发电机励磁调节器原理解读

合集下载

图解发电机励磁原理(2024)

图解发电机励磁原理(2024)
对于要求高精度和快速响应的应用场合,应选择具有高性能的控制策略和优化方法,如最 优励磁控制策略结合遗传算法或粒子群优化算法等。
21
05
发电机励磁系统故障诊断与处理 措施
2024/1/26
22
常见故障类型及原因分析
励磁不足或失磁
可能是由于励磁电源故障、励磁 回路开路或接触不良、励磁绕组
匝间短路等原因导致。
应用范围
直流励磁方式和交流励磁方式适用于各种规模的发电机组和电力系统 ;永磁体励磁方式适用于小型风力发电、太阳能发电等领域。
13
03
发电机励磁调节器原理与结构
2024/1/26
14
调节器基本原理
2024/1/26
电磁感应原理
发电机励磁调节器通过电磁感应 原理,将输入的交流电转换为直 流电,为发电机的励磁绕组提供 励磁电流。
替换法
在怀疑某个元器件损坏时,可以用正 常的元器件替换后观察故障是否消除 ,以验证故障部位和原因。
2024/1/26
测量法
使用万用表、示波器等工具测量励磁 系统各点的电压、电流、波形等参数 ,与正常值进行比较分析,进一步确 定故障原因。
专家系统诊断
利用专家系统或故障诊断软件对励磁 系统故障进行自动诊断和分析,提高 故障诊断的准确性和效率。
性,但控制精度相对较低。
20
控制策略选择依据
2024/1/26
系统稳定性要求
对于要求较高的电力系统,应选择稳定性好的控制策略,如恒压控制策略或最优励磁控制 策略。
发电机运行工况
不同的运行工况下,应选择适合的控制策略。例如,在轻载或空载工况下,可采用恒功率 因数控制策略以提高运行效率。
控制精度和响应速度要求

