临床三维步态分析系统的组成原理及其临床应用
三维步态分析系统的三维步态分析系统的

三维步态分析系统的在运动科学、康复医学以及人体工程学等领域,三维步态分析系统扮演着至关重要的角色。
该系统通过高精度的运动捕捉技术与强大的数据分析软件相结合,为我们提供了深入了解人类行走机制的新视角。
三维步态分析系统的工作原理,简而言之,是通过捕捉人体在行走过程中的动作,将收集到的数据转化为可视化的三维模型。
这一过程不仅展现了步态的动态变化,还能精确量化各个关节的运动角度、力度及速度等关键参数。
1. 运动捕捉设备:通常采用红外线或光学标记技术,跟踪贴在测试者身体关键部位的小标记点。
这些设备可以以每秒上百次的频率捕捉标记点的位置变化,确保了数据的精确性。
2. 力板与测力台:这些设备位于行走路径上,用于测量行走过程中脚部与地面的相互作用力,包括垂直力、前后力和左右力。
3. 数据采集与处理软件:这是系统的“大脑”,负责实时收集运动捕捉设备和力板的数据,通过算法处理,将这些数据转化为具有实际意义的信息。
三维步态分析系统的应用广泛而深远。
在医疗康复领域,它帮助医生准确诊断患者的步态异常,并制定个性化的康复方案。
在运动训练中,教练可以利用该系统优化运动员的技术动作,提高运动表现。
而在产品研发方面,三维步态分析则为鞋类、假肢等产品的设计提供了科学依据。
三维步态分析系统不仅为我们揭示了行走背后的复杂生理机制,更为相关领域的研究与实际应用提供了强有力的工具。
个性化医疗的推进器在个性化医疗日益受到重视的今天,三维步态分析系统为每位患者提供了量身定制的治疗方案。
通过分析个体的步态特征,医生能够更准确地识别出潜在的健康问题,如关节磨损、肌肉不平衡等。
这种精确的评估不仅加快了治疗进程,也提高了治疗效果,让患者更快地回归正常生活。
儿童发展的观察窗对于儿童而言,步态分析是一种监测其运动发育的有效手段。
通过定期进行三维步态分析,家长和医生可以观察到孩子的成长轨迹,及时发现并矫正发育过程中的异常,为孩子的健康成长提供保障。
老年人跌倒预防的利器老年人跌倒是常见的家庭安全隐患。
步态分析的临床应用

步态分析的临床应用步态分析的临床应用1:引言1.1 研究背景1.2 目的和意义2:步态分析的基本原理2.1 步态周期与步态参数2.2 步态分析的主要方法2.2.1 传感器技术2.2.2 动作捕捉系统2.2.3 静态平衡测试2.2.4 动态平衡测试2.3 步态分析的数据处理方法3:步态分析在临床中的应用3.1 神经科学3.1.1 神经病理学的评估3.1.2 神经康复的评估和训练 3.2 骨科3.2.1 脊柱疾病的评估3.2.2 骨盆疾病的评估3.2.3 下肢骨折的康复评估 3.3 康复医学3.3.1 运动损伤的评估3.3.2 运动康复的评估和训练 3.4 仿真和矫形设备设计3.4.1 仿真训练系统的开发 3.4.2 矫形设备的设计和改进 3.5 运动医学3.5.1 运动生理学的评估3.5.2 运动训练的优化4:步态分析的临床应用案例4.1 帕金森病患者的步态分析4.2 脊髓损伤患者的步态分析4.3 骨关节炎患者的步态分析4.4 运动损伤康复患者的步态分析5:结论步态分析在临床中具有广泛的应用前景,能够为多种疾病的评估和康复提供重要参考。
(附件:具体分析数据表格及图表)(法律名词及注释)1:神经病理学 - 研究与疾病相关的神经系统损伤和异常的科学。
2:康复医学 - 通过医疗、康复和社会支持等综合手段帮助病人恢复身体功能。
3:仿真训练 - 利用计算机技术和虚拟现实技术模拟真实场景,训练病人的特定技能。
4:矫形设备 - 通过保护或改善病人姿势和运动能力的设备。
5:运动生理学 - 研究运动对身体系统的影响和适应的科学。
三维步态分析

三维步态分析引言三维步态分析是一种重要的研究领域,用于评估人类步行和跑步的运动特征。
