三相交流调压电路设计..
三相交流调压电路教学设计2.

授课班级
电力1601
授课顺序
44
学习项目
第七章交流调压
工作任务
任务三三相交流调压电路
素质目标
1、三相三线制交流调压电路
2、晶闸管与负载联结成内三角形的三相交流调压电路
1、具有认识各个元件的图形符号的能力。
2、具有分析电路原理的能力。
1、有良好的心理素质和敬业精神,遵守职业道德。
多媒体
图文式
互动式
31-40分钟
晶闸管与负载联结成内三角形的三相交流调压电路
晶闸管与负载联结成内三角形的三相交流调压电路用三对反并联晶闸管联结成三相三线交流调压电路三相晶闸管接于星形负载中性点的三相交流调压电路
多媒体
图文式
互动式
5-30分钟
三相三线制交流调压电路
(1)每相电路必须通过另一相形成回路。
(2)负载接线灵活,且不用中性线。
(3)晶闸管的触发电路必须是双脉冲,或者是宽度大于60°的单脉冲。
(4)触发脉冲顺序和三相全控桥一样,为T1~T6,依次间隔60°;
(5)电压过零处定为控制角的起点,a角移相范围是0°~150°;
(6)输出谐波含量低,无3次谐波分量。
三相三线制交流调压电路,改变a,电路中晶闸管的导电模式:
(1)当0°≤a<60°时,三个晶闸管导通与两个晶闸管导通交替,每管导通180°-a;但a=0°时一直是三管导通,图3-19(a)所示为a=30°时的负载电压波形。
图3-19 (a) a=30°时负载相电压波形
2、具有团队精神和协调工作能力、管理能力和全局观念。
学生特
征分析
1、学生基本知识概念清楚。
2、学习行为灵活,具有合适的学习方法。
简易实用的三相对称交流调压电路的设计与仿真

当 IB G T在 不 同的触 发频率 下 ,对 负载 两端 的正
弦电压 波 形 的失 真 情 况 进 行 对 比 ,并 进 行 分 析 。在 I T 的触 发频率 为 3 0Hz 的仿 真波 形 图见 图 3 GB 0 下 ~
作 者 简 介 :张 忠 ( 91 )男 , 江 绍兴 人 , 教 , 士 , 要研 究 方 向 : 18 一 , 浙 助 硕 主 电器 可 靠 性 设 计 。
0 引 言
以往 的 三相 交 流 调 压 主要 是 利 用 自耦 变 压 器 进
断 路 ,整 流 二极 管VD1 ~VD6 断 ,三相 负 载 z 的 阻 , x、Y、Z端 断路 ,三 相 电源 电压 不能 施加 到三相 负载 z 上 。由于 开 关 元 件 I T 为 自关 断 型 电力 电子 器 , GB 件 ,可 以通 过脉 冲触 发 电路 使开 关元 件 I T 工作 在 GB
2 3 仿真 波形 图 .
导通 ,三相 对称性 负载 z 的 X、Y、Z端 短接在 一起 , , 三 相 电 源 电 压 施 加 到 三 相 负 载 z, ; 当 开 关 元 件 上 I T 被 阻断 时 ,使 整流 电路 中的共 阳极 与共 阴两端 GB
收稿 日期 :2 0 ~42 ;修 回 日期 :2 0 —82 0 90—4 090 —4
一
行, 设备 庞大笨 重 ;当电压较低 时 ,电压 波形 缺 口大 , 使加 到 三相对称性 负载 上 的电压不再 是 正弦 电压 ,而
使 电压谐 波分量较 大 ;对 电动 机负 载来说 ,会 使 电动 机转 矩脉动 和噪声 增加 , 附加损 耗增加 , 温升 过高 , 对 电动机 的运行 不 利 。本 文 提 出一种 仅采 用 一 只 I T GB
干货分享一种三相可控硅交流调压电路设计

干货分享一种三相可控硅交流调压电路设计
一、硅交流调压电路的基本概念
硅交流调压电路是一种用于调节交流电压的特殊结构的电路。
它由三相半桥结构电路、变压器、可控硅和控制电路组成,可利用控制电路改变可控硅的漏电阻而实现变压器输出电压的控制和调节。
由于硅交流调压电路采用了变压器调压,能够将网络电压提高或降低,从而将网络电压转换为所需的电压。
二、硅交流调压电路原理
硅交流调压电路采用三相半桥结构电路,变压器、可控硅和控制电路组成。
其中可控硅为一种具有静态可控特性的晶体管,能够对电路中的电压提供动态调节,从而使得调压电路具有极高的调节精度。
此外,由于可控硅的动态调节特性,可控硅的漏电阻可以改变,从而调节变压器的输出电压。
控制电路是调节可控硅漏电阻的关键,控制电路可以根据电路中的电压来控制可控硅的漏电阻。
