斩控式交流调压课程设计概要
斩控式交流调压电路实验报告

斩控式交流调压电路实验报告交流调压的控制方式有三种:①整周波通断控制。
整周波控制调压——适用于负载热时间常数较大的电热控制系统。
晶闸管导通时间与关断时间之比,使交流开关在某几个周波连续导通,某几个周波连续关断,如此反复循环地运行,其输出电压的波形如图1-1所示。
改变导通的周波数和控制周期的周波数之比即可改变输出电压。
为了提高输出电压的分辨率,必须增加控制周期的周波数。
为了减少对周围通信设备的干扰,晶闸管在电源电压过零时开始导通。
但它也存在一些缺点那就是:在负载容量很大时,开关的通断将引起对电网的冲击,产生由控制周期决定的奇数次谐波,这些谐波引起电网电压变化,造成对电网的污染。
图1-1周期控制的电压波形②相位控制。
相位控制调压——利用控制触发滞后角α的方法,控制输出电压。
晶闸管承受正向电压开始到触发点之间的电角度称为触发滞后角α。
在有效移相范围内改变触发滞后角,即能改变输出电压。
有效移相范围随负载功率因数不同而不同,电阻性负载最大,纯感性负载最小。
图1-2是阻性负载时相控方式的交流调压电路的输出电压波形。
相控交流调压电路输出电压包含较多的谐波分量,当负载是电动机时,会使电动机产脉动转矩和附加谐波损耗。
另外它还会引起电源电压畸变。
为减少对电源和负载的谐波影响,可在电源侧和负载侧分别加滤波网络。
③斩波控制。
斩波控制调压——使开关在一个电源周期中多次通断,将输入电压切成几个小段,用改变段的宽度或开关通断的周期来调节输出电压。
斩控调压电路输出电压的质量较高,对电源的影响也较小。
图1-2为斩波控制的交流调压电路的输出电压波形。
图1-2相位控制的电压输出波形在斩波控制的交流调压电路中,为了在感性负载下提供续流通路,除了串联的双向开关S1外,还须与负载并联一只双向开关S2。
当开关S1导通,S2关断时,输出电压等于输入电压;开关S1关断,S2导通时,输出电压为零。
控制开关导通时间与关断时间之比即能控制交流调压器的输出电压。
SG3525斩控式单相交流调压电路设计要点

目录第1章概述-------------------------------------------------------------------------------------------- 21.1 课题设计目的及意义 -------------------------------------------------------------------- 21.2 优势-------------------------------------------------------------------------------------------- 3 第2章设计总体思路 ------------------------------------------------------------------------------- 42.1 系统总体方案确定------------------------------------------------------------------------- 42.2 交流斩波调压的基本原理---------------------------------------------------------------- 8 第3章主电路设计与分析------------------------------------------------------------------------- 93.1主要技术条件及要求----------------------------------------------------------------------- 93.2 开关器件的选择 ---------------------------------------------------------------------------- 93.2.1开关管IGBT的选择--------------------------------------------------------------- 93.2.2续流二极管的选择 ---------------------------------------------------------------- 