1二元运算基本概念和性质(离散数学)
《离散数学》代数系统的一般性质-1

定义 设 S 为集合,函数 f:S×S→S 称为 S 上的 二元运算, 简称为二元运算. 也称 S 对 f 封闭. 特点: - 变量和函数值的取值限定在同一个集合上。 例1 - (1) N 上的二元运算:加法、乘法. - (2) Z 上的二元运算:加法、减法、乘法. - (3) 非零实数集 R* 上的二元运算: 乘法、除 法. - (4) 设 S = { a1, a2, … , an}, ai ∘aj = ai , ∘ 为 S 上二元运算.
二元运算的特异元素 5.1 二 元 运 算 及 其 性 质 单位元
定义 设∘为S上的二元运算,如果存在el(或er)S,使得 对任意x∈S 都有 el ∘x =x (或x∘er =x), 则称el(或er )是S中关于∘运算的左(或右)幺元(单位元). 若e∈S关于∘运算既是左单位元又是右单位元,则称 e 为S上关于∘运算的幺元. 例:N上加法的幺元是0,乘法的幺元是1 Mn(R)上加法的么元是0矩阵,乘法的幺元是单位阵
第5章 代数系统的一般 性质
代数结构
【引例】 (1)在Z集合上,x∈Z,
5.1 二 元 运 算 及 其 性 质
则f(x)=-x是将x映为它的相反 数。-x是由x唯一确定的,它是对一个数施行求相反数运 算的结果。这个运算可表示为函数: f :Z→Z
(2)在R+ 集合上,x∈R+,则f(x)= 1/x是将x映为它的倒 数。1/x是由x唯一确定的,它是对R+中的一个数施行倒数 运算的结果。这个元算可以表示为函数 f : R+ → R+。 (3)设a,b∈R,则f(a,b)=a+b(a-b,a×b)是将两个数a, b映为R中的唯一的一个数,它是对R中的两个数施行加 (减,乘)法运算的结果。这个运算可以表示为函数f : R2 → R。
离散数学第五章

作业:P178 (2);P185 (1), (2)
5.3 半群和独异点
一、半群
1、定义
①具有运算封闭性的代数系统A=〈s,*〉 称为 广群,满足运算封闭、结合律的代数 系统 A=<s,*>,称为半群,这里*是二 元运算。 ②存在么元的半群称为独异点,也称含么 半群, 单位半群,单元半群。
5.3 半群和独异点
二、么元(单位元)和零元
例:代数A=〈{a,b,c}, ○ 〉用下表定义: ○ a b c 特殊元: b是左么元,无右么元; a是右零元,b是右零元, 无左零元; 运算:既不满足结合律,也不满足交换律。 a a a a b b b b c b c a
二、么元(单位元)和零元
例: a)〈I,x〉, I为整数集
5.2 运算及其性质
5.吸收律:设<A,*,△>,若x,y,z∈A有: x*(x △z)=x 称运算*满足吸收律; x △(x * y) =x; 运算 △满足吸收律
例:N为自然数集,x,y∈N,x*y=max{x,y},
x△y=min{x,y}
试证:*,△满足吸收律 证明:x,y∈N, x*(x△y)=max{x,min{x,y}}=x ∴*满足吸收律 x x≥y x<y x≥y =x =x
则么元为1,零元为0
b)〈(s),∪,∩〉 对运算∪,是么元, s是零元,
对运算∩,s是么元 ,是零元。 c)〈N,+〉 有么元0,无零元。
二、么元(单位元)和零元
2、性质
性质1: 设*是s上的二元运算,满足结合律,具 有左么元el,右么元er,则el=er=e 证明: er = el* er = e
闭否,<A,+>,<A,/>呢? 解:2r,2s∈A, 2r x 2s=2r+s∈A (r+s∈N)
离散数学第七章二元关系

19
证明
(2) 任取<x,y>, <x,y>∈(FG)1 <y,x>∈FG t (<y,t>∈F∧<t,x>∈G) t (<x,t>∈G1∧<t,y>∈F1) <x,y>∈G1 F1 所以 (F G)1 = G1 F1
20
关系运算的性质
定理7.3 设R为A上的关系, 则 RIA= IAR=R <x,y> <x,y>∈RIA t (<x,t>∈R∧<t,y>∈IA) t (<x,t>∈R∧t=y∧y∈A) <x,y>∈R
例如 A = P(B) = {,{a},{b},{a,b}}, 则 A上的包含关系是 R = {<,>,<,{a}>,<,{b}>,<,{a,b}>,<{a},{a}>, <{a},{a,b}>,<{b},{b}>,<{b},{a,b}>,<{a,b},{a,b}>} 类似的还可以定义: 大于等于关系, 小于关系, 大于关系, 真包含关系等.