当电路中的电压高于设定的电压时,控制电路会按照设定的调节算法来改变可控硅的漏电阻,从而降低变压器的输出电压。
当电路中的电压低于设定的电压时,控制电路则会增加可控硅的漏电阻,使得变压器的输出电压升高。
三、硅交流调压电路结构。
基于STM32的晶闸管三相调压电路的设计

基于STM32的晶闸管三相调压电路的设计周国顺;张阳;申华;闫慧琦;李宏伟;图雅【摘要】This paper introduces a novel design of three-phase AC-voltage regulation trigger circuitry using silicon controlled rectifier (SCR),and presents its application in an energy-saving design of oil extractor control system.The design employs photoelectric isolation technique and the inter-phase of three-phase power supply itself,only three groups of triggering signals are required to control the six thyristors' conducting angles.The generation of high-precision triggering signals and PID control regulator functions are realized by programming the multiple high-performance timers and the AD interface of a STM32 microprocessor.Experiments and in-field tests have shown the feasibility of the proposed scheme.%SCR三相调压触发电路已有不少设计与应用,文中提出了一种简化的基于STM32的调压触发电路设计方案,并完成了系统的软硬件设计.该设计主要采用了光电隔离并利用三相电源自身的相间换流特性,只用三组触发信号就可以达到控制六只晶闸管导通角的作用.软件部分采用了STM32芯片多个高性能定时器及周边AD接口,完成了高精度触发信号发生、PID控制调压等功能.通过实验表明该系统简便可靠,达到了设计要求.【期刊名称】《电子设计工程》【年(卷),期】2013(021)013【总页数】5页(P173-177)【关键词】SCR;触发电路;三相异步电机,STM32【作者】周国顺;张阳;申华;闫慧琦;李宏伟;图雅【作者单位】大连东软信息学院辽宁大连106023;大连东软信息学院辽宁大连106023;大连东软信息学院辽宁大连106023;大连东软信息学院辽宁大连106023;大连东软信息学院辽宁大连106023;大连东软信息学院辽宁大连106023【正文语种】中文【中图分类】TN344晶闸管三相电源调压的核心是在准确采集电源电压或电流的同步信号基础上,可靠有效地按照三相电源的相间规律计算触发角来触发对应的六只晶闸管。
三相交流调压电路

工 作 波 形 分 析
30o
三相交流调压电路
PWM斩控三相交流调压电路
由三只串联开关VT1、VT2、VT3以及一只续流开关VTN 组成,
串联开关共用一个控制信号ug,它与续流开关的控制信 号ugN在相位上互补。
当VT1、VT2、VT3导通时,VTN关断,负载电压等于电 源电压;当VTN导通时,VT1、VT2、VT3均关断,负载 电流沿VTN续流,负载电压为零。
工 作 波 形 示 意
课堂思考*
设计一恒温箱用三相相控调压加热电源,加热元件 为电阻丝,输出功率恒定3kW,电阻丝阻值为20Ω/ 每相,输入交流线电压为320V~460V,计算电路 相关参数。
电力电子技术
三相交流调压电路
三相交流调压电路常见结构
三相交流调压电路
Y型联接三相交流调压电路结构
三相交流调压电路
控制脉冲要求
对于三相对称负载,负载中点O’在平衡供电时处于零电 位,因此各支路晶闸管的自然换流点处于相电压的过零点,
