三相交流调压电路设计
三相交流调压电路教学设计2.

授课班级
电力1601
授课顺序
44
学习项目
第七章交流调压
工作任务
任务三三相交流调压电路
素质目标
1、三相三线制交流调压电路
2、晶闸管与负载联结成内三角形的三相交流调压电路
1、具有认识各个元件的图形符号的能力。
2、具有分析电路原理的能力。
1、有良好的心理素质和敬业精神,遵守职业道德。
多媒体
图文式
互动式
31-40分钟
晶闸管与负载联结成内三角形的三相交流调压电路
晶闸管与负载联结成内三角形的三相交流调压电路用三对反并联晶闸管联结成三相三线交流调压电路三相晶闸管接于星形负载中性点的三相交流调压电路
多媒体
图文式
互动式
5-30分钟
三相三线制交流调压电路
(1)每相电路必须通过另一相形成回路。
(2)负载接线灵活,且不用中性线。
(3)晶闸管的触发电路必须是双脉冲,或者是宽度大于60°的单脉冲。
(4)触发脉冲顺序和三相全控桥一样,为T1~T6,依次间隔60°;
(5)电压过零处定为控制角的起点,a角移相范围是0°~150°;
(6)输出谐波含量低,无3次谐波分量。
三相三线制交流调压电路,改变a,电路中晶闸管的导电模式:
(1)当0°≤a<60°时,三个晶闸管导通与两个晶闸管导通交替,每管导通180°-a;但a=0°时一直是三管导通,图3-19(a)所示为a=30°时的负载电压波形。
图3-19 (a) a=30°时负载相电压波形
2、具有团队精神和协调工作能力、管理能力和全局观念。
学生特
征分析
1、学生基本知识概念清楚。
2、学习行为灵活,具有合适的学习方法。
简易实用的三相对称交流调压电路的设计与仿真

当 IB G T在 不 同的触 发频率 下 ,对 负载 两端 的正
弦电压 波 形 的失 真 情 况 进 行 对 比 ,并 进 行 分 析 。在 I T 的触 发频率 为 3 0Hz 的仿 真波 形 图见 图 3 GB 0 下 ~
作 者 简 介 :张 忠 ( 91 )男 , 江 绍兴 人 , 教 , 士 , 要研 究 方 向 : 18 一 , 浙 助 硕 主 电器 可 靠 性 设 计 。
0 引 言
以往 的 三相 交 流 调 压 主要 是 利 用 自耦 变 压 器 进
断 路 ,整 流 二极 管VD1 ~VD6 断 ,三相 负 载 z 的 阻 , x、Y、Z端 断路 ,三 相 电源 电压 不能 施加 到三相 负载 z 上 。由于 开 关 元 件 I T 为 自关 断 型 电力 电子 器 , GB 件 ,可 以通 过脉 冲触 发 电路 使开 关元 件 I T 工作 在 GB
2 3 仿真 波形 图 .
导通 ,三相 对称性 负载 z 的 X、Y、Z端 短接在 一起 , , 三 相 电 源 电 压 施 加 到 三 相 负 载 z, ; 当 开 关 元 件 上 I T 被 阻断 时 ,使 整流 电路 中的共 阳极 与共 阴两端 GB
收稿 日期 :2 0 ~42 ;修 回 日期 :2 0 —82 0 90—4 090 —4
一
行, 设备 庞大笨 重 ;当电压较低 时 ,电压 波形 缺 口大 , 使加 到 三相对称性 负载 上 的电压不再 是 正弦 电压 ,而
使 电压谐 波分量较 大 ;对 电动 机负 载来说 ,会 使 电动 机转 矩脉动 和噪声 增加 , 附加损 耗增加 , 温升 过高 , 对 电动机 的运行 不 利 。本 文 提 出一种 仅采 用 一 只 I T GB
基于STM32的晶闸管三相调压电路的设计