它可以提供关于运动技术和生物力学参数的详细信息,有助于了解和改善人类运动表现、预防运动损伤以及设计合适的康复措施。
本文将介绍三维步态分析的原理、方法和应用。
原理三维步态分析基于运动捕捉技术,结合力学模型和数学算法,可以精确地测量和分析运动。
常用的运动捕捉系统包括摄像机、传感器和惯性测量单元(IMU),它们可以记录身体的运动轨迹和力量。
然后,通过计算机算法对数据进行处理和分析,得出步态参数和相关指标。
三维步态分析主要包括以下几个方面的内容: 1. 空间参数:包括步幅、步长、步宽等,用于描述运动轨迹。
2. 时间参数:包括步频、步态周期等,用于描述运动的节奏和速度。
3. 关节参数:通过测量关节角度和力量,评估运动的协调性和稳定性。
4. 力学参数:包括力量、能量、冲量等,用于研究运动的机械特征。
方法三维步态分析通常需要使用专业的设备和软件来实施。
以下是常见的步骤和方法:1.数据采集:首先需要选择合适的运动捕捉系统进行数据采集。
根据研究目的和实际情况,可以选择不同的设备和传感器。
然后,在实验室或合适的环境中,对被测试者进行步行或跑步等运动,同时记录相关数据。
2.数据处理:采集到的数据包括时间序列的位置、力量等信息,需要经过数据处理和滤波,去除噪声和异常值。
然后,根据需要,对数据进行插值、平滑和分段等处理。
3.参数计算:根据采集到的数据,利用计算机算法进行参数计算。
常见的计算方法包括关节角度计算、力量计算、轨迹重建等。
这些计算可以使用专业的运动分析软件或自行编写的程序进行实现。
4.数据分析:根据计算得到的步态参数,进行数据分析和统计。
可以使用图表、统计学方法等手段,对不同个体、不同条件下的步态数据进行比较和分析。
应用三维步态分析在许多领域都有广泛的应用,以下是一些常见的应用场景:1.运动训练与评估:三维步态分析可以帮助运动员和教练员评估和改善运动技术。
三维步态分析系统在脑瘫下肢矫形手术领域中的应用进展

三维步态分析系统在脑瘫下肢矫形手术领域中的应用进展【摘要】本文探讨了三维步态分析系统在脑瘫下肢矫形手术领域中的应用进展。
在介绍了背景,研究意义以及研究目的。
在详细介绍了三维步态分析系统的原理,以及在脑瘫患者下肢矫形手术前评估、术后康复评估和手术效果评估中的应用情况。
讨论了在该领域中面临的挑战和解决方案。
结论部分分析了三维步态分析系统在脑瘫下肢矫形手术领域的应用前景和未来发展方向,并进行了总结。
该研究为改善脑瘫患者的下肢功能和生活质量提供了重要的参考,为临床实践和研究方向指明了新的方向和可能性。
【关键词】三维步态分析系统、脑瘫、下肢矫形手术、应用进展、评估、康复、手术效果评估、挑战、解决方案、应用前景、发展方向、总结1. 引言1.1 背景介绍脑瘫是一种常见的儿童运动障碍疾病,患者在运动和姿势控制上存在固有的缺陷。
脑瘫患者常常伴随着下肢肌肉痉挛、僵硬和肌群短缩等问题,导致步态异常,影响生活质量。
传统的脑瘫下肢矫形手术主要依靠临床经验和手术技术来进行评估和治疗,缺乏客观性和科学性。
而三维步态分析系统的引入为脑瘫下肢矫形手术提供了新的方法和技术支持。
三维步态分析系统通过对患者进行多维度、多角度的步态分析,能够客观评价患者的步态特征、关节角度、肌肉活动模式等信息,为医生提供量化的数据支持。
这种技术能够帮助医生更加准确地评估脑瘫患者的运动功能和步态异常,指导手术方案的制定和术后康复计划的制定。
三维步态分析系统在脑瘫下肢矫形手术领域中具有重要的应用前景。
通过对患者步态特征的全面评估,可以提高手术的成功率和治疗效果,进一步改善患者的生活质量和运动功能。
1.2 研究意义三维步态分析系统在脑瘫下肢矫形手术领域中的应用进展具有重要的研究意义。
脑瘫是一种常见的儿童神经发育疾病,患者在步行和站立方面存在明显的功能障碍,影响其日常生活质量。
对于脑瘫患者进行下肢矫形手术是一种重要的治疗方式,能够改善其步态功能及生活质量。
传统的评估方法主要依靠临床观察和简单的功能测试,存在主观性强、客观性不足的缺点。