注意: 关系矩阵适合表示从A到B的关系或A上的关系(A,B为有 穷集) 关系图适合表示有穷集A上的关系
11
实例
例4 A={1,2,3,4}, R={<1,1>,<1,2>,<2,3>,<2,4>,<4,2>}, R的关系矩阵MR和关系图GR如下:
1 1 0 0 0 0 1 1 MR 0 0 0 0 0 1 0 0
10
关系的表示
离散数学笔记总结

离散数学笔记总结一、命题逻辑。
1. 基本概念。
- 命题:能够判断真假的陈述句。
例如“2 + 3 = 5”是真命题,“1 > 2”是假命题。
- 命题变元:用字母表示命题,如p,q,r等。
2. 逻辑联结词。
- 否定¬:¬ p表示对命题p的否定,若p为真,则¬ p为假,反之亦然。
- 合取wedge:pwedge q表示p并且q,只有当p和q都为真时,pwedge q才为真。
- 析取vee:pvee q表示p或者q,当p和q至少有一个为真时,pvee q为真。
- 蕴含to:pto q表示若p则q,只有当p为真且q为假时,pto q为假。
- 等价↔:p↔ q表示p当且仅当q,当p和q同真同假时,p↔ q为真。
3. 命题公式。
- 定义:由命题变元、逻辑联结词和括号按照一定规则组成的符号串。
- 赋值:给命题变元赋予真假值,从而确定命题公式的真值。
- 分类:重言式(永真式)、矛盾式(永假式)、可满足式。
4. 逻辑等价与范式。
- 逻辑等价:若A↔ B是重言式,则称A与B逻辑等价,记作A≡ B。
例如¬(pwedge q)≡¬ pvee¬ q(德摩根律)。
- 范式:- 析取范式:由有限个简单合取式的析取组成的命题公式。
- 合取范式:由有限个简单析取式的合取组成的命题公式。
- 主析取范式:每个简单合取式都是极小项(包含所有命题变元的合取式,每个变元只出现一次)的析取范式。
- 主合取范式:每个简单析取式都是极大项(包含所有命题变元的析取式,每个变元只出现一次)的合取范式。
二、谓词逻辑。
1. 基本概念。
- 个体:可以独立存在的事物,如人、数等。
- 谓词:用来刻画个体性质或个体之间关系的词。
例如P(x)表示x具有性质P,R(x,y)表示x和y具有关系R。
- 量词:- 全称量词∀:∀ xP(x)表示对于所有的x,P(x)成立。
- 存在量词∃:∃ xP(x)表示存在某个x,使得P(x)成立。
《离散数学》第9—11章 习题详解!

第九章 代 数 系 统
9.1 内 容 提 要
1.二元运算与一元运算 二元运算 设 S 为集合,函数 f:S ×S→S 称为 S 上的二元运算.这时也称 S 对 f 是封闭的. 一元运算 设 S 为集合,函数 f:S→S 称为 S 上的一元运算.这时也称 S 对 f 是封闭的. 二元与一元运算的算符 ,倡,· ,◇,Δ等 二元与一元运算的表示法 表达式或者运算表 2.二元运算的性质 (1) 涉及一个二元运算的算律
定理 9.3 如果 |S |>1,则单位元不等于零元. 定理 9.4 对于可结合的二元运算,可逆元素 x 只有惟一的逆元 x -1 .