控制角是从各自的相电压过零点开始算起,触发信号与相
电压同步。 Y连接时三相中至少要有两相导通才能构成电流通路,因
电力电子技术
课堂思考*
恒温箱一般具有较大的热惯性,电流脉动不影响系统性能, 考虑采用单相相控调压纯电阻负载电路型式图5-15(b),仅 需要设计计算晶闸管额定电压、额定电流,三相均衡,每相 功率均为1kW。
电路可行性分析:
最低输入电压时,全导通时输出功率为:
Po
(Uinmin / R
3)2 1706 .7W 1kW
三相交流电路的课程设计

三相交流电路的课程设计一、教学目标本节课的教学目标是让学生掌握三相交流电路的基本概念、原理和分析方法,能够运用所学知识分析和解决实际问题。
具体目标如下:1.知识目标:(1)了解三相交流电路的定义、特点和应用;(2)掌握三相电源、三相负载的连接方式及其特点;(3)熟悉三相电路的功率计算方法。
2.技能目标:(1)能够运用 Phasor 方法分析三相电路;(2)能够运用对称分量法分析三相电路中的不对称故障;(3)能够运用仪器仪表进行三相电路的实验测量和分析。
3.情感态度价值观目标:(1)培养学生对电路学科的兴趣和好奇心;(2)培养学生勇于探索、积极思考的科学精神;(3)培养学生团队协作、沟通交流的能力。
二、教学内容本节课的教学内容主要包括以下几个部分:1.三相交流电路的基本概念:三相电源、三相负载、相电压和线电压等;2.三相电路的连接方式及其特点:星形连接、三角形连接、Y-D 连接等;3.三相电路的功率计算:总有功功率、无功功率、视在功率及其计算方法;4.对称分量法:正序、负序、零序分量的概念及计算方法;5.Phasor 方法:相量图的绘制和分析方法。
三、教学方法为了提高学生的学习兴趣和主动性,本节课将采用以下教学方法:1.讲授法:讲解三相交流电路的基本概念、原理和分析方法;2.案例分析法:分析实际案例,让学生更好地理解三相电路的应用;3.实验法:安排实验环节,让学生亲自动手操作,锻炼实际操作能力;4.讨论法:学生分组讨论,培养学生的团队协作和沟通交流能力。
四、教学资源为了支持教学内容和教学方法的实施,本节课将采用以下教学资源:1.教材:《电路分析基础》、《电气工程基础》等相关教材;2.参考书:提供相关的论文、书籍、网址等参考资料;3.多媒体资料:制作课件、动画、视频等,形象生动地展示三相电路的原理和应用;4.实验设备:提供三相电源、负载、测量仪器等实验设备,让学生进行实际操作和测量。
五、教学评估本节课的教学评估将采用多元化的方式,以全面、客观、公正地评估学生的学习成果。
《三相交流电路》课件

02
三相交流电路的基本元件
BIG DATA EMPOWERS TO CREATE A NEW
ERA
变压器
01
02
03
04
变压器是三相交流电路中的重 要元件,用于改变电压的大小
和方向。
变压器由铁芯和绕组组成,绕 组分为初级和次级绕组。
变压器的工作原理基于电磁感 应定律,通过磁场耦合实现电
压和电流的变化。
BIG DATA EMPOWERS TO CREATE A NEW
ERA
相电压与线电压的关系
01
02
03
相电压
在三相交流电路中,每一 相的电压称为相电压。
线电压
三相交流电路中,任意பைடு நூலகம் 相之间的电压称为线电压 。
关系
线电压是相电压的√3倍, 且线电压超前相应相电压 30°。
相电流与线电流的关系
相电流
ERA
三相交流电路的定义
总结词
三相交流电路是由三个相位差为120度的单相交流电源组成的电力网络。
详细描述
三相交流电路由三个单相交流电源组成,这三个电源在相位上互差120度。这种 组合使得三相交流电在输送和使用过程中能够实现更高效的电能传输和分配。
三相交流电的产生
总结词
三相交流电通常由发电机产生,通过 电磁感应原理,将机械能转换为电能 。
照明系统
家庭照明系统中的荧光灯、LED灯等 ,需要三相交流电来驱动。通过合理 的配线设计,可以实现照明系统的安 全、节能和舒适。
电力系统
并网发电
大型风力发电和太阳能发电系统产生的电能,需要通过逆变器转换成三相交流电后并入电 网。这样可以实现不同类型电源之间的互补,提高电力系统的稳定性。
双闭环三相异步电动机调压调速的系统设计与仿真课程设计模板