三围步态分析基本介绍

三围步态分析基本介绍步态就是人行走的姿态,与人体的解剖结构、生理功能、运动控制能力及心理状态等因素有关。
步态可以从一个侧面反映人体的病变特征。
步态分析是运动生物力学的重要研究内容,广泛用于人类的疾病诊断和康复效果评价。
通过步态分析,可以帮助医生科学地进行病因分析和病情诊断、疗效评定、指导病人行走训练。
1、步态分析的生物力学参数包括运动学参数、动力学参数、肌电活动参数和能量参数。
步态周期、步长和步频(步速)是步态的基本运动学参数;常用的动力学参数主要有地面反作用力(地反力)和足底压力分布;肌电活动参数主要为步行过程中下肢各肌肉的电活动,通过表面电极、针电极和线电极等记录步行时有关肌肉的电活动,在临床中多采用表面电极;能量参数包括能量代谢参数和机械能消耗参数。
能量代谢参数是指步行中的能量代谢,可以在步态分析过程中同时用气体分析仪测量及分析气体中含氧量的变化,以此来计算步行中的能量消耗量,用以衡量步行效率,但不能查明行走时具体的异常机制;机械能消耗参数可以应用动能、势能及其转换技术来计算在一个步态周期中身体不同部位的能量消耗(产能及耗能),可查明行走异常时耗能高的特定部位和特定时期,有助于研究步态异常机制,选择恰当的治疗方法。
2、步态测试方法步态测试方法分为:定性分析法(目测步态分析法)和定量分析法(仪器分析法)。
现在多为定量分析方法,它是借助器械或专门设备来观察行走步态。
步态分析系统分为二维(2D)和三维(3D)步态分析系统。
目前,国际上比较先进的三维步态分析系统通常包括以下四部分:①-组带有红外线发射源的红外线摄像机,在同一空间但分布在不同位置,以及能够粘贴在待测部位(--般为关节部位)的红外反光标记点,可以用来测量人体运动时的空间位置变化。
②测力台,用以测量行走时地面反作用力的变化。
③肌电遥测系统,用以观察动态肌电图。
④计算机及其外围设备,可调控以上三组装置同步运行并对观察结果进行分析处理。
这种三维步态分析系统可以提供时空参数、运动学参数、动力学参数、肌电活动参数、能量参数以及图形,有利于进行深入细致的研究,做出全面的评价。
步态分析在临床中应用

步态分析在临床中应用【关键词】三维步态分析摘要[目的]客观的提供矫形外科制定手术方案、评定术后疗效、制定康复治疗方案及评定康复疗效依据。
[方法]应用三维步态分析系统(英国VICON公司制,V-612)对健康自愿者40名(平均年龄33岁)和患有矫形外科疾病的112名患者进行了步态分析,年龄17~73岁,平均46.2岁。
男性42例,身高男性平均171±13 cm,体重65±11 kg;女性平均身高158±11 cm,体重45±1l kg。
其中颈椎病21名,腰椎间盘突出症及腰椎管狭窄症26名,髋、膝、踝关节各12、34、19名。
[结果]表明步态分析可提供运动学参数、生物力学参数和运动中骨骼肌的肌电活动参数的变化。
[结论]将三维步态分析的方法应用于矫形外科和康复医学科进行手术方案的制定、手术疗效的评价、康复治疗方法的选择及疗效评定是切实可行的。
关键词:三维步态分析;矫形外科与康复医学;疗效评定Abstract:[Objective]To provide external basis of establishment operative and rehabilitative scheme, and estimate prooperation and rehabilitation treatment effect.