基于STM32的晶闸管三相调压电路的设计周国顺;张阳;申华;闫慧琦;李宏伟;图雅【摘要】This paper introduces a novel design of three-phase AC-voltage regulation trigger circuitry using silicon controlled rectifier (SCR),and presents its application in an energy-saving design of oil extractor control system.The design employs photoelectric isolation technique and the inter-phase of three-phase power supply itself,only three groups of triggering signals are required to control the six thyristors' conducting angles.The generation of high-precision triggering signals and PID control regulator functions are realized by programming the multiple high-performance timers and the AD interface of a STM32 microprocessor.Experiments and in-field tests have shown the feasibility of the proposed scheme.%SCR三相调压触发电路已有不少设计与应用,文中提出了一种简化的基于STM32的调压触发电路设计方案,并完成了系统的软硬件设计.该设计主要采用了光电隔离并利用三相电源自身的相间换流特性,只用三组触发信号就可以达到控制六只晶闸管导通角的作用.软件部分采用了STM32芯片多个高性能定时器及周边AD接口,完成了高精度触发信号发生、PID控制调压等功能.通过实验表明该系统简便可靠,达到了设计要求.【期刊名称】《电子设计工程》【年(卷),期】2013(021)013【总页数】5页(P173-177)【关键词】SCR;触发电路;三相异步电机,STM32【作者】周国顺;张阳;申华;闫慧琦;李宏伟;图雅【作者单位】大连东软信息学院辽宁大连106023;大连东软信息学院辽宁大连106023;大连东软信息学院辽宁大连106023;大连东软信息学院辽宁大连106023;大连东软信息学院辽宁大连106023;大连东软信息学院辽宁大连106023【正文语种】中文【中图分类】TN344晶闸管三相电源调压的核心是在准确采集电源电压或电流的同步信号基础上,可靠有效地按照三相电源的相间规律计算触发角来触发对应的六只晶闸管。
基于matlab的三相交流调压电路仿真与研究

基于matlab的三相交流调压电路仿真与研究一、引言随着电力电子技术和控制理论的不断发展,交流调压技术在许多领域得到了广泛应用。
三相交流调压电路由于其能够实现对三相交流电的独立调节,因此在电机控制、电力质量改善以及无功补偿等方面具有重要作用。
本文旨在通过Matlab仿真研究三相交流调压电路的工作原理和性能。
二、三相交流调压电路工作原理三相交流调压电路通常采用相位控制方式,通过调节开关的导通和关断时间来改变输出电压的大小。
在三相系统中,每一相都有一个独立的调压电路,通过对每一相的独立调节,可以实现三相输出电压的平衡控制。
三、Matlab仿真环境设置Matlab是一款强大的数学计算软件,可用于电力电子系统仿真。
在Matlab中,我们首先需要设置仿真参数,包括仿真时间、采样时间、仿真算法等。
然后,我们需要构建三相交流调压电路的数学模型,并转化为Simulink模型。
四、电路模型的建立与参数设置在Simulink中,我们需要根据三相交流调压电路的工作原理,建立相应的电路模型。
这个模型应该包括电源、开关、二极管、电感和电容等元件。
然后,我们需要为这些元件设置合适的参数,以模拟实际的电路行为。
五、仿真结果分析通过运行仿真,我们可以得到输出电压的波形。
通过对这些波形的分析,我们可以了解调压电路的性能。
例如,我们可以观察输出电压的幅值、相位和频率等参数的变化情况。
六、实验验证与结果对比为了验证仿真结果的准确性,我们需要进行实验验证。
在实验中,我们需要搭建实际的三相交流调压电路,并使用示波器等设备记录输出电压的波形。
然后,我们将实验结果与仿真结果进行对比,以评估仿真的准确性。
七、结论通过以上分析和对比,我们可以得出结论:基于Matlab的三相交流调压电路仿真能够准确反映实际电路的工作情况。
这为进一步研究三相交流调压电路的性能提供了有力支持。
同时,通过仿真和实验的结合,我们可以更好地理解电路的工作原理,优化电路设计,提高系统的稳定性和可靠性。
三相交流调压电路