93.2.3具体参数计算--------------------------------------------------------------------- 103.3 主电路结构设计 ---------------------------------------------------------------------------113.5 主电路保护设计 -------------------------------------------------------------------------- 12 第4章控制及驱动电路设计-------------------------------------------------------------------- 144.1主控制芯片的详细说明 ----------------------------------------------------------------- 144.1.1芯片的选择------------------------------------------------------------------------ 144.1.2芯片的详细介绍 ----------------------------------------------------------------- 144.1.3 芯片的工作原理----------------------------------------------------------------- 164.2 驱动电路设计 ----------------------------------------------------------------------------- 17 第5章保护电路及设计---------------------------------------------------------------------------- 195.1 过零检测及续流触发电路-------------------------------------------------------------- 195.2 输出限流电路---------------------------------------------------------------------------- 205.3输入过压电路 ------------------------------------------------------------------------------ 205.4 结果分析 ----------------------------------------------------------------------------------- 21 第6章总结与体会---------------------------------------------------------------------------------- 24 附录----------------------------------------------------------------------------------------------------- 25 参考文献------------------------------------------------------------------------------------------------ 26第1章概述1.1 课题设计目的及意义单相交流电源的应用是非常广泛的。
【精品】单相斩控式交流调压电路设计设计课程设计

【精品】单相斩控式交流调压电路设计设计课程设计一、实验目的1、熟悉单相斩波电路的构成和基本工作原理。
2、深刻理解交流半波斩波的不足之处,为此掌握单相斩波控制器的工作原理。
3、通过实验,掌握斩波控制电路的设计方法。
二、实验器材设备1、单相电源。
2、变压器:输入电压220V,输出电压0-48V,输出电流1A。
3、单相斩波控制器电路实验板。
4、万用表。
5、示波器。
三、实验内容1、搭建单相斩波控制器电路实验板电路。
2、通过调节斩波控制器电路实验板中的电位器和可调电阻,实现调节输出电压的目的。
3、测量并记录在不同输出电压下控制器的调节时间,分析控制器电路的工作原理和性能。