[Method]A total of 40 unconstraint people (mean age 33) and 112 patients suffering from orthopaedic disease were made gait analysis using 3-D gait analysis system (VICONCompany, V-612, ). Their mean age was Among them 42 patients were male,and mean stature 171±13 cm, mean body weight 65±11 kg. Female stature 158±11 cm, and body weight 45±11 kg. [Result]The result indicated that gait analysis can supply changes of kinematics, biomechanics and skeletal EMG in activity.[Conclusion]The method of gait analysis is feasible for patient suffering from orthopaedicdisease.Key words: 3-D gait analysis;Orthopaedic and rehabilitation medicine;Treatment effect estimate步态分析是生物力学的特殊分支,是对人体行走时的肢体和关节活动进行运动学观察和动力学分析,提供一系列时间、几何、力学等参数值和曲线。
临床步态分析

临床步态分析步态是指人体行走时身体各部位的运动模式和节奏。
通过对患者步态的观察和分析,可以揭示出很多的临床信息,对疾病的诊断和治疗具有重要意义。
本文将从步态分析的方法和步态异常的临床应用等方面进行探讨。
一、步态分析的方法步态分析的方法主要有以下几种:1. 观察法:通过肉眼观察患者的步行动作、步态特点以及上肢、下肢的协调情况等,进行初步的步态评估。
观察时需要注意患者的站立姿势、步行过程中的姿态和动作是否对称、节奏是否正常等。
2.电子步态分析系统:利用高精度传感器、摄像机等设备,对患者的步态进行全面的客观测量和分析。
这种方法可以获取更为准确和详细的步态参数,如步幅、步频、着地方式、支撑时间和摆动时间等。
3. 电子地板压力分布系统:通过在地板上布置感应器,可以实时记录患者不同部位的压力分布情况,从而分析步态的负重移动、动态平衡以及异常压力点等信息。
4. 高速摄像仪:通过高速摄像仪捕捉患者的步态图像,然后进行帧间分析和图像处理,可实现对步态的准确量化和评估。
二、步态异常的临床应用步态异常是指患者步行过程中出现的不正常的步态特征或节奏。
下面列举了几种常见的步态异常及其临床应用:1. 门卧不稳:患者在行走过程中摇晃不稳、容易失去平衡,并且常出现外展腿、膝关节屈曲、抬高踩过地面等现象。
这种异常可提示中枢神经系统病变,如小脑功能障碍等。
2. 阵挛步态:患者在行走时出现肢体强直、震颤和不协调等症状,步态显得僵硬、不灵活。
这种异常常见于帕金森病等神经系统疾病。
3. 踝跳步态:患者在行走时下肢出现异常抬高踩过地面的现象,通常伴有扭转或弯曲的踝关节动作。
这种异常常见于下肢肌肉或神经的功能障碍。
4. 顾盼步态:患者在行走时头部始终固定朝向,用眼睛顾盼四周寻找平衡,步态显得僵硬、迟缓。
这种异常常见于前庭功能障碍。
三、步态分析在疾病诊断和治疗中的意义步态分析在临床上被广泛应用于疾病的诊断和治疗过程中,其意义主要体现在以下几个方面:1. 早期诊断:一些疾病在早期可能没有明显的症状,但通过步态分析可以发现潜在的异常,从而帮助医生及时进行诊断和治疗。
临床三维步态分析系统的组成、原理及其临床应用

临床三维步态分析系统的组成、原理及其临床应用标题:临床三维步态分析系统的组成、原理及其临床应用摘要:临床三维步态分析系统是一种用于评估和分析人体步态的重要工具。
本文将介绍临床三维步态分析系统的组成、原理以及其在临床应用中的意义,并举例说明其在不同疾病和康复治疗中的应用。