发电机励磁装置的原理

发电机励磁装置的原理

发电机励磁装置的原理发电机励磁装置是发电机的重要组成部分,其主要作用是提供足够的磁场使发电机能够产生电流。

本文将介绍发电机励磁装置的原理及其工作过程。

一、励磁原理发电机励磁装置的原理基于电磁感应和电磁场的相互作用。

通过电流在励磁线圈中产生的磁场,进一步激发转子绕组中的磁场,促使发电机产生电流。

励磁电流的大小和方向对发电机的电压和频率有直接影响。

以下将详细讲述两种常见的励磁方式。

二、直流励磁直流励磁是一种常见的发电机励磁方式。

直流励磁装置由直流发电机、调压器以及励磁线圈组成。

调压器的作用是稳定调节励磁电流。

具体工作原理如下:1. 调压器将主电网的交流电压变换成稳定的直流电压。

2. 直流电压通过励磁线圈产生磁场,磁场通过转子绕组进一步增强。

3. 转子绕组中的磁场与定子绕组中的磁场相互作用产生电流。

4. 电流经过整流器变换为直流电流,用于产生发电。

三、感应励磁感应励磁是另一种常见的发电机励磁方式,主要用于小型发电机或紧凑型发电机。

感应励磁装置由励磁线圈、感应发电机和电源组成。

其工作原理如下:1. 发电机的转子绕组接通电源。

2. 电流在转子绕组中形成磁场,磁场通过转子-定子之间的磁路传递给励磁线圈。

3. 励磁线圈中的磁场激发感应发电机产生电流。

4. 励磁电流通过整流装置变换为直流电流,并用于产生发电。

四、励磁控制对于励磁装置,控制励磁电流的大小和方向非常关键。

通过调节励磁电流,可以稳定和控制输出的电压和频率。

常见的励磁控制方法包括手动调节、自动调节和半自动调节。

手动调节需要由操作人员根据发电机运行情况进行调整,而自动调节则通过发电机调节器实现智能自动控制,半自动调节则是在自动调节的基础上,人工进行调整。

五、总结发电机励磁装置在电力发电系统中起着至关重要的作用。

通过励磁装置,可以产生足够的磁场以激发发电机的电流,并通过调节励磁电流来控制输出的电压和频率。

无论是直流励磁还是感应励磁,励磁装置都是发电机能够正常工作的重要组成部分。

励磁调节器工作原理

励磁调节器工作原理

励磁调节器工作原理励磁调节器是一种用于调节和控制发电机励磁电流的装置,它在电力系统中起着重要的作用。

它的工作原理是通过改变励磁电流的大小和方向,来调节发电机的输出电压和无功功率,以满足电力系统的需求。

励磁调节器由励磁电源、调节电路和控制回路组成。

励磁电源一般由直流发电机或静止励磁装置提供,它的输出电流经过调节电路进行调节,然后输入到发电机的励磁线圈中。

调节电路是励磁调节器的核心部分,它通过控制调节电阻或可变电阻的阻值,来改变励磁电流的大小和方向。

控制回路负责监测电力系统的电压和频率变化,并根据设定值对调节电路进行控制,以实现对发电机输出电压和无功功率的调节。

励磁调节器的工作原理可以分为两个方面来理解:电磁感应和电磁力平衡。

首先是电磁感应。

当励磁电流通过励磁线圈时,会在发电机的磁极上产生磁场。

根据电磁感应的原理,当发电机的转子旋转时,磁场会切割发电机的定子线圈,从而在定子上产生感应电动势。

这个感应电动势的大小和方向与励磁电流的大小和方向有关。

其次是电磁力平衡。

发电机的励磁线圈周围有一个气隙,当励磁电流通过励磁线圈时,会在气隙中产生一个磁场。

这个磁场会与发电机的磁场相互作用,产生一个力矩,使得发电机的转子旋转。

这个力矩的大小和方向也与励磁电流的大小和方向有关。

基于以上原理,励磁调节器可以通过调节励磁电流的大小和方向,来改变发电机的输出电压和无功功率。

当电力系统需要提高发电机的输出电压时,励磁调节器会增大励磁电流的大小;当电力系统需要降低发电机的输出电压时,励磁调节器会减小励磁电流的大小。

同样地,当电力系统需要提高发电机的无功功率时,励磁调节器会改变励磁电流的方向,以增加无功功率的输出;当电力系统需要降低发电机的无功功率时,励磁调节器会改变励磁电流的方向,以减小无功功率的输出。

总结一下,励磁调节器通过改变励磁电流的大小和方向,来调节发电机的输出电压和无功功率。

它的工作原理基于电磁感应和电磁力平衡的原理,通过调节电路和控制回路的协调工作,实现对发电机的精确控制。

励磁调节器工作原理

励磁调节器工作原理

励磁调节器工作原理励磁调节器是一种用于调节电力系统中励磁电流的设备,它的工作原理是通过控制励磁电流的大小和方向,以调节发电机的电磁场强度,从而实现对发电机输出电压和无功功率的调节。