4、测量单相斩波控制器实验板电路中的主要电参数,包括输入电压、输出电压和输出电流等。
四、实验原理1、单相斩波电路原理单相斩波电路是一种简单的电源控制电路,通常用于直流电源的切割和变频器的输出。
在单相斩波电路中,电源通过晶体管或三极管等器件进行控制,可通过控制器调整输出电压的大小。
在斩波电路中,斩波开关的导通和截止时间是关键,决定着电路的传输与转换功能。
斩波控制可通过电位器和可调电阻来实现。
斩波电路的原理如图1所示。
由图1可知,当电源接入电路时,输入电压经过变压器的降压作用,接入斩波开关Q1的水平校准电路中。
斩波开关Q1被控制,从而使输出电压发生变化。
当斩波开关Q1导通时,电源通过变压器向输出电容充电。
当斩波开关Q1截止时,输出电容电压呈现指数下降趋势,并释放储藏的能量。
最终,输出电压达到预设值。
2、单相斩波控制器原理单相斩波控制器常用于直流电源的控制,以调节输出电压。
斩波控制器内置反馈控制系统,通过调整开关导通和截止时间来实现输出电压的精确调整。
控制器工作原理如图2所示。
如图2所示,单相斩波控制器由斩波开关、强制电路、反馈电路和输出电路等部分组成。
当输入电源接通时,斩波开关打开,输出电路上升到输入电压。
输出电压与比较器输出电压比较,反馈电路会根据比较结果确定斩波开关的导通和截止时间,使输出电压达到所需值。
斩控式交流调压课程设计概要

第1章概述在工业生产及日用电气设备中,有不少交流供电的设备采用控制交流电压来调节设备的工作状态,如加热炉的温度、电源亮度、小型交流电机的转速等。
这样就需要设计一种交流调压电路来控制,其基本原理是把两个晶闸管反并联后串联在交流电路中,通过对晶闸管的控制就可以控制交流电力。
在每一个周波内通过对晶闸管开通相位的控制,可以方便地调节输出电压的有效值,这种电路称为交流调压电路。
用在电热控制、交流电动机速度控制、灯光控制和交流稳压器等场合。
采用晶闸管作为开关元件的典型单相交流调压电路如图1所示。
常用通断控制或相位控制方法来调节输出电压。
交流调压电路也广泛用于灯光控制(如调光台灯和舞台灯光控制)及异步电动机的软起动,也用于异步电动机调速。
在供用电系统中,这种电路还常用于对无功功率的连续调节。
此外,在高压小电流或低压大电流中,也常采用交流调压电路调节变压器一次电压。
如采用晶闸管相控整流电路,高电压小电流可控直流电源就需要很多晶闸管串联,同时,低电压大电流直流电源需要很多晶闸管并联。
这都是十分不合理的。
采用交流调压电路在变压器一次侧调压,其电压电流值都不太大也不太小,在变压器二次侧只要用二极管整流就可以了。
这样的电路体积小、成本低、易于设计制造。
交流调压是指把一种交流电变成另一种同频率,不同电压交流电的变换。
按所变换的相数不同交流调压电路可分为单相交流调压电路和三相交流调压电路。
前者是后者的基础。
与自耦变压器调压方法相比,交流调压电路控制方便,调节速度快,装置的重量轻、体积小,有色金属消耗也少。
第2章设计总体思路2.1 系统总体方案确定交流调压的控制方式有三种:①整周波通断控制;②相位控制;③斩波控制。
整周波控制调压——适用于负载热时间常数较大的电热控制系统。
晶闸管导通时间与关断时间之比,使交流开关在某几个周波连续导通,某几个周波连续关断,如此反复循环地运行,其输出电压的波形如图2所示。
改变导通的周波数和控制周期的周波数之比即可改变输出电压。
单相斩控式交流调压电路设计

单相斩控式交流调压电路设计概述单相斩控式交流调压电路的设计用于对交流电源进行调压控制,使输出电压能够稳定在需求范围内。
本文将对该调压电路的设计原理、电路构成、工作原理以及参数选取等进行全面详细的探讨。
设计原理单相斩控式交流调压电路的设计原理基于斩波调压技术,通过控制晶闸管的导通时间来改变输出电压的大小。
其基本思想是在每个交流周期的一定时刻截止半导体器件的导通,从而将源电压锯齿状的波形转换为脉宽调制形式,通过改变脉宽来调节输出电压。
电路构成单相斩控式交流调压电路主要由以下几个部分构成:输入滤波电路输入滤波电路主要用于对输入电压进行平滑滤波,降低谐波成分,获得稳定的直流电压。
常用的输入滤波电路包括电容滤波电路和电感滤波电路。
斩波电路斩波电路是单相斩控式交流调压电路的核心部分,用于将交流电压转换为可调的脉冲电压。
斩波电路一般由晶闸管、二极管以及继电器等组成。