一、引言三维步态分析是指对人体行走过程中的运动进行定量分析和评估,其能够提供关于步态运动异常的详细信息,为临床医生制定个体化康复方案和评估治疗效果提供依据。
临床三维步态分析系统通过使用多个传感器来记录和分析人体步态运动,并将结果可视化显示,为医生和病人提供非常有价值的信息。
二、临床三维步态分析系统的组成1. 传感器系统:临床三维步态分析系统通常由多个传感器组成,包括惯性传感器、力板传感器和摄像机等。
惯性传感器用于测量身体在三维空间中的运动,力板传感器用于测量脚底的力和压力分布,摄像机用于捕捉人体的运动轨迹。
2. 数据采集与处理系统:该系统用于采集和处理传感器产生的多维数据。
通过对数据进行处理和分析,可以得出步态参数,如步幅、步频、支撑相时间、摆动相时间等。
3. 分析与显示系统:该系统用于对采集到的数据进行分析和可视化显示。
通过三维模型、曲线图或动画,医生和病人可以更直观地了解步态运动的变化,以及异常或改善的情况。
三、临床三维步态分析系统的原理1. 传感器数据采集:传感器系统会收集与步态相关的多种数据,如加速度、角速度、力和压力等。
这些数据通过传感器中的微机电系统(MEMS)芯片转换为电信号,并经过滤波和放大后传输给数据采集与处理系统。
2. 数据处理与分析:数据采集与处理系统会对采集到的数据进行处理和分析。
主要的分析方法包括时间-空间分析、关节角度分析和力学分析。
时间-空间分析通过分析脚的着地、脚离地和摆动期等时间点和关键事件来计算步态参数。
关节角度分析使用角度传感器来测量关节的角度变化,从而了解关节的运动特征。
力学分析通过力板传感器测量脚底的力和压力分布,来评估脚地面反作用力和行走稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三维步态分析系统的组成、原理及其临床应用孟殿怀、励建安南京医科大学第一附属医院康复医学科步行是人类的基本功能,任何神经、肌肉及管关节疾患均可能导致步行功能障碍。
步态分析对人体行走方式进行客观记录并对步行功能进行系统评价。
步态分析分为定性(目测)分析和定量分析两大类。
前者是由医务人员通过目测观察患者的行走过程,并作出大体的分析,此法比较粗略,仅限于定性分析。
定量步态分析研究始于19世纪末,早期主要是借助一些简单的设备(如卷尺、秒表等)辅助分析,常见的如足印法、电子角度计测定法等。
20世纪70年代以后定量步态分析发展较快,80年代以后转向采用高速摄像设备的三维步态分析。
目前常用的临床步态分析系统进行定量步态分析的频率已经达到每秒60帧以上,测量长度的误差小于1毫米。
随着我国经济的快速发展、人民生活水平的提高,临床三维步态分析系统已经越来越受到国内医学界人士的青睐。
可以预见,在未来的几年中,国内将有多家医疗单位添置临床三维步态分析系统。
1、步态分析的主要内容定量步态分析所用参数大致可归纳为如下几类:●时间-距离参数,包括步长、步幅、步宽、步向角、步速、步频、步行周期、支撑相时间、摆动相时间等。
●运动学参数,是指步行中髋、膝、踝等关节的运动规律(角度、位移、速度、加速度等),骨盆倾斜和旋转、身体重心位置的变化规律等。
●动力学参数,指引起运动的力学参数,包括地板反力、功与功率等。
●肌电活动参数,指步行过程中下肢主要肌肉的电生理活动指标。
●能量代谢参数,指人体运动过程中的能量代谢情况。
2、组成及原理完整的临床三维步态分析系统应该包括:(1)步态分析仪;(2)测力平板;(3)动态体表肌电仪;(4)气体代谢分析仪。
2.1 步态分析仪步态分析仪的功能主要是摄取人体在步行过程中各个关节点的运动轨迹,通过模型分析的方式进行三维重建,从而获得人体运动时的各种运动学参数。
从步态分析检测的媒介角度,可以将现有的步态分析仪分为三种类型:摄像型、红外光型和超声波型。
2.1.1 视频摄像型通过视频设备(CCD摄像头)将人体行走过程摄取下来,然后逐帧、逐点的进行点阵分析。