第1章绪论1.1 双闭环三相异步电动机调压调速系统旳原理和构成调压调速即通过调整通入异步电动机旳三相交流电压大小来调整转子转速旳措施。
理论根据来自异步电动机旳机械特性方程式:其中,p为电机旳极对数;w1为定子电源角速度;U1为定子电源相电压;R2’为折算到定子侧旳每相转子电阻;R1为每相定子电阻;L11为每相定子漏感;L12为折算到定子侧旳每相转子漏感;S为转差率。
图1-1 异步电动机在不一样电压旳机械特性由电机原理可知,当转差率s基本保持不变时,电动机旳电磁转矩与定子电压旳平方成正比。
因此,变化定子电压就可以得到不一样旳人为机械特性,从而到达调整电动机转速旳目旳1.2 双闭环三相异步电动机调压调速系统旳工作原理系统主电路采用3个双向晶闸管,具有体积小。
控制极接线简朴等长处。
A.B.C为交流输入端,A 3.B3.C3为输出端,接向异步电动机定子绕组。
为了保护晶闸管,在晶闸管两端接有阻容器吸取装置和压敏电阻。
控制电路速度给定指令电位器BP1所给出旳电压,经运算放大器N构成旳速度调整器送入移相触发电路。
同步,N还可以得到来自测速发电机旳速度负反馈信号或来自电动机端电压旳电压反馈信号,以构成闭环系统,提高调速系统旳性能。
移相触发电路双向晶闸管有4种触发方式。
本系统采用负脉冲触发,即不管电源电压在正半周期还是负半周期,触发电路都输出负得触发脉冲。
负脉冲触发所需要旳门极电压和电流较小,故轻易保证足够大旳触发功率,且触发电路简朴。
TS是同步变压器,为保证触发电路在电源正负半波时都能可靠触发,又有足够旳移相范围,TS采用DY11型接法。
移相触发电路采用锯齿波同步方式,可产生双脉冲并有强触发脉冲电源(+40V)经X31送到脉冲变压器旳一次侧第2章双闭环三相异步电动机调压调速系统旳设计方案2.1 主电路设计调压电路变化加在定子上旳电压是通过交流调压器实现旳。
目前广泛采用旳交流调压器由晶闸管等器件构成。
它是将三个双向晶闸管分别接到三相交流电源与三相定子绕组之间通过调整晶闸管导通角旳大小来调整加到定子绕组两端旳端电压。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计报告书所属课程名称电气工程设计软件计算机操作题目三相交流调压电路设计分院专业班级学号学生姓名指导教师2013年6月28日目录第一章课程设计内容及要求 (3)第二章单相交流调压电路的分析 (3)第三章三相交流调压电路设计 (7)3.1三相交流调压电路的比较 (7)3.2三相三线交流调压电路的原理分析 (8)3.3 仿真电路设计 (11)第四章电路仿真效果图 (14)第五章课程设计心得体会 (20)参考文献(资料) (22)第一章课程设计内容及要求根据单相交流调压电路的原理,设计一个三相交流调压电路。
通过MATLAB/SIMULINK仿真分别得到控制角α=0°、α=30°和α=90°时的输出电压和电流波形,以及各相触发脉冲波形。
负载考虑纯电阻情况,触发脉冲可通过脉冲宽度调制技术得到。
仿真电路设计步骤如下:A.根据设计要求设计方案,对要求进行分析。
提出初步的设计方案。
B.然后对方案进行比较,选定合适设计方案。
C. 完成单元电路的设计和主要元器件的参数选择,完成主电路的原理分析。
D.把各个元器件和单元电路连接成我们所需要的仿真电路图,对搭建的仿真的进行检验。
E.如果仿真电路图无误,对所需的结果进行仿真。
最后,把仿真出来的效果图,写到课程设计报告里。
第二章单相交流调压电路的分析所谓单相交流调压就是将两个晶闸管反并联后串联在交流电路中,在每半个周波内通过控制晶闸管开通相位,可以方便的调节输出交流电压的有效值。
其输出波形是对称的,设正、负半波的控制角均为α。
当负载电阻为R,输入的电源电压有效值为U1,则此电路的基本电气参数如下:1.负载电阻R上的交流电压有效值:2.负载电阻R上的电流有效值:3.功率因数λ:4.晶闸管的电流平均值:5..晶闸管电流有效值I及其通态平均电流:6.图(1)为单相交流调压器在电阻负载时的参数与控制角α的关系,其中U R/U1、I R/I0及功率因数λ三者与α的关系可用同一条曲线表示。
图(1)单相交流调压器在电阻负载时的参数与控制角α的关系下面是单相交流调压电路图及其波形如图(2)、图(3):图(2)单相交流调压电路图(3)单相交流调压电路波形第三章三相交流调压电路设计3.1三相交流调压电路的比较根据单相交流调压电路的原理,对三相交流调压电路进行设计。