控制电路控制电路用于生成脉宽调制信号,对晶闸管的导通时间进行控制,从而实现输出电压的调节。
一般采用微处理器或者模拟控制电路来生成控制信号。
输出滤波电路输出滤波电路主要用于对输出脉冲进行滤波平滑,得到稳定的直流输出电压。
常用的输出滤波电路包括电感滤波电路和电容滤波电路。
工作原理单相斩控式交流调压电路的工作原理如下:1.输入电压经过输入滤波电路进行滤波后,进入斩波电路。
2.斩波电路将交流电压转换为可调的脉冲电压,通过控制电路的控制信号对晶闸管进行导通和截止控制,改变输出脉冲的脉宽。
3.输出脉冲经过输出滤波电路进行滤波平滑后,得到稳定的直流输出电压。
参数选取在设计单相斩控式交流调压电路时,需要选取合适的参数来保证电路的稳定性和性能。
主要包括以下几个方面:输入电压范围根据实际应用情况选择合适的输入电压范围,通常是根据供电网络的标准电压范围来确定。
输出电压范围根据需求确定输出电压的范围,确保设计的电路可以满足实际需求。
控制信号频率控制信号频率越高,调压速度越快,但也会增加电路的复杂度和功耗。
单相斩控式交流调压电路课程设计

河南机电高等专科学校课程设计单相斩控式交流调压电路系部: 自动控制系专业: 生产过程自动化班级: 过131姓名: 闫正和学号: 131416140指导老师: 侯志坚成绩:二零一五年七月摘要调速系统是当今电力拖动自动控制系统中应用最广泛的一中系统。
目前对调速性能要求较高的各类生产机械大多采用直流传动,简称为直流调速。
早在20世纪40年代采用的是发电机-电动机系统,又称放大机控制的发电机-电动机组系统。
这种系统在40年代广泛应用,但是它的缺点是占地大,效率低,运行费用昂贵,维护不方便等,特别是至少要包含两台与被调速电机容量相同的电机。
为了克服这些缺点,50年代开始使用水银整流器作为可控变流装置。
这种系统缺点也很明显,主要是污染环境,危害人体健康。
50年代末晶闸管出现,晶闸管变流技术日益成熟,使直流调速系统更加完善。
晶闸管-电动机调速系统已经成为当今主要的直流调速系统,广泛应用于世界各国。
近几年,交流调速飞速发展,逐渐有赶超并代替直流调速的趋势。
直流调速理论基础是经典控制理论,而交流调速主要依靠现代控制理论。
不过最近研制成功的直流调速器,具有和交流变频器同等性能的高精度、高稳定性、高可靠性、高智能化特点。
同时直流电机的低速特性,大大优于交流鼠笼式异步电机,为直流调速系统展现了无限前景。
单闭环直流调速系统对于运行性能要求很高的机床还存在着很多不足,快速性还不够好。
而基于电流和转速的双闭环直流调速系统静动态特性都很理想。
关键字:调速系统直流调速器晶闸管晶闸管-电动机调速系统ABSTRACTThis paper proposes the use of a chopper-type MOSFET AC voltage regulator. So that the regulator can regulate convenient, fast dynamic response, the harmonic less pollution, higher unit power factor and so on. For regulating and controlling the AC voltage, better performance and prospects. AC V oltage AC refers to one kind into another with the same frequency, different voltage AC conversion. Chopper control regulator - the switch in a power-off cycle times, cut into several small pieces of the input voltage, change the width or switch off the cycle segment to regulate the output voltage. That is to regulate the quality and impact of the output voltage through the power supply voltage regulator circuit cut