其优点是设备简单、受试者步态比较自然,但由于其分析定位主要依靠人工,对操作要求较高,误差较大,且只能进行二维平面分析,三维空间分析的精确度得不到保证。
2.1.2 红外光型通过红外摄像头接收体表标记点发射或反射的红外光线,并根据相应的模型分析法,进行三维重建,从而得出人体各部分的三维运动轨迹。
其优点是技术成熟,数据结果精确,操作简便快捷;缺点是对采集场地有一定的要求,且仪器设备价格相对较贵,在一定程度上限制了其推广。
2.1.3 超声波型超声波型的原理与红外光型相似,由人体体表携带的超声发射探头发出超声波,经周围的超声接收探头接受,根据一定的模型设置,进行三维重建,得出人体的三维运动轨迹。
其优点是设备价格相对低廉,操作也相对简单,数据也比较精确;但是超声波易于反射,必须消除周围物体的干扰,对周围环境要求较高,同时由于标记点体积较大,人体体表一次携带的标记点数量有一定的限制,仅适宜于进行人体节段性分析。
2.2 测力平板测力平板可以对人体站立或行走时足底与支撑面之间的压力(垂直、左右、前后三个方向的力)进行测量和分析,获得反映人体下肢的机构、功能乃至全身的协调性等方面的信息,与步态分析仪结合,还可以得出人体运动时的各种动力学参数。
国外Carlet于1872年设计了一个鞋底充气袋,首先记录了行走时足-地作用力。
而对作用于足上的动力学参数的最早的精确测量是由Elftman1938年设计的力板实现的。
后来的测量方式的发展基本上都是基于这一“力板”的原理。
国内最早有记载的是上海第九人民医院于1986年研制了S9-1型步态分析系统,可以显示三维足-地作用力等信息。
后来张潇等人对此也做了多项研究,并自行研制了一种测力台系统。
测力平板的硬件主要包括两块刚性力板和四个压力传感器。
外界力作用于力板上,由力板传输到分布于力板四个角的压力传感器;压力传感器受力后发生弹性形变,根据其阻抗和容抗的改变可以测出其受力状况,从而间接获得人体足底与制成面之间的力的作用情况。
2.3 动态体表肌电图仪肌电信号(EMG)是中枢神经系统支配肌肉活动时伴随的电变化。
体表肌电因其无创测量的优点而在康复医学工程界倍受重视。
其主要原理是利用贴在体表的表面电极实时接收了人体题面肌电信号的变化,经过放大、滤波及模/数(A/D)转换,形成量化的肌电波形。
但体表肌电仍有一定的先天缺陷,如其信号的不稳定,受外界环境的干扰较大;肌电信号的量化方式与标准等,限制了其进一步的推广应用。
目前国内有不少学者正在开展这方面的研究。
2.4 气体代谢分析仪肺氧气(O2)和二氧化碳(CO2)交换是人体的一个动态生理过程。
耗氧量被视为是人体新陈代谢过程的一个指标。
运动时人体对氧的需求量增加。
目前评估运动时能量消耗的指标主要有两种,一是能量消耗指数(Energy Expenditure Index,EEI),以一定速率步行时的心率变化为基础进行测量;另一种是步行时单位体重的氧耗量。
对于评估运动能量消耗来说,测量氧气消耗则显得更为可靠。
气体代谢分析仪的主要原理是利用氧气和二氧化碳传感器测量人体呼出和吸入的氧气和二氧化碳含量,进而分析人体运动时的能量代谢状况。
步态分析中常用的能量分析的指标称为氧价(Oxygen Cost,OC),是一种定量评估运动能量消耗的指标,指运动时人体单位体重、单位距离所消耗的氧气量,单位为ml·kg-1·m-1。
3、临床应用3.1 步态分析系统在假肢、支具和矫形器等康复器械研发中的应用近年来,人们以人体生物力学和生物医学工程解剖学研究为基础,将现代先进的微电子技术、计算机控制技术、机械设计与制造技术、新材料技术以及康复医学工程等学科交叉融合,从而研制出许多更加协调、符合人体需求的康复器械。
虽然我国康复医学工程技术发展比较迅速,假肢、支具和矫形器等产品的质量也不断提高,国内假肢、支具和矫形器行业取得了可喜的成绩。
但与国外发达国家同类产品相比,还有不小的差距。