3.代数系统
代数系统 非空集合 S 与 S 上的 k 个一元或二元运算 f1 ,f2 ,…,fk 组成的系统,记作 <S,f1 ,
f2 ,…,fk >. 同类型的代数系统与同种的代数系统
称 V =<A ×B,· 重要结果:
<a1 ,b1 >· <a2 ,b2 >=<a1 a2 ,b1 倡b2 > >为 V1 与 V2 的积代数,记作 V1 ×V2 .这时也称 V1 和 V2 为 V 的因子代数.
任何代数系统 V 都存在子代数,V 是 V 的平凡子代数.
V 的子代数与 V 不仅是同类型的,也是同种的.
9.2 基 本 要 求
1.会判断给定函数 f 是否为集合 S 上的二元或一元运算. 2.会判断或者证明二元运算的性质.
第九章 代 数 系 统
177
3.会求二元运算的特异元素. 4.掌握子代数的概念. 5.掌握积代数的定义及其性质 6.能够判断函数是否为同态并分析同态的性质.
9.3 习 题 课
本章的习题主要有以下题型. 题型一 判断运算是否封闭( 集合与运算是否构成代数系统) ,并对封闭的运算确定其性质 及特异元素
1二元运算基本概念和性质(离散数学)

有
有
无
有
有
无
有
有
无
无
有
无
有
有
有
有Hale Waihona Puke 有有无无
无
有
有
无
无
有
无
17
二元运算的性质(续)
定义 设 ∘ 和 ∗ 为 S 上两个不同的二元运算, (1) 如果 x, y, z∈S 有 (x ∗ y) ∘ z = (x ∘ z) ∗ (y ∘ z) z ∘(x ∗ y) = (z ∘ x) ∗ (z ∘ y) 则称 ∘ 运算对 ∗ 运算满足分配律. (2) 如果∘ 和 ∗ 都可交换, 并且 x, y∈S 有 x ∘ (x ∗ y) = x x ∗ (x ∘ y) = x 则称 ∘ 和 ∗ 运算满足吸收律.
X ∼X {a,b} {a} {a} {b} {b} {a,b}
14
运算表的实例(续)
例5 Z5 = { 0, 1, 2, 3, 4 }, , 分别为模 5 加法 与乘法
的运算表
的运算表
01234
0 01234 1 12340 2 23401 3 34012 4 40123
24
消去律
定义 设∘为V上二元运算,如果 x, y, zV, 若 x ∘ y = x ∘ z,且 x不是零元,则 y = z 若 y ∘ x = z ∘ x, 且 x 不是零元,则 y = z
那么称 ∘ 运算满足 消去律.
实例: Z, Q, R 关于普通加法和乘法满足消去律. Mn(R) 关于矩阵加法满足消去律,但是关于矩阵 乘法不满足消去律.
18
二元运算的特异元素
单位元
定义 设∘为S上的二元运算, 如果存在el(或er)
离散数学第4章-二元关系

4.6 等价关系与划分
• 三 性质 • 定理4.13 设R是A上的等价关系,则 (1)对任一a∈A,有a∈[a]; (2)对a, b∈A,如果aRb,则[a]=[b]; (3)对a, b∈A,如果(a, b)∉R,则[a]∩[b]=∅; (4)∪a∈A[a]=A。
4.6 等价关系与划分
• 定理4.14 集合A上的任一划分可以确定A上 的一个等价关系R。 • 定理4.15 设R1和R2是A上的等价关系, R1=R2⇔ A/R1=A/R2 。 • 定理4.16 设R1和R2是A上的等价关系,则 R1∩R2是A上的等价关系。
4 .3 关系的运算
• 一 逆运算 • 定义4.7(逆关系) 设R是从A到B的二元关系, 则从B到A的二元关系记为R-1,定义为R-1 ={(b,a)|(a,b)∈R},称为R的逆关系。 • 定理2.1 (1)(R-1)-1=R; (2)(R1∪R2)-1= R1-1∪ R2-1; (3)(R1∩R2)-1= R1-1 ∩R2-1; (4) (A×B)-1= B×A;