control. Chopping frequency, the higher the output voltage of the voltage harmonic frequency, the filter easier. When the chopper frequency is not an integer multiple of the frequency of the input power, the output voltage will produce harmonics. When low chopper frequency, harmonic content of more adverse impact on the load. AC chopper technology as a high-performance AC voltage regulator technology, in line with the high frequency power electronics technology, efficient and low-pollution trends, will gradually replace the phase control thyristor AC voltage regulator, the development of new devices will accelerate this process.Keywords: Chopping AC; regulator; chopping frequency;目录第1章绪论 (1)1.1直流电动机的调速方法 (2)1.2直流调速系统控制电源方式 (2)1.2.1PWM变换器介绍 (2)1.3选择PWM控制系统的理由 (4)1.4双闭环调速系统及静特性 (5)1.4.1双闭环调速系统的组成图 (5)1.4.2稳态结构图和静特性 (5)1.4.3控制系统动态性能分析 (7)1.5.系统的动态校正 (9)第二章相关参数计算 (10)2.1设计参数准备 (10)2.2ASR设计 (11)第三章硬件设计 (12)3.1双闭环直流脉宽调速系统的主电路设计 (13)3.1.1PWM变换器 (13)3.1.2选择IGBT的H桥型主电路的理由 (14)3.1.3整流电路设计 (14)第四章总结与心得体会 (18)第五章参考文献 (19)致谢 (20)第一章绪论在现代科学技术革命过程中,电气自动化在20世纪的后四十年曾进行了两次重大的技术更新。
单相斩控式交流调压电路设计

单相斩控式交流调压电路设计单相斩控式交流调压电路是一种常见的电路设计,它可以将交流电源的电压进行调节,使其符合特定的要求。
本文将介绍单相斩控式交流调压电路的原理、设计和应用。
一、原理单相斩控式交流调压电路的原理是利用斩波器对交流电源进行控制,从而实现电压的调节。
斩波器是一种电子元件,它可以将交流电源的正半周或负半周进行截取,从而得到一个脉冲信号。
这个脉冲信号的宽度可以通过控制斩波器的导通时间来进行调节,从而实现对电压的控制。
在单相斩控式交流调压电路中,斩波器通常采用晶闸管或场效应管。
当斩波器导通时,交流电源的电流会通过斩波器流入负载,从而使负载得到电源的供电。
当斩波器截止时,电源的电流就会被截断,负载也就不再得到电源的供电。
通过不断地重复这个过程,就可以实现对电压的调节。
二、设计单相斩控式交流调压电路的设计需要考虑多个因素,包括电源电压、负载电流、斩波器的选择和控制电路的设计等。
下面将分别介绍这些因素的设计要点。
1. 电源电压电源电压是单相斩控式交流调压电路设计的重要参数,它决定了电路的输出电压范围和负载能力。
一般来说,电源电压越高,输出电压范围就越大,负载能力也就越强。
但是,电源电压过高也会增加电路的复杂度和成本,因此需要根据实际需求进行选择。
2. 负载电流负载电流是单相斩控式交流调压电路设计的另一个重要参数,它决定了电路的输出功率和稳定性。
一般来说,负载电流越大,输出功率就越高,但是电路的稳定性也会受到影响。
因此,在设计电路时需要根据负载的实际需求进行选择。
3. 斩波器的选择斩波器是单相斩控式交流调压电路中最关键的元件之一,它的选择直接影响到电路的性能和稳定性。
一般来说,晶闸管和场效应管是常用的斩波器,它们具有导通压降低、响应速度快等优点。