这当中除了制作材料的工艺不足外,与国内厂商在产品研发设计过程中的技术手段相对比较落后有关。
目前,国内大部分研发单位和厂商在涉及下肢的康复产品研发中,仍然采用定性分析的方法,很少采用定量分析的手段。
而对于下肢假肢、支具和矫形器研发来说,定量的步态分析所提供的各项参数无疑可以提高研发的效率。
王人成等认为,定量的步态分析为假肢的仿生设计提供了有效的工具,是假肢设计目标参数获取的重要途径。
3.2 步态分析系统在假肢、支具和矫形器装配和训练中的应用要想获得理想的装配效果,必须由康复医师、装配技师及患者三方面协作,同时在辅助以定量步态分析手段。
刘永斌等研究结果表明,人在行走过程中左右下肢各动作的对称性受到不同程度的破坏时,就会出现异常步态,并提出了用行走时相对称性指数作为评价人体行走功能的一个指数,来评价假肢的装配效果。
赵利,崔寿昌等人对42例下肢假肢患者进行了步态分析后认为,利用步态分析进行假肢代偿功能的评定是非常重要的一项可观指标。
翁长水阐述了下肢永久性膝上和膝下假肢装配后常见的步态异常,并从假肢和人体解剖学角度分析了产生的原因,从而更好的改进假肢性能和指导患者的步行训练。
3.3步态分析系统在矫形外科中的应用张伟等认为,由于步态分析可将矫形外科检查中沿用已久的定性分析和直观描述转换为客观、精确的定量评价,因此,其在矫形外科的应用将越来越广。
3.4步态分析系统在临床骨科的应用张潇等人对57例正常人和31例患者进行步态分析后认为,患者步态参数与正常值的偏差程度提示了病情的严重程度,可以作为术前、术后评定骨科患者疾患程度、治疗效果的定量指标。
另外,骨关节手术或关节置换术的效果,也可以通过患者术前、术后步态分析的结果比较得出结论。
孙天胜等人对人工髋关节置换术患者手术前后进行步态分析,结果发现患者术后步长、步速、步频、支撑相时间等参数术后均有明显改善,术后3个月改善达到最高水平。
3.5步态分析系统在手外科的应用手的功能占整个上肢功能的90%,占全身功能的54%。
但是手指运动比较复杂,有些手指运动方式如拇指对掌运动,至今尚无被人们普遍接受的精确测量方式,有关拇指腕掌关节运动学的活体研究的报道也较少。
这对手外科手术的方案制定、术前功能预测、术后功能判断等带来了一定程度的影响。
自上世纪80年以来,随着三维动态系统的面世与发展,对手的三维运动与检测的研究逐渐得到发展,为临床手外科临床诊疗和科研提供了工具。
3.6步态分析系统在康复科的应用步态分析在脑瘫、儿麻后遗症诊断与治疗中已得到广泛关注。
同时,在确定治疗方案(包括康复训练、神经肌肉阻滞、外科手术等)等方面,定量步态分析依然有着不可替代的作用,其主要作用如下:(1)评定肢体残存的功能水平(2)辅助诊疗、协助制定康复治疗方案(3)评价康复治疗效果在患者康复治疗前后进行步态分析,并比较其结果,可以比较定量客观的评价康复治疗效果。
如有学者对脑瘫、偏瘫患者佩戴踝足矫形器前后进行步态分析,结果显示正确使用踝足矫形器可以显著提高步速、矫正肢体畸形、稳定踝关节、防止膝过伸,从而改善步态。
3.7步态分析系统在体育科学中的应用体育竞技活动是对人体运动极限的挑战,由于其激烈程度较大,常常出现运动损伤,这就需要使用三维步态分析系统对其进行分析,从而判断损伤程度,制定康复方案,并提出预防损伤的方法;同样,对运动员的运动方式进行分析,还可以从人体生物力学角度对其进行运动指导,从而提高运动成绩、预防损伤。
4、展望目前制约临床三维步态分析系统推广的主要因素不外乎两点:一是仪器设备相对高昂的价格;二是操作相对复杂,要求操作人员有一定的医学、计算机、医疗器械等方面的综合知识。
然而随着科学技术的不断发展,临床三维步态分析系统的价格将不断降低;同时目前国际上临床三维步态分析系统研发的一个重点就是“简化原则”,简化操作流程、简化结果输出。
因此,我们有理由相信,未来几年中,临床三维步态分析系统将逐渐得到推广应用。
图1a图1b图1c。