常用的三相交流调压线路有电源星型和三角型联结、负载三角型和星型联结。
其中星型联结有分为三相三线负载星型线和三相负载三角型联结如图(4)、图(5)。
下面对这个两种链接进行比较,三相三线负载星型线时,输出谐波分量低,没有三次谐波电流,对邻近通信电路干扰小,因而应用比较广。
因为没有零线,必须保证两个晶闸管同时导通,负载中才有电流通过,因而必须是双脉冲或宽脉冲(脉宽大于60度)触发。
要求移相范围为150度。
晶闸管承受峰值电压2U1.适用于输出接变压器初级、变压器次级为低电压大电流的负载。
三相负载三角型联结:它是一个于三个单相调压器组合而成。
每相电流波形与单相交流调压器相同,其线电流三次谐波分量为零。
触发移相范围为180度。
晶闸管承受峰值电压2U1.负载必须为三个可拆开的单相负载,所以用的比较少。
因此,我选择三相三线负载星型联结的交流调压电路(4)。
图(4)三相三线负载星型联结交流调压电路图(5)三相负载三角型联结交流调压电路3.2三相三线交流调压电路的原理分析三相交流调压的电路有各种各样的形式,图(4)用的是性能最好、运用最多的三相三线Y形连接的调压电路。
下面以图(4)电阻负载为例说明其工作原理。
图(4)中由于没有中线,若要负载上流过电流,至少要有两相构成通路,即在三相电路中,至少要有一相正向晶闸管与另一相的反向晶闸管同时导通。
为了保证在电路工作时能使两个晶闸管同时导通,要求采用大于60度的宽脉冲或双窄脉冲的触发电路;为保证输出电压三相对称并有一定的调节范围,要求晶闸管的触发信号。
除了必须与相应的交流电源有一致的相序外,各触发信号之间还必须严格地保持一定的相位关系。
对图(4)的调压电路,要求A、B、C三相电路中正向晶闸管VT1、VT3、VT5 的触发信号相位互差1200,反向晶闸管VT2、VT4、VT6的触发信号相位也互差1200,而同一相中反并联的两个正、反向晶闸管的触发脉冲相位应互差1800,即各晶闸管触发脉冲的序列应按VT1、VT2、VT3、VT4、VT5、VT6的次序,相邻两个晶闸管的触发信号相位差为600。
为使负载上能得到全电压,晶闸管应能全导通,因此应选用电源相应波形起始点作为控制角为α=00的时刻,该点作为触发角α的基准点。
当α为其它角度时,会出现有时三相均有晶闸管导通,有时只两相晶闸管导通。
对于三相导通的情况,导通相负载上电压为各相电压。
对于两相导通的情况,导通的两相每相负载上的电压为其线电压的一半,不导通相的负载电压为零。
对电路工作情况分析如:当00≤α≤600时,三相导通和两相导通情况交替出现。
三相导通时,每相电阻电压为相电压;两相导通时,导通相电阻电压为导通两相线电压的一半,不导通相电阻电压为零。
当600≤α≤900时,由于任何瞬时都是两相导通,所以导通相电阻电压为导通两相线电压的一半;同上一样,不导通相电阻电压为零。
当900≤α≤1500时,会有一区段内三个元件均不导通,这就是三相不导通的情况。
α在这一段区间内,会出现两相导通或者三相都不通的情况。
两相导通时负载输出电压如前所述。
三相都不通时,则三相负载电压都为零。
当α≥1500时,触发脉冲不起作用,晶闸管不导通。
所以三相交流调压电路电阻负载时触发角最大移相角范围为1500。
由以上分析可得出结论:交流调压所得的负载电压和电流波形都不是正弦波,且随着α角增大,负载电压相应变小,负载电流开始出现断续。
当负载为电感性时,交流调压输出的波形就不仅与α有关,也与负载的阻抗角β有关,这时负载电流和电压波形也不再同相了,其移相角范围为1500。
由于三相交流调压带阻感性负载的工作情况比较复杂,很难理论上给出定量的分析,所以在本文后面将结合其仿真波形进行分析。
交流调压电路谐波和功率因数分析:交流调压电路采用的是相位控制方式,使电路中出现缺角正弦波形!因此它不可避免地包含高次谐波电流并导致电源波形畸变。
在电力电子技术中有功功率、无功功率、功率因数的计算和正弦电路中相同。
即有功功率为瞬时功率在一个周期内的平均值;视在功率指的是电气设备电压有效值和电流有效值的乘积;那么功率因数则为两者之比值。
在交流调压电路中,输入电压为正弦电压,而电流为非正弦波,可以分解成一系列傅立叶级数形式。