4 .5 关系的闭包
•
• (1) (2) (3) • (1) (2) (3)
二 基本性质
定理4.5 设R是A上的二元关系,则 R是自反的 ⇔ r( R )=R; R是对称的 ⇔ s( R )=R; R是传递的 ⇔ t( R )=R; 定理4.6 设R1和R2是A上的二元关系,若R1⊆R2则 r(R1)⊆ r(R2); s(R1)⊆ s(R2); t(R1)⊆ t(R2)。
第四章 关系
4.1 二元关系 4.2 关系的性质 4 .3 关系的运算 4 .5 关系的闭包 4.6 等价关系与划分
4.1 二元关系
• 一 定义4.1(二元关系)
设A和B是任意两个集合,A×B的子集R称为从A到 B的二元关系。当A=B时,称R为A上的二元关系。若 (a, b)∈R,则称a与b有关系R,记为aRb。 (a, b)∉R:a与b没有关系R R=∅:空关系 R=A×B:全关系
离散数学二元关系习题讲解

极 大 元
极 小 元
作业
2.设集合X={x1,x2,x3,x4,x5}上的偏序关系如下图所示 最 最 极 极 上 下 ,求X的最大元、最小元、极大元、极小元。求子 集 上 下 大 小 大 小 确 确 集X1={x2,x3,x4},X合 ={x ,x ,x } , X ={x ,x ,x } 的上 界 界 2 3 4 5 3 1 3 5 元 元 元 元 界 界 界、下界、上确界、下确界、最大元、最小元、极 大元和极小元。 X1 无 x4 x2, x4 x1 x x1 x4
3
偏序关系
1.设集合A={a,b,c,d,e,f,g,h},对应的哈斯图见下图令 B1={a,b},B2={c,d,e}。求出B1,B2的最大元、最小 元、极大元、极小元、上界、下界、上确界、下确 界。 h
f d
c a
4
g e
集 合 B1
最 大 元 无
最 小 元 无
b
B2
无
c
上 下 下 上界 确 确 界 界 界 c,d,e,f a,b a,b ,g,h 无 c 无 a, b, h c d,e c h c
x1
x3 x3 x1 x1
4ቤተ መጻሕፍቲ ባይዱ
X2
x2 x3
x3 x1 x1
无 x5 无
X3
x5 X
x4, x3, 无 x3 x5 x1 x x5 x1 x1
5
无 x5
x4
5
x4, x5
二元关系
二元关系基本概念(重点) 关系的运算 关系的性质(重点) 关系的闭包运算 等价关系与偏序关系(难点)
关系的性质
例5 判断下述关系所具备的性质。
(1)集合A上的恒等关系,全域关系。 (2)R1={<x,y>|x≤y, x,y∈N}注:将≤改为<? (3)R2={<x,y>|x|y,x,y∈N-{0}} (4)R3={<S1,S2>|S1S2,S1,S2∈P(S)}其中P(S)是 S的幂集。注:若改为? (5)R4={<x,y>|x+y=偶数,x,y∈N}
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例题分析
例6 设 ∘ 运算为 Q 上的二元运算, x, yQ, x∘y = x+y+2xy,
(1) ∘运算是否满足交换和结合律? 说明理由. (2) 求 ∘ 运算的单位元、零元和所有可逆元.
解 (1) ∘ 运算可交换,可结合. 任取x, yQ, x ∘ y = x+y+2xy = y+x+2yx = y ∘ x,
矩阵 B 无
yl ∘ x = e
逆元 X 的逆元 x X 的逆元 x1 (x-1属于给定集合)
X逆元X X的逆元 X1 (X是可逆矩阵) 的逆元为 B 的逆元为 B X 的逆元为 X
22
惟一分别为 S
中关于运算的左和右单位元,则 el = er = e 为 S 上关于 ∘ 运算的惟一的单位元.