但是,晶闸管的控制电路比较复杂,而场效应管的价格较高,因此需要根据实际需求进行选择。
4. 控制电路的设计控制电路是单相斩控式交流调压电路中另一个重要的设计要素,它负责控制斩波器的导通和截止。
斩控式单相交流调压电路设计

斩控式单相交流调压电路设计一、电路结构1.调压变压器:调压变压器用于将输入电压调整为需要的输出电压。
其一次侧连接到交流电源,二次侧连接到斩波电路。
2.斩波电路:斩波电路由开关管和与之配套的电路组成。
开关管负责控制电源的通断,电路则根据开关管的导通状态,控制输出电压。
3.滤波电路:滤波电路用于对输出电压进行平滑处理,减小其峰值值波动。
4.负载:负载是电路的输出部分,可以是电阻、电感或电容等元件。
二、电路原理1.斩波原理斩波电路采用开关管控制输出电源通断,实现对交流电压的控制。
在正半周,开关管导通,电源输出;在负半周,开关管关断,电源不输出。
通过控制开关管的导通时间,可以实现对输出电压的控制。
2.滤波原理滤波电路主要通过电感、电容等元件,对输出电压进行平滑处理,减小其峰值值波动。
电感对交流信号有滤波作用,而电容则具有存储电荷的特性,可以增大负载电流。
三、设计步骤1.确定输出电压根据实际需求,确定所需的输出电压。
2.选择调压变压器根据所需的输出电压和电流,选择合适的调压变压器。
3.选择开关管根据输出电压和负载要求,选择合适的开关管。
常用的开关管有MOSFET和IGBT等。
4.设计斩波电路根据开关管的参数和工作原理,设计和优化斩波电路。
可以使用各种控制技术,如脉冲宽度调制(PWM)等。
5.设计滤波电路根据输出电压的波动情况,选择合适的滤波电路设计。
可以使用RC 滤波电路、LCL滤波电路等。
6.验证电路设计使用仿真软件对电路进行仿真验证,检查输出电压波形是否稳定、峰值值是否满足要求。
根据仿真结果进行优化调整。
7.电路实现与调试根据设计结果,搭建电路原型并进行实际调试。
检查输出电压是否符合要求,观察电路工作是否稳定。
8.性能评估与改进对实际搭建的电路进行性能评估,并进行必要的优化改进。
通过以上步骤,可以设计出符合实际要求的斩控式单相交流调压电路。
在实际应用中,还需要考虑电压变化范围、功率损耗、开关管和滤波元件的选取等问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章概述在工业生产及日用电气设备中,有不少交流供电的设备采用控制交流电压来调节设备的工作状态,如加热炉的温度、电源亮度、小型交流电机的转速等。
这样就需要设计一种交流调压电路来控制,其基本原理是把两个晶闸管反并联后串联在交流电路中,通过对晶闸管的控制就可以控制交流电力。
在每一个周波内通过对晶闸管开通相位的控制,可以方便地调节输出电压的有效值,这种电路称为交流调压电路。
用在电热控制、交流电动机速度控制、灯光控制和交流稳压器等场合。
采用晶闸管作为开关元件的典型单相交流调压电路如图1所示。
常用通断控制或相位控制方法来调节输出电压。
交流调压电路也广泛用于灯光控制(如调光台灯和舞台灯光控制)及异步电动机的软起动,也用于异步电动机调速。
在供用电系统中,这种电路还常用于对无功功率的连续调节。
此外,在高压小电流或低压大电流中,也常采用交流调压电路调节变压器一次电压。
如采用晶闸管相控整流电路,高电压小电流可控直流电源就需要很多晶闸管串联,同时,低电压大电流直流电源需要很多晶闸管并联。
这都是十分不合理的。
采用交流调压电路在变压器一次侧调压,其电压电流值都不太大也不太小,在变压器二次侧只要用二极管整流就可以了。
这样的电路体积小、成本低、易于设计制造。
交流调压是指把一种交流电变成另一种同频率,不同电压交流电的变换。
按所变换的相数不同交流调压电路可分为单相交流调压电路和三相交流调压电路。
前者是后者的基础。
与自耦变压器调压方法相比,交流调压电路控制方便,调节速度快,装置的重量轻、体积小,有色金属消耗也少。
第2章设计总体思路2.1 系统总体方案确定交流调压的控制方式有三种:①整周波通断控制;②相位控制;③斩波控制。
整周波控制调压——适用于负载热时间常数较大的电热控制系统。
晶闸管导通时间与关断时间之比,使交流开关在某几个周波连续导通,某几个周波连续关断,如此反复循环地运行,其输出电压的波形如图2所示。
改变导通的周波数和控制周期的周波数之比即可改变输出电压。