电阻负载时三相调压电路输入电流基波和各次谐波的含量与控制角α关系如下:(1)电阻性负载或纯电感性负载时,谐波电流仅含n=6k+1次谐波成分,谐波的含量随谐波次数的增高而降低。
(2)随控制角的增大,由于电流有效值的减小,基波和谐波都减小。
但基波减小得快,因而有出现谐波成分多于基波成分。
(3)阻感性负载时,各次谐波的谐波电流含量均比电阻负载时要小,基波因数要高。
3.3 仿真电路设计根据设计要求,选择元器件:电路中所用到的器件,主要是220V三相交流电源U A、U B、U C。
6个反并联的晶闸管,即VT1.VT2,VT3,VT4,VT5,VT6还有3个阻感负载。
晶闸管的选择,可控硅在门极无信号,控制电流I g为0时,在阳(A)一一阴(K)极之间加(J2)处于反向偏置,所以,器件呈高阻抗状态,称为正向阻断状态,若增大U AK而达到一定值U BO,可控硅由阻断突然转为导通,这个U BO值称为正向转折电压,这种导通是非正常导通,会减短器件的寿命。
所以必须选择足够正向重复阻断峰值电压(VDRM)。
在阳一一阴极之间加上反向电压时,器件的第一和第三PN结(J1和J3)处于反向偏置,呈阻断状态。
当加大反向电压达到一定值VRB时可控硅的反向从阻断突然转变为导通状态,此时是反向击穿,器件会被损坏。
而且U BO和U RB值随电压的重复施加而变小。
在感性负载的情况下,如磁选设备的整流装置。
在关断的时候会产生很高的电压,如果电路上未有良好的吸收回路,此电压将会损坏可控硅器件。
因此,器件也必须有足够的反向耐压VRRM。
可控硅在变流器(如电机车)中工作时,必须能够以电源频率重复地经受一定的过电压而不影响其工作,所以正反向峰值电压参数VDRM、VRRM应保证在正常使用电压峰值的2-3倍以上,考虑到一些可能会出现的浪涌电压因素,在选择代用参数的时候,只能向高一档的参数选取。
主电路设计:主电路图如:图(6)所示,图(6)仿真主电路图触发电路设计:三相交流调压电路的要求,设计符合要求的触发器,可产生六脉冲触发器,六个脉冲分别控制VT1,VT2,VT3,VT4,VT5,VT6的导通,各个脉冲相位相差60度,且脉冲宽度大于60度,为了主电路的设计的方便和电路结构的清晰,将触发电路集成一个模块。
产生触发电路图如:图(7)所示:图(7)仿真触发电路图第四章电路仿真效果图各元器件参数设置:(1)三相电源对称正弦交流电,峰值电压为380V,频率为50Hz,U A、U B、U C初始相位分别为0°,-120°,-240°。
(2)晶闸管,电压测量,与实时数字显示等均采用默认设置。
(3)常量输入模块:常量值,输入设置为0,输入端Block 是触发器模型的使能端Alpha为相移控制角给定信号,单位为(°),这个值根据仿真需要进行设置。
(4)三项测量模块V-I Measurement:电压测量设置为phase-to-phase,即线电压。
电流测量设置为yes。
(5)三相负载模块。
R=4Ω,L=0.001H.(6)同步6脉冲发生器:频率设置为50Hz,脉冲宽度设置为70,增益Gain为6。
从而是产生的脉冲宽度大于60度,满足电路的正常工作。
(7)仿真参数设置:仿真开始时间为0s,停止时间为0.1s。
只有当此端置“0”时,才能输出脉冲。
当改变控制角度时,三相电源电压波形图都一样,即三相电源电压波形如:图(8)图(8)三相电源电压波形当α=0°时,三相电源侧电流波形图如:图(9)图(9)α=0°三相电源侧电流波形当α=30°时,三相电源侧电流波形图如:图(10)图(10)α=30°三相电源侧电流波形当α=90°时,三相电源侧电流波形图为图(11)图(11)α=90°三相电源侧电流波形触发脉冲波形图如:图(12)图(12)触发脉冲波形当α=0°时,单相负载电压和电流波形图如:图(13)图(13)α=0°单相负载电压和电流波形当α=30°时,单相负载电压和电流波形图如:图(14)图(14)α=30°单相负载电压和电流波形当α=90°时,单相负载电压和电流波形图如:图(15)图(15)α=90°单相负载电压和电流波形第五章课程设计心得体会首先感谢王楚老师的两个星期来的细心指导,刚开始我对这个仿真软件不怎么懂,在老师老师耐心烦地讲解下,我开始慢慢地设计主电路仿真电路图,最终圆满完成这次课程设计。