有
有
无
有
有
无
有
有
无
无
有
无
有
有
有
有
有
有
无
无
无
有
有
无
无
有
无
17
二元运算的性质(续)
定义 设 ∘ 和 ∗ 为 S 上两个不同的二元运算, (1) 如果 x, y, z∈S 有 (x ∗ y) ∘ z = (x ∘ z) ∗ (y ∘ z) z ∘(x ∗ y) = (z ∘ x) ∗ (z ∘ y) 则称 ∘ 运算对 ∗ 运算满足分配律. (2) 如果∘ 和 ∗ 都可交换, 并且 x, y∈S 有 x ∘ (x ∗ y) = x x ∗ (x ∘ y) = x 则称 ∘ 和 ∗ 运算满足吸收律.
∘ai
a1 ∘a1 a2 ∘a2 .. .. .. an ∘an
13
运算表的实例
例4 A = P({a, b}), , ∼分别为对称差和绝对补运算
({a,b}为全集)
的运算表
∼ 的运算表
{a} {b} {a,b}
{a} {b} {a,b} {a} {a} {a.b} {b} {b} {b} {a,b} {a} {a,b} {a,b} {b} {a}
给定 x,设 x 的逆元为 y, 则有 x ∘ y = 0 成立,即
因此当
x+y+2xy = 0 x 1/2时,
y
y
x
1
x 2x
是
x
(x = 1/2) 的逆元.
1 2x
27
例题分析(续)
例7 (1) 说明那些运算是交换的、可结合的、幂等的. (2) 求出运算的单位元、零元、所有可逆元素的逆元.
• 70年代在数据库研究中人们发现关系代数理论能够 作为数据库的理论模型;
• 泛代数和多类代数是程序设计方法学研究中的有力 工具;
• 抽象数据类型代数规范理论和技术广泛应用于计算 机软件形式说明和开发以及硬件体系结构设计。
3/55
11.1 代数运算的基本概念
1.二元运算定义及其实例 一元运算定义及其实例
24
消去律
定义 设∘为V上二元运算,如果 x, y, zV, 若 x ∘ y = x ∘ z,且 x不是零元,则 y = z 若 y ∘ x = z ∘ x, 且 x 不是零元,则 y = z
那么称 ∘ 运算满足 消去律.
实例: Z, Q, R 关于普通加法和乘法满足消去律. Mn(R) 关于矩阵加法满足消去律,但是关于矩阵 乘法不满足消去律.
1、集合A中任意两个元素可以进行该运算; 2、运算的结果仍然属于集合A
7/55
闭运算的例子
例1 (1) N 上的二元运算:加法、乘法. (2) Z 上的二元运算:加法、减法、乘法. (3) 非零实数集 R* 上的二元运算: 乘法、除法. (4) 设 S = { a1, a2, … , an}, ai ∘aj = ai , ∘为 S 上二 元运算.
X ∼X {a,b} {a} {a} {b} {b} {a,b}
14
运算表的实例(续)
例5 Z5 = { 0, 1, 2, 3, 4 }, , 分别为模 5 加法 与乘法
的运算表
的运算表
01234
0 01234 1 12340 2 23401 3 34012 4 40123
证
el = el ∘ er = el ∘ er = er
所以 el = er , 将这个单位元记作 e. 假设 e’ 也是 S
中的单位元,则有
e’ = e ∘ e’ = e.
惟一性得证.
类似地可以证明关于零元的惟一性定理.
注意:当 |S| 2,单位元与零元是不同的;
当 |S| = 1 时,这个元素既是单位元也是零元. 23
(2) 非零有理数集 Q*,非零实数集 R*上的一元 运算: 求倒数
(3) 复数集合 C 上的一元运算: 求共轭复数 (4) 幂集 P(S) 上, 全集为 S: 求绝对补运算~ (5) A 为 S 上所有双射函数的集合,ASS: 求反
函数 (6) 在 Mn(R) ( n≥2 )上,求转置矩阵
10
二元与一元运算的表示
令 yl = yr = y, 则 y 是 x 的逆元. 假若 y’∈S 也是 x 的逆元, 则
y'= y’ ∘ e = y’ ∘(x ∘ y) = (y’ ∘ x) ∘ y = e ∘ y = y
所以 y 是 x 惟一的逆元. 说明:对于可结合的二元运算,可逆元素 x 只有 惟一的逆元,记作 x1.