励磁调节器通常由功率放大器、控制电路和传感器组成。

传感器用于检测发电机的输出电压和电流,并将信号传递给控制电路。

控制电路根据传感器的信号,计算出励磁电流的调节量,并将调节信号传递给功率放大器。

功率放大器根据控制信号,将调节后的励磁电流输出到发电机的励磁系统中。

励磁调节器的工作原理可以分为两个方面来解释,分别是电磁感应和反馈控制。

电磁感应是励磁调节器工作的基础。

发电机的励磁系统中通常有两种电磁场,即同步电磁场和励磁电磁场。

当发电机转子旋转时,同步电磁场会产生交变磁通,从而在发电机的定子绕组中感应出交变电压。

这个电压被用作传感器的输入信号,用于检测发电机的输出电压和电流。

反馈控制是励磁调节器工作的关键。

控制电路通过对传感器信号的处理,计算出励磁电流的调节量。

这个调节量是根据发电机输出电压和无功功率的设定值来确定的。

控制电路将调节信号传递给功率放大器,功率放大器将调节后的励磁电流输出到发电机的励磁系统中,从而改变发电机的电磁场强度。

励磁调节器的工作原理可以通过控制电路中的PID控制算法来解释。

PID控制算法是一种常用的反馈控制算法,它通过对比设定值和实际值的差异,计算出控制信号的大小和方向,从而实现对系统的调节。

在励磁调节器中,设定值是发电机输出电压和无功功率的设定值,实际值是传感器检测到的发电机输出电压和电流。

控制电路根据设定值和实际值的差异,计算出励磁电流的调节量,并将调节信号传递给功率放大器。

总结起来,励磁调节器通过控制励磁电流的大小和方向,以调节发电机的电磁场强度,从而实现对发电机输出电压和无功功率的调节。

它的工作原理基于电磁感应和反馈控制,通过传感器、控制电路和功率放大器的配合,实现对励磁电流的精确调节。

励磁调节器在电力系统中起着重要的作用,能够保证发电机的稳定运行和电力系统的正常运行。

2024版图解发电机励磁原理

2024版图解发电机励磁原理

高可靠性设计
提高发电机励磁系统的可靠性是未 来的重要发展方向,通过采用冗余 设计、故障预测与健康管理等技术
手段降低系统故障率。
绿色环保
随着环保意识的提高,未来发电机 励磁系统将更加注重绿色环保,采 用低能耗、低污染的材料和技术,
降低系统对环境的影响。
对未来学习和工作的建议
深入学习专业知识
继续深入学习电力电子、控制理 论等相关专业知识,为从事发电 机励磁相关领域的工作打下坚实
案例分析:某大型水电站励磁调节器设计
• 设计背景:某大型水电站采用水轮发电机组,装机容量大、运行工况复杂,对励磁调节器性能要求高。 • 设计目标:设计一款高性能、高可靠性的励磁调节器,满足水电站运行要求。 • 设计方案:采用基于DSP的数字式励磁调节器设计方案,实现快速、精确的电压调节和功率分配功能;同时采
基础。
关注前沿技术动态
关注发电机励磁技术的最新发展 动态,了解新技术、新方法的应 用情况,不断提升自己的专业素 养。
加强实践动手能力
通过参与实验、项目等方式加强 实践动手能力,培养解决实际问 题的能力。
拓展跨学科知识
学习与发电机励磁相关的跨学科 知识,如电力系统分析、电机学 等,提升综合分析和解决问题的
如失磁、励磁不稳、励磁过流等故障,通过 案例分析学习相应的处理方法和预防措施。
发电机励磁技术发展趋势预测
数字化与智能化
随着电力电子技术和控制理论的发 展,未来发电机励磁系统将更加数 字化和智能化,实现更精确的控制 和优化。
多功能集成化
为满足不同应用场景的需求,发电 机励磁系统将向多功能集成化方向 发展,如集成无功补偿、谐波治理 等功能。
提高发电机并列运行的稳定性。
功能