为了提高输出电压的分辨率,必须增加控制周期的周波数。
为了减少对周围通信设备的干扰,晶闸管在电源电压过零时开始导通。
在负载容量很大时,开关的通断将引起对电网的冲击,产生由控制周期决定的分数次谐波,这些分数次谐波引起电网电压闪变。
这是其缺陷。
相位控制调压——利用控制触发滞后角α的方法,控制输出电压。
晶闸管承受正向电压开始到触发点之间的电角度称为触发滞后角α。
在有效移相范围内改变触发滞后角,即能改变输出电压。
有效移相范围随负载功率因数不同而不同,电阻性负载最大,纯感性负载最小。
图3是阻性负载时相控方式的交流调压电路的输出电压波形。
相控交流调压电路输出电压包含较多的谐波分量,当负载是电动机时,会使电动机产生脉动转矩和附加谐波损耗。
另外它还会引起电源电压畸变。
为减少对电源和负载的谐波影响,可在电源侧和负载侧分别加滤波网络。
斩波控制调压——使开关在一个电源周期中多次通断,将输入电压切成几个小段,用改变小段的宽度或开关通断的周期来调节输出电压。
斩控调压电路输出电压的质量较高,对电源的影响也较小。
图4是斩波控制的交流调压电路的输出电压波形。
在斩波控制的交流调压电路中,为了在感性负载下提供续流通路,除了串联的双向开关S1外,还须与负载并联一只双向开关S2。
当开关 S1导通,S 2关断时,输出电压等于输入电压;开关S1关断,S2导通时,输出电压为零。
控制开关导通时间与关断时间之比即能控制交流调压器的输出电压。
开关 S1、S2动作的频率称斩波频率。
斩波频率越高,输出电压中的谐波电压频率越高,滤波较容易。
当斩波频率不是输入电源频率的整数倍时,输出电压中会产生分数次谐波。
当斩波频率较低时,分数次谐波较大,对负载产生恶劣的影响。
将斩波信号与电源电压锁相,可消除分数次谐波。
斩波控制的交流调压电路的功率开关元件必须采用功率晶体管或其他自关断元件,所以成本较高。
斩波控制方式时,晶闸管要带有强迫关断电路或采用IGBT 、MOSFIT 等可自关断器件,在每个电压周波中,开关元件多次通断,使电压斩波成多个脉冲,改变导通比即可实现调压。
本次课程设计采用斩波控式制单相交流调压。
斩控式交流调压电路的原理图如图5所示,一般采用全控型器件作为开关器件。
其基本原理和直流斩波电路有类似之处,只是直流斩波电路的输入是直流电压,而斩控式交流调压电路的输入是正弦交流电压。
在交流电源u 1的正半周,用V1进行斩波控制,用V3给负载电流提供续流通道;在u 1的负半周,用V2进行斩波控制,用V4给负载电流提供续流通道。
设载波器件(V1或V2)导通时间为t on,开关周期为T,则导通比a=t on/T。
和直流斩波电路一样,也可以通过改变a来调节输出电压。
图5给出了电阻性负载时负载电压u0和电源电流i1(也就是负载电流)的波形。
可以看出,电源电流的基波分量是和电源电压同相位的,即位移因数为1。
另外,通过傅里叶分析可知,电源电流中不含低次谐波,只含和开关周期T有关的高次谐波。
这些高次谐波用很小的滤波器即可滤除。
这时电路的功率因数接近1。
本次课程设计所用的斩控式单相交流调压电路的结构框图如图6所示,首先是交流输入电压为220V,经滤波后用全控型开关器件进行斩波,输出电压为0~160 V,然后在其输出取样电流,进行过压检测保护。
时钟震荡器及脉宽PWM调制均由芯片形成控制部分。
图6 电路的结构框图2.2 交流斩波调压的基本原理交流斩波调压的原理波形如图7所示。
由图可知,它是用一组频率恒定、占空比可调的脉冲,对正弦波电压进行调制后,得到边缘为正弦波、,其基本谐波频率为土50Hz。
占空比可调的电压波形。
该电压的调制频率f改变占空比,即可改变输出电压。
利用具有自关断能力的电力半导体器件就可方便地构成交流斩波调压电路。
图7 交流斩波调压的原理波形图第3章主电路设计与分析3.1主要技术条件及要求要求用斩波控制的方式实现单相交流调压,功率因数好,谐波小,输出的波形要好。
输入电压是交流220V,输出电压要求是0~160 V,最大输出电流为200A,功率因数大于或等于0.7。
能同时实现电压电流的检测及过压过流等一些故障的保护。
3.2 开关器件的选择由于斩波调压电路一般采用全控型器件作为开关器件,典型的全控型开关器件有,门极可关断晶闸管(GTO)、电力晶体管(GTR)、电力场效应晶体管(MOSFET)及绝缘栅双极晶体管(IGBT)等。