8/55
(5) 设 Mn(R) 表示所有 n 阶 (n≥2) 实矩阵的集 合,即
二元运算的实例(续) Mn(R)
a11
a21
an1
a12 a22
an2
a1n
a2n
ann
aij R, i, j 1,2,...,n
惟一性定理(续)
定理 设 ∘为 S 上可结合的二元运算, e 为该运算
的单位元, 对于 x∈S 如果存在左逆元 yl 和右逆元 yr , 则有 yl = yr= y, 且 y 是 x 的惟一的逆元.
证 由 yl ∘ x = e 和 x ∘ yr = e 得 yl = yl ∘ e = yl ∘(x ∘ yr) = (yl ∘ x) ∘ yr = e ∘ yr = yr
20
二元运算的特异元素(续)
可逆元素及其逆元
令 e 为 S 中关于运算∘的单位元. 对于 x∈S,如
果存在yl(或 yr)∈S 使得
yl ∘ x = e(或 x ∘ yr = e),
则称 yl ( 或 yr )是 x 的 左逆元 ( 或右逆元 ).
关于 ∘运算,若 y∈S 既是 x 的左逆元又是 x 的
18
二元运算的特异元素
单位元
定义 设∘为S上的二元运算, 如果存在el(或er)
S,使得对任意 x∈S 都有
el ∘ x = x ( 或 x ∘ er = x ), 则称 el ( 或 er )是 S 中关于 ∘ 运算的 左 ( 或右 )
单位元.
若 e∈S 关于 ∘ 运算既是左单位元又是右单位 元,则称 e 为 S 上关于 ∘ 运算的 单位元.
16
实例分析
Z, Q, R分别为整数、有理数、实数集;Mn(R)为 n 阶实 矩阵集合, n2;P(B)为幂集;AA 为 A上A,|A|2.
集合 Z, Q, R Mn(R)
P(B)
AA
运算 普通加法+ 普通乘法 矩阵加法+ 矩阵乘法
并 交 相对补 对称差 函数符合
交换律 结合律 幂等律
(2) 设∘运算的单位元和零元分别为 e 和 ,则对于 任意 x 有 x∘e = x 成立,即 x+e+2xe = x e = 0 由于 ∘ 运算可交换,所以 0 是幺元.
对于任意 x 有 x ∘ = 成立,即 x++2 x = x + 2 x = 0 = 1/2
* ((a,b))=d 记之为
a*b =d
5/55
集合A上的代数运算
定义2 设A,B是两个非空集合。 若* 是A×A到B的一个运算, 则称 * 是集合A上的一个代数运算或二 元运算。
6/55
闭运算
设 * 是A×A到B的一个运算, 若B⊆A, 说*是集合A上的闭运算。 也说集合A对运算 * 是封闭的。
abc
a cab b abc c bca
∘ abc
a aaa b bbb c ccc
矩阵加法和乘法都是 Mn(R) 上的二元运算. (6) 幂集 P(S) 上的二元运算:∪,∩,-, .
(7) SS 为 S 上的所有函数的集合:合成运算∘.
9
一元运算的定义与实例(补)
定义 设 S 为集合,函数 f:S→S 称为 S 上的一 元运算,简称为一元运算. 例2 (1) Z, Q 和 R 上的一元运算: 求相反数
分析学 数学中沟通形与数且涉及极限运算的部分
代数学 数学中研究数的部分
几何学 数学中研究形的部分
这三大类数学构成了整个数学的本体与核心。 在这一核心的周围,由于数学通过数与形这两 个概念,与其它科学互相渗透,而出现了许多 边缘学科和交叉学科。
1/55
代数学
算术 初等代数——实数有理数无理数、加减乘除 高等代数——矢量矩阵、线性变换 数论 抽象代数——抽象元素、代数运算
任取x, y, zQ, (x ∘ y) ∘ z= (x+y+2xy) + z + 2(x+y+2xy) z
= x+y+z+2xy+2xz+2yz+4xyz x ∘ (y ∘ z) = x + (y+z+2yz) + 2x(y+z+2yz