自动励磁调节的原理及作用

自动励磁调节的原理及作用

自动励磁调节的原理及作用自动励磁调节是指通过自动调节励磁电流,以保持电力系统中发电机的励磁电压稳定。

它的作用是确保发电机输出的电压与系统需要的电压相匹配,从而保持系统的可靠性和稳定性。

自动励磁调节的原理主要分为两方面:稳定器的输出和励磁刷的调节。

首先,稳定器的输出是自动励磁调节的核心。

稳定器是位于发电机励磁回路中的一种电子设备,能够根据系统负荷的变化,自动调节励磁电流。

稳定器通过测量发电机的输出电压和励磁电流的大小,与预设的电压进行比较,并根据比较得到的误差信号,调整励磁电流的大小。

当发电机负荷增加时,稳定器会减小励磁电流,以提高发电机电压;当发电机负荷减少时,稳定器会增加励磁电流,以降低发电机电压。

这样就能够保持发电机输出电压的稳定性。

其次,励磁刷的调节也是自动励磁调节的关键之一。

励磁刷是位于发电机励磁回路中的一种机械装置,通过改变磁场的强度来调节励磁电流。

当调节器调整励磁电流时,励磁刷通过增加或减少电磁铁磁场的强度,来改变励磁电流的大小。

通过这种方式,励磁刷能够快速而精确地调节励磁电流,以保持发电机输出电压的稳定性。

自动励磁调节的作用主要有以下几个方面:1. 保持电力系统的稳定性。

发电机的输出电压稳定性对于电力系统的稳定运行至关重要。

通过自动励磁调节,能够及时、准确地调整励磁电流,以保持发电机输出电压的稳定性。

这样就能够防止电力系统出现过高或过低的电压波动,避免对系统产生不利影响。

2. 优化电网的电压质量。

自动励磁调节能够根据电力系统的需求,动态调整发电机的励磁电流。

这样就能够确保发电机输出的电压与系统需要的电压相匹配,有效地提高电网的电压质量。

同时,通过自动励磁调节,还能够减少电力系统的电压偏差,提高系统的功率因数。

3. 提高发电机的响应速度。

自动励磁调节可以根据系统负荷的变化,快速调整励磁电流,以保持发电机输出电压的稳定性。

这样就能够使发电机的响应速度更快,更加灵敏。

当系统负荷变化较大时,自动励磁调节能够迅速调整励磁电流,使发电机输出电压稳定在设定值,保持系统的稳定运行。

励磁调节器工作原理

励磁调节器工作原理

励磁调节器工作原理
励磁调节器是一种用于调节电力系统中发电机励磁电流的装置,其主要作用是控制发电机的输出电压和无功功率。

励磁调节器的工作原理如下:
1. 励磁调节器通过检测发电机的输出电压,并与设定值进行比较。

如果输出电压低于设定值,调节器会增加励磁电流以提高发电机的输出电压。

2. 调节器可以通过控制电流稳定器来调整励磁电流。

电流稳定器是一个基于数学模型的控制器,可以根据输入的误差信号来调节励磁电流。

3. 调节器还可以通过检测发电机的无功功率来控制励磁电流。

当无功功率超过设定值时,调节器会增加励磁电流以降低无功功率。

4. 励磁调节器通常还具有保护功能,可以在发生故障或异常情况时切断励磁电流,以保护发电机和电力系统的安全运行。

总之,励磁调节器通过对发电机的励磁电流进行调节,可以实现对发电机输出电压和无功功率的控制,从而确保电力系统的稳定运行。

同步发电机励磁调节原理

同步发电机励磁调节原理

同步发电机励磁调节原理
同步发电机励磁调节原理是通过对励磁系统的电流、电压进行调节,控制发电机的励磁电压和励磁电流,从而控制发电机的输出电压和输出功率。

具体原理如下:
1. 励磁电压调节:通过调节励磁电压的大小,可以控制发电机的输出电压。

一般情况下,发电机的励磁电压是由励磁系统中的励磁电源提供的。

调节励磁电压的大小可以通过调节励磁电源的电压来实现,如使用电位器或自动电压调节器(AVR)来调节发电机的输出电压。

2. 励磁电流调节:通过调节励磁电流的大小,可以控制发电机的输出功率。

励磁电流一般由励磁系统中的励磁电源提供,并且通过励磁电阻进行调节。

通过增大或减小励磁电阻的阻值,可以调节励磁电流的大小,从而控制发电机的输出功率。

同时,还需要根据发电机输出的电压和功率信号,通过控制回路,将励磁系统的电压和电流进行反馈控制,使发电机的输出能够稳定在设定值。

综上所述,发电机的励磁调节原理是通过对励磁电压和电流进行调节,控制发电机的输出电压和输出功率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
发电机励磁调节原理
水轮发电机励磁的自动调节
1水轮发电机的励磁方式
同步发电机将旋转的机械能转换成为电能,在转换中需要有一个直流磁场。而产生这个磁场的直流电流称为励磁电流。
励磁方式是指发电机获得励磁电流的方式:
¾从其它电源获得励磁电流的发电机称为他励发电机;
¾从发电机本身获得励磁电流的发电机称为自励发电机。
一般而言,具有直流励磁机的发电机,若调节装置本身的强励作用不够,即需加装专门的强行励磁装置;
采用可控硅整流的他励和自励发电机,通常可不再设专门的强行励磁装置。
强励倍数是指强励时实际可达的最高励磁电压Uex.max与额定电压Uex.n的比值:Kq=Uex.max/Uex.n。Kq值越大越好,采用直流励磁机的强励倍数一般约为1.8—2.0。
强励倍数与励磁机的饱和程度和励磁机励磁回路的电阻等因数有关。
采用可控硅励磁的发电机,其强励磁倍数与他励方式的直流或交流励磁相比,可提高4倍。
2水轮发电机的有关特性和调节励磁电流的方法
由于电力系统电能质量和无功功率的要求,水轮发电机的励磁电流在运行中需要经常进行调节。为了说明调节励磁电流的必要性和实现调节励磁电流的自动调节装置的任务,先作如下讨论:
1水轮发电机的有关特性
调节励磁电流是为了实现电压和无功功率的调节:
发电机失去稳定后,若不及时减小导叶开度τ,则转速将升至很高,可使发电机遭到破坏。同时,由于f G与f sys不同,发电机的定子中将出现很大电流,同样会导致发电机破坏。此外,并列运行的发电机失去稳定,还会给电力系统带来严重事故。
暂态稳定是指系统遭受短时间大扰动后,在第一个摇摆周期内,各同步发电机保持同步而不失步,并过渡到新的稳定状态的能力。
在暂态稳定分析时,认为发电机转速和大轴上的输入力矩为定值。通常对于短路、故障切除、重合闸等,由于机组的转速变化不大,只考虑功角δ的变化,属于暂态稳定问题。
动态稳定是指系统受到某些大扰动后,在较长期过程中保持和恢复发电机同步运行,由衰减的同步振荡,过渡到稳定状态的能力。动态稳定分析必须考虑发电机转速和发电机电势Ed的变化,有时还应考虑负荷的动态特性和发电机的异步转矩的影响。
AVR的容量既要满足正常运行时调节的要求,又要满足发生短路故障时强励的要求。
¾动作迅速
采用快速动作的AVR对改善系统的稳定性和提高输送能力具有重要意义。
¾无失灵区
没有失灵区的AVR有助于提高系统的静态稳定性。
4强行励磁、强行减磁和自动灭磁
1强行励磁
发生短路时,电力系统和水电站的电压可能大幅度降低。此时,为保证系统稳定运行和加快切除故障后的电压恢复,应使发电机的励磁电流迅速加大到顶值,既实行强行励磁。
由上述分析可知,在发电机励磁电流和导叶开度不变的条件下,虽然功角特性上有两个对应于输入功率Pn的运行点,但只有其中的a点dP/dδ>0是可以稳定运行的。
B暂态稳定问题和动态稳定问题
除静态稳定性之外,电力系统和水电站在运行过程中还可能受到较大而又突然发生的冲击或扰动(如发电机、变压器和输电线的投入或切除,以及发生短路或断线故障等。此时,系统的功率、电流和电压将突然发生大幅度的变化,由于水轮机调速系统存在惯性,不能立即改变输入水轮机的功率,故在机组大轴上将出现不平衡力矩,从而使机组转速发生变化,结果功角δ也发生变化,δ变化后,又要相应地引起功率、电流和电压的变化。在这种情况下,一个保持静态稳定的系统可能遭到破坏。综合考虑这些变化过程,属于暂态稳定和动态稳定的范围。
2由交流励磁机供电的励磁方式
这种励磁方式的发电机(GS采用交流励磁机(G1提供励磁电流。
G1与GS同轴,它输出的交流电流经整流后供GS励磁,因此属于他励方式。
若G1的励磁电流由自身提供,则G1为自励方式;
若G1的励磁电流由另外一台励磁机(称为交流副励磁机G2提供,则G1为他励方式。而G2可以是具有自动恒压装置的交流发电机,并且G2输出的交流电流经整流后供G1励磁。
交流副励磁机
交流
励磁机