由于MOSFET 的开关时间在10~100ns之间,其工作频率可达100KHz以上,是主要电力电子器件中最高的,而且它的驱动电路简单,需要的驱动功率小,所以这次课程设计决定用MOSFET 来做开关器件。
3.3 主电路计算及元器件参数选型滤波器电容选择Co一般根据放电时间常数计算,负载越大,要求纹波系数越小,电容量也越大.一般不作严格计算,多取2000MF以上.因系统负载不大,故取Co=2200MF.耐压按1.5Vdm=1.5*220=330V.取350V.即选用2200MF, 350V 电容器.为滤除高频信号,取C1=1uf,耐压350V.选用二极管时,主要应考虑其最大电流、最大反向工作电压、截止频率及反向恢复时间等参数。
二极管承受最大反向电压:U=Sqrt(6)*U2=392V 考虑3倍裕量,则U=3*392=1176V,取1200V最大电流按Idn=(1.5~2)Kfb*Id 来计算选择。
快速熔断器的选择快速熔断器用于过电流的保护,它的断流时间在10 ms以内,快速熔断器的熔体额定电流I N按下式选择:I Tm<=I N<=1.57 I TNItm≈2×0.577 I N=2×0.577×200A=230.8AMOSFET保护电路选择电容的选择一般按布线电感磁场能量全部转化为电场的能量估算。
即LbIo²/2=Cs(Ucep-Uo)²得Cs≥LbIo²/(Ucep-Uo)²式中Lb---是主回路布线电感μH;Io---MOSFET 关断时源极电流A;Ucep---缓冲电容器电压稳定值;Uo---直流电源电压V。
Lb可按Lb=5~20μH估算。
Ucep为保证可靠,可取稍低于MOSFET耐压值为宜,取Ucep=600V进行计算。
取Io=Id、Uo=325V,得Cs=LbIo²/(Ucep-Uo)²=0.0962μF取Cs=0.1μF、耐压650V。
缓冲电阻Rs计算要求MOSFET关断信号到来之前,将缓冲电容器所积蓄的电荷放完,以关断信号之前放电90%为条件,计算公式如下:Rs≤1/(6fCs)f为开关频率、MOSFET最大开关频率为50KHz,则有Rs=1/(6fCs)≈33Ω;VDs电流定额按MOSFET通过电流的1/10选择为:0.19A。
3.4 主电路结构设计在考虑到减少电路误差的情况下,我们采用了如图8所示的主电路,主回路由Ql—Q3三个VMOS管和D1—D3三个二极管组成的全控整流电路实现对交流输入电压的斩波调压。
当交流输入电压在正半周时,电流流经VD1、Q3、VD3;当交流输入处于负半周时,电流流经VD2、Q3、VD4、;Q3始终处于正向电压作用下,当在Q3源栅极之间加入触发信号时,Q3处于开关状态。
调整加在栅极上的脉冲宽度即可调节输出电压的大小。
由于Q3处于开关状态,且VMOS管具有很小的关断时间,只要适当选择较低的饱和压降,Q3的功耗可以做得很小,所以该斩波调压具有较高的效率。
考虑到负载可能为感性的,加了由Q1、Q2及D1、D2组成的续流环节。
当Q3关断时,在电压处于正半周时,Q2导通,Q1关断,流经负载的电流通过Q2、D1续流。
在电压负半周,Q1导通,Q2关断,流经负载的电流通过Q1、D2续流。
为防止Q1、Q 2、Q3同时导通而引起较大的短路电流,对加在Q1和Q2上的触发信号有一定要求,这在过零触发电路中讨论。
图中L1、C1为电源滤波网,以吸收瞬态过程中的过电压,并减少对外线路的干扰。
L2、C2为输出滤波环节,由于本机调制频率取得较高,所以L2和C2只需很小值即可。
其中每个VMOS管都有保护装置如图所示。
图8 主电路图.534V16V 6VUVLOS//R5V re f内部偏置2.50V47OSC误差放大器2R1V2RRS电流感应比较器PWM 锁存器68基准5V50mA3VccRt/Ct Vfb 电流感应主要特点·工作电压8~40 V·电流传感和电压反馈输入-0.3~+5.5 V·误差放大输出吸入电流10 mA·欠压锁存功能·占空比可调·最高开关频率500 kHz,稳定度0.2%,电源效率高·内部有高稳定度的基准电压源5.0 V·稳定性能好,电压调整率很容易达到0.01%,4.1.3 芯片的工作原理UC3842为8脚双列直插式封装形式,如图7所示,他内部主要由5.0 V基准电压源、用来精确地控制占空比调定的振荡器、降压器、电流测定比较器、PWM锁存器、高增益E/A误差放大器和适用于驱动功率MOSFET 的大电流推挽输出电路等构成。