工 作 波 形 分 析
30o
三相交流调压电路
PWM斩控三相交流调压电路
由三只串联开关VT1、VT2、VT3以及一只续流开关VTN 组成,
串联开关共用一个控制信号ug,它与续流开关的控制信 号ugN在相位上互补。
当VT1、VT2、VT3导通时,VTN关断,负载电压等于电 源电压;当VTN导通时,VT1、VT2、VT3均关断,负载 电流沿VTN续流,负载电压为零。
工 作 波 形 示 意
课堂思考*
设计一恒温箱用三相相控调压加热电源,加热元件 为电阻丝,输出功率恒定3kW,电阻丝阻值为20Ω/ 每相,输入交流线电压为320V~460V,计算电路 相关参数。
电力电子技术
三相交流调压电路
三相交流调压电路常见结构
三相交流调压电路
Y型联接三相交流调压电路结构
三相交流调压电路
控制脉冲要求
对于三相对称负载,负载中点O’在平衡供电时处于零电 位,因此各支路晶闸管的自然换流点处于相电压的过零点,
控制角是从各自的相电压过零点开始算起,触发信号与相
电压同步。 Y连接时三相中至少要有两相导通才能构成电流通路,因
电力电子技术
课堂思考*
恒温箱一般具有较大的热惯性,电流脉动不影响系统性能, 考虑采用单相相控调压纯电阻负载电路型式图5-15(b),仅 需要设计计算晶闸管额定电压、额定电流,三相均衡,每相 功率均为1kW。
电路可行性分析:
最低输入电压时,全导通时输出功率为:
Po
(Uinmin / R
3)2 1706 .7W 1kW
三相交流电路的课程设计

三相交流电路的课程设计一、教学目标本节课的教学目标是让学生掌握三相交流电路的基本概念、原理和分析方法,能够运用所学知识分析和解决实际问题。
具体目标如下:1.知识目标:(1)了解三相交流电路的定义、特点和应用;(2)掌握三相电源、三相负载的连接方式及其特点;(3)熟悉三相电路的功率计算方法。
2.技能目标:(1)能够运用 Phasor 方法分析三相电路;(2)能够运用对称分量法分析三相电路中的不对称故障;(3)能够运用仪器仪表进行三相电路的实验测量和分析。
3.情感态度价值观目标:(1)培养学生对电路学科的兴趣和好奇心;(2)培养学生勇于探索、积极思考的科学精神;(3)培养学生团队协作、沟通交流的能力。
二、教学内容本节课的教学内容主要包括以下几个部分:1.三相交流电路的基本概念:三相电源、三相负载、相电压和线电压等;2.三相电路的连接方式及其特点:星形连接、三角形连接、Y-D 连接等;3.三相电路的功率计算:总有功功率、无功功率、视在功率及其计算方法;4.对称分量法:正序、负序、零序分量的概念及计算方法;5.Phasor 方法:相量图的绘制和分析方法。
三、教学方法为了提高学生的学习兴趣和主动性,本节课将采用以下教学方法:1.讲授法:讲解三相交流电路的基本概念、原理和分析方法;2.案例分析法:分析实际案例,让学生更好地理解三相电路的应用;3.实验法:安排实验环节,让学生亲自动手操作,锻炼实际操作能力;4.讨论法:学生分组讨论,培养学生的团队协作和沟通交流能力。
四、教学资源为了支持教学内容和教学方法的实施,本节课将采用以下教学资源:1.教材:《电路分析基础》、《电气工程基础》等相关教材;2.参考书:提供相关的论文、书籍、网址等参考资料;3.多媒体资料:制作课件、动画、视频等,形象生动地展示三相电路的原理和应用;4.实验设备:提供三相电源、负载、测量仪器等实验设备,让学生进行实际操作和测量。
五、教学评估本节课的教学评估将采用多元化的方式,以全面、客观、公正地评估学生的学习成果。
三相交流调压调速系统设计与仿真

