32-=则 ~Z (Z 服从何种分布)。 6、设,5.0,9)(,4)(===XY Y D X D ρ则D (3X -2Y )= 。 7、设随机变量序列 ,2,1,)(,,,21==k X E X X X k n μ布,且相互独立并服从同一分, 则=? ?? ?? ?<∑-=∞ →εμn k k n X n P 11lim 。 8、设总体),(~2σμN X ,则样本容量为n 的样本均值X ~。 9、设估计量∧ θ是未知参数θ的无偏估计量,则=∧ )(θE 。 10、设总体),(~2σμN X ,现从总体X 中抽取一个容量为16的样本,算得2,10==s x 。若,2=σ 则μ的置信水平为0.95的置信区间是;若σ未知,则μ的置信水平为0.95的 单侧置信下限是,σ的置信水平为0.95的置信区间是。 二、10把钥匙中有3把能打开门,今任取两把,求:1、不能打开门的概率2、恰有一把能打开门的概率 三、仓库中有十箱同样规格的产品,已知其中有五箱、三箱、二箱依次为甲、乙、丙厂生产的,且甲厂, 乙厂、丙厂生产的这种产品的次品率依次为1/10,1/15,1/20.从这十箱产品中任取一件产品。 1、求取得次品的概率。 2、如果已知取到的是一件次品,求它是乙厂生产的概率。

概率论与数理统计期末考试卷答案

《概率论与数理统计》 试卷A (考试时间:90分钟; 考试形式:闭卷) (注意:请将答案填写在答题专用纸上,并注明题号。答案填写在试卷和草稿纸上无效) 一、单项选择题(本大题共20小题,每小题2分,共40分) 1、A ,B 为二事件,则A B = U () A 、A B B 、A B C 、A B D 、A B U 2、设A ,B ,C 表示三个事件,则A B C 表示( ) A 、A , B , C 中有一个发生 B 、A ,B ,C 中恰有两个发生 C 、A ,B ,C 中不多于一个发生 D 、A ,B ,C 都不发生 3、A 、B 为两事件,若()0.8P A B =U ,()0.2P A =,()0.4P B =, 则( )成立 A 、()0.32P A B = B 、()0.2P A B = C 、()0.4P B A -= D 、()0.48P B A = 4、设A ,B 为任二事件,则( ) A 、()()()P A B P A P B -=- B 、()()()P A B P A P B =+U C 、()()()P AB P A P B = D 、()()()P A P AB P AB =+ 5、设事件A 与B 相互独立,则下列说法错误的是() A 、A 与 B 独立 B 、A 与B 独立 C 、()()()P AB P A P B = D 、A 与B 一定互斥 6、设离散型随机变量X 的分布列为 其分布函数为()F x ,则(3)F =() A 、0 B 、0.3 C 、0.8 D 、1 7、设离散型随机变量X 的密度函数为4,[0,1] ()0, cx x f x ?∈=??其它 ,则常数c = () A 、 15 B 、1 4 C 、4 D 、5

《概率论与数理统计》基本名词中英文对照表

《概率论与数理统计》基本名词中英文对照表英文中文 Probability theory 概率论 mathematical statistics 数理统计 deterministic phenomenon 确定性现象 random phenomenon 随机现象 sample space 样本空间 random occurrence 随机事件 fundamental event 基本事件 certain event 必然事件 impossible event 不可能事件 random test 随机试验 incompatible events 互不相容事件 frequency 频率 classical probabilistic model 古典概型 geometric probability 几何概率 conditional probability 条件概率 multiplication theorem 乘法定理 Bayes's formula 贝叶斯公式 Prior probability 先验概率 Posterior probability 后验概率 Independent events 相互独立事件 Bernoulli trials 贝努利试验 random variable 随机变量

probability distribution 概率分布 distribution function 分布函数 discrete random variable 离散随机变量distribution law 分布律hypergeometric distribution 超几何分布 random sampling model 随机抽样模型binomial distribution 二项分布 Poisson distribution 泊松分布 geometric distribution 几何分布 probability density 概率密度 continuous random variable 连续随机变量uniformly distribution 均匀分布exponential distribution 指数分布 numerical character 数字特征mathematical expectation 数学期望 variance 方差 moment 矩 central moment 中心矩 n-dimensional random variable n-维随机变量 two-dimensional random variable 二维离散随机变量joint probability distribution 联合概率分布 joint distribution law 联合分布律 joint distribution function 联合分布函数boundary distribution law 边缘分布律