同步
发电机
他励
他励
永磁机

磁他励


优点:设备少、结构简单、维护方便;
缺点:在发电机或系统发生短路时,由于电压的大幅下降或消失,导致励磁电流的下降或消失,而此时本应大大增加励磁(即强行励磁来维持电压的。
考虑到现代大型电网多采用封闭母线,且高压电网一般都装有快速保护,认为有足够的可靠性,故采用自并励的机组较多。
通常对于大型机组的启动与制动、同步发电机的异步运行、再同步及非同期合闸等较大而突然发生的冲击和扰动的分析采用动态稳定。
当系统发生扰动时,快速增大发电机的励磁电流,将对暂态和动态稳定产生有利的影响。
3自动调节励磁装置的任务及其要求
1自动调节励磁装置(AVR的任务
¾维持发电机端电压水平并且合理分配各机组的无功负荷;¾提高电力系统运行的稳定性和输电线路的传输能力;
反之,若在b点运行时,扰动使δ角减小Δδ,则发电机输出功率增大,出现负的剩余功率。此时,机组将减速,δ继续减小,一直到a点。经过一系列振荡后达到新的平衡状态而稳定下来。
由于发电机时刻在小的扰动下运行,因此发电机不可能在b点稳定运行。
若发电机工作在a点(功角为δ1,则微小扰动使δ增加Δδ时,发电机的输出功率将增大,而出现负的剩余功率。这样,机组将减速,使δ角减小,最后仍回到a点运行;若扰动使δ1减少Δδ,则情况相反,但最后也仍回复到a点运行。
¾提高带时限动作继电保护的灵敏度;
¾加速短路后的电压恢复过程和改善异步电动机的启动条件;¾改善自同期或发电机失磁运行时电力系统的工作条件;
¾防止水轮发电机突然甩负荷时电压过度升高。
2对自动调节励磁装置(Aபைடு நூலகம்R的要求
¾工作可靠
AVR装置本身发生故障,可能迫使机组停机,甚至可能对电力系统造成严重影响。
¾有足够的输出容量
¾自复励方式
为了克服自并励方式在发生短路时不能提供较大的励磁缺点,发电机还可采用自复励方式。与自并励方式相比,自复励方式除设有整流变压器外,还设有串联在发电机定子回路的大功率电流互感器(亦称串联变压器。其原理是,当短路故障发生时电压降低,但电流却巨增,则串联变压器的作用是将该电流转换成为励磁电流。因此,这种励磁方式具有两种励磁电流,即整流变和励磁变的励磁电流。
相关文档
最新文档