三相交流调压调速系统设计与仿真三相交流调压调速系统是一种常见的电力系统控制技术,广泛应用于电机驱动、风力发电、太阳能发电等领域。
调压调速系统的设计和仿真是一个重要的环节,可以通过仿真分析系统的性能、稳定性和可靠性等,从而指导实际系统的设计和运行。
首先,三相交流调压调速系统主要由三相桥式整流电路、直流侧LC 滤波器、逆变器、电机负载以及控制系统组成。
为了设计一个稳定可靠的系统,首先需要确定系统的输入电压和输出电压、电流的需求。
根据需求确定整流电路和逆变器的参数。
其次,根据确定的参数,进行系统的电路设计,包括整流电路、滤波器和逆变器。
整流电路采用桥式整流电路,可以将交流电转换为直流电;滤波器用于滤除整流电路输出的直流电中的高频脉动;逆变器将直流电转换为交流电,并输出给电机负载。
然后,设计系统的控制策略。
调压调速系统的控制策略通常包括电压闭环控制和速度闭环控制。
电压闭环控制用于控制逆变器输出的交流电电压,保持其稳定在设定值附近;速度闭环控制用于控制电机负载的转速,保持其稳定在设定值附近。
最后,进行系统的仿真。
利用电力仿真软件,可以对系统进行仿真分析,评估其性能、稳定性和可靠性。
通过仿真可以观察系统的响应过程、稳态性能以及系统动态参数等,并进行相应的调整和优化。
在仿真过程中,可以分别对电压闭环控制和速度闭环控制进行仿真。
首先,电压闭环控制仿真分析逆变器输出的交流电电压是否在设定值附近稳定;其次,速度闭环控制仿真分析电机负载的转速是否在设定值附近稳定。
通过分析仿真结果,可以发现系统的问题并进行相应的改进。
综上所述,三相交流调压调速系统的设计与仿真是一个重要的环节,可以帮助工程师评估系统性能并进行优化。
通过合理的参数选择、电路设计和控制策略,可以设计出稳定可靠的调压调速系统,满足实际应用需求。
三相交交变频电路设计与仿真

三相交交变频电路设计与仿真三相交交变频电路是一种将三相交流电转换为可变频率的交流电的电路。
在电力系统中,电能的供给和需求常常是不匹配的,因此需要通过变频电路来实现电能的调节和控制。
本文将详细介绍三相交交变频电路的设计原理、电路结构和仿真分析。
首先,三相交交变频电路的设计原理是利用可控电子元件对三相交流电进行调节和控制,从而改变其频率和电压。
常见的可控电子元件有晶闸管、可控硅和IGBT等。
这些元件能够根据外部信号实现开关控制,从而实现对电流和电压的调节。
三相交交变频电路的电路结构主要包括整流桥、滤波电路、逆变桥和控制电路。
首先,整流桥将三相交流电转换为直流电,并经过滤波电路进行滤波处理,以去除电流中的高频脉冲成分。
接下来,逆变桥将滤波后的直流电转换为可变频率的交流电。
控制电路主要用于实现对逆变桥的开关控制。
常见的控制方法有脉宽调制(PWM)控制和电压调制控制。
脉宽调制控制通过改变逆变桥的开关时间来控制输出电压的大小。
而电压调制控制则通过改变逆变桥的开关角来控制输出电压的幅值。
为了验证三相交交变频电路的性能和稳定性,需要进行仿真分析。
在仿真过程中,可以使用软件如PSIM、Matlab/Simulink等来实现电路的建模和仿真。
首先,通过建立电路的数学模型,确定各个元件的参数和开关控制策略。
然后,仿真软件将根据模型和控制策略进行仿真计算,得到电路的输出电压、电流波形等参数。
通过分析这些仿真结果,可以评估电路的性能和优化设计。
总结起来,三相交交变频电路是一种将三相交流电转换为可变频率的交流电的电路。
它通过控制和调节电流和电压,实现对电能的调节和控制。
设计和仿真分析是验证电路性能和稳定性的重要步骤。
只有深入了解电路的原理和结构,并进行充分的仿真分析,才能设计出高性能的三相交交变频电路。