概率论与数理统计复习题--带答案

概率论与数理统计复习题--带答案

;第一章 一、填空题 1.若事件A?B且P(A)=0.5, P(B) =0.2 , 则P(A -B)=(0.3 )。 2.甲、乙各自同时向一敌机炮击,已知甲击中敌 机的概率为0.7,乙击中敌机的概率为0.8.求 敌机被击中的概率为(0.94 )。 3.设A、B、C为三个事件,则事件A,B,C中 不少于二个发生可表示为(AB AC BC ++)。 4.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率 为(0.496 )。 5.某人进行射击,每次命中的概率为0.6 独立 射击4次,则击中二次的概率为 ( 0.3456 )。 6.设A、B、C为三个事件,则事件A,B与C都 不发生可表示为(ABC)。 7.设A、B、C为三个事件,则事件A,B,C中 不多于一个发生可表示为(AB AC BC I I); 8.若事件A与事件B相互独立,且P(A)=0.5, P(B) =0.2 , 则P(A|B)=(0.5 );

9.甲、乙各自同时向一敌机炮击,已知甲击中敌机 的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为(0.8 ); 10.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A-)=(0.5 ) 11.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为(0.864 )。 12.若事件A?B且P(A)=0.5, P(B) =0.2 , 则 P(B A)=(0.3 ); 13.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A)=(0.5 ) 14.A、B为两互斥事件,则A B= U(S )15.A、B、C表示三个事件,则A、B、C恰 有一个发生可表示为 (ABC ABC ABC ++) 16.若()0.4 P AB A B= U P AB=0.1则(|) P B=,() P A=,()0.2 ( 0.2 ) 17.A、B为两互斥事件,则AB=(S ) 18.保险箱的号码锁定若由四位数字组成,则一次 )。 就能打开保险箱的概率为(1 10000

概率论与数理统计B试题及答案

一.单项选择题(每小题3分,共15分) 1.设事件A 和B 的概率为12(),()23 P A P B == 则()P AB 可能为(D ) (A) 0; (B) 1; (C) 0.6; (D) 1/6 2. 从1、2、3、4、5 这五个数字中等可能地、有放回地接连抽取两个数字,则这两个数字不相同的概率为 (D) (A) 12; (B) 225; (C) 425 ; (D)都不对 3.投掷两个均匀的骰子,已知点数之和是偶数,则点数之和为6的概率为( A ) (A) 518; (B) 13; (C) 12 ; (D)都不对 4.某一随机变量的分布函数为()3x x a be F x e +=+,(a=0,b=1)则F (0)的值为( C ) (A) 0.1; (B) 0.5; (C) 0.25; (D)都不对 5.一口袋中有3个红球和2个白球,某人从该口袋中随机摸出一球,摸得红球得5分,摸得白球得2分,则他所得分数的数学期望为(C ) (A) 2.5; (B) 3.5; (C) 3.8; (D)以上都不对 二.填空题(每小题3分,共15分) 1.设A 、B 是相互独立的随机事件,P (A )=0.5, P (B )=0.7, 则()P A B = 0.85 . 2.设随机变量~(,), ()3, () 1.2B n p E D ξξξ==,则n =__5____. 3.随机变量ξ的期望为() 5E ξ=,标准差为()2σξ=,则2()E ξ=___29____. 4.甲、乙两射手射击一个目标,他们射中目标的概率分别是0.7和0.8.先由甲射击,若甲未射中再由乙射击。设两人的射击是相互独立的,则目标被射中的概率为____0.94_____. 5.设连续型随机变量ξ的概率分布密度为2()22a f x x x =++,a 为常数,则P (ξ≥0)=___3/4____. 三.(本题10分)将4个球随机地放在5个盒子里,求下列事件的概率 (1) 4个球全在一个盒子里; (2) 恰有一个盒子有2个球. 把4个球随机放入5个盒子中共有54 =625种等可能结果--------------3分 (1)A={4个球全在一个盒子里}共有5种等可能结果,故 P (A )=5/625=1/125------------------------------------------------------5分 (2) 5个盒子中选一个放两个球,再选两个各放一球有 302415=C C 种方法----------------------------------------------------7分 4个球中取2个放在一个盒子里,其他2个各放在一个盒子里有12种方法 因此,B={恰有一个盒子有2个球}共有4×3=360种等可能结果.故 125 72625360)(== B P --------------------------------------------------10分

相关文档
最新文档