logistic回归方程

logistic回归方程
logistic回归方程

Logistic回归:实际上属于判别分析,因拥有很差的判别效率而不常用。

1.应用范围:

①适用于流行病学资料的危险因素分析

②实验室中药物的剂量-反应关系

③临床试验评价

④疾病的预后因素分析

2. Logistic回归的分类:

①按因变量的资料类型分:

二分类

多分类

其中二分较为常用

②按研究方法分:

条件Logistic回归

非条件Logistic回归

两者针对的资料类型不一样,后者针对成组研究,前者针对配对或配伍研究。

3.Logistic回归的应用条件是:

①独立性。各观测对象间是相互独立的;

② LogitP与自变量是线性关系;

③样本量。经验值是病例对照各50例以上或为自变量的5-10倍(以10倍为宜),不过随着统计技术和软件的发展,样本量较小或不能进行似然估计的情况下可采用精确logistic回归分析,此时要求分析变量不能太多,且变量分类不能太多;

④当队列资料进行logistic回归分析时,观察时间应该相同,否则需考虑观察时间的影响(建议用Poisson回归)。

4.拟和logistic回归方程的步骤:

①对每一个变量进行量化,并进行单因素分析;

②数据的离散化,对于连续性变量在分析过程中常常需要进行离散变成等级资料。可采用的方法有依据经验进行离散,或是按照四分、五分位数法来确定等级,也可采用聚类方法将计量资料聚为二类或多类,变为离散变量。

③对性质相近的一些自变量进行部分多因素分析,并探讨各自变量(等级变量,数值变量)纳入模型时的适宜尺度,及对自变量进行必要的变量变换;

④在单变量分析和相关自变量分析的基础上,对P≤α(常取0.2,0.15或0.3)的变量,以及专业上认为重要的变量进行多因素的逐步筛选;模型程序每拟合一个模型将给出多个指标值,供用户判断模型优劣和筛选变量。可以采用双向筛选技术:a进入变量的筛选用score统计量或G统计量或LRS(似然比统计量),用户确定P值临界值如:0.05、0.1或0.2,选择统计量显著且最大的变量进入模型;b剔除变量的选择用Z统计量(Wald统计量),用户确定其P值显著性水平,当变量不显者,从模型中予以剔除。这样,选入和剔除反复循环,直至无变量选入,也无变量删除为止,选入或剔除的显著界值的确定要依具体的问题和变量的多寡而定,一般地,当纳入模型的变量偏多,可提高选入界值或降低剔除标准,反之,则降低选入界值、提高删除标准。但筛选标准的不同会影响分析结果,这在与他人结果比较时应当注意。

⑤在多因素筛选模型的基础上,考虑有无必要纳入变量的交互作用项;两变量间的交互作用为一级交互作用,可推广到二级或多级交互作用,但在实际应用中,各变量最好相互独立(也是模型本身的要求),不必研究交互作用,最多是研究少量的一级交互作用。

⑥对专业上认为重要但未选入回归方程的要查明原因。

5.回归方程拟合优劣的判断(为线性回归方程判断依据,可用于logistic回归分析)①决定系数(R2)和校正决定系数( ),可以用来评价回归方程的优劣。R2随着自变量个数的增加而增加,所以需要校正;校正决定系数( )越大,方程越优。但亦有研究指出R2是多元线性回归中经常用到的一个指标,表示的是因变量的变动中由模型中自变量所解释的百分比,并不涉及预测值与观测值之间差别的问题,因此在logistic回归中不适合。

② C p选择法:选择C p最接近p或p+1的方程(不同学者解释不同)。C p无法用SPSS 直接计算,可能需要手工。1964年CL Mallows提出:

Cp接近(p+1)的模型为最佳,其中p为方程中自变量的个数,m为自变量总个数。

③ AIC准则:1973年由日本学者赤池提出AIC计算准则,AIC越小拟合的方程越好。

在logistic回归中,评价模型拟合优度的指标主要有Pearson χ2、偏差(deviance)、Hosmer- Lemeshow (HL)指标、Akaike信息准则(AIC)、SC指标等。Pearson χ2、偏差(deviance)主要用于自变量不多且为分类变量的情况,当自变量增多且含有连续型变量时,用HL指标则更为恰当。Pearson χ2、偏差(deviance)、Hosmer- Lemeshow (HL)指标值均服从χ2分布,χ2检验无统计学意义(P>0.05)表示模型拟合的较好,χ2检验有统计学意义(P≤0.05)则表示模型拟合的较差。AIC和SC指标还可用于比较模型的优劣,当拟合多个模型时,可以将不同模型按其AIC和SC指标值排序,AIC和SC值较小者一般认为拟合得更好。

6.拟合方程的注意事项:

①进行方程拟合对自变量筛选采用逐步选择法[前进法(forward)、后退法(backward)、逐步回归法(stepwise)]时,引入变量的检验水准要小于或等于剔除变量的检验水准;

②小样本检验水准α定为0.10或0.15,大样本把α定为0.05。值越小说明自变量选取的标准越严;

③在逐步回归的时可根据需要放宽或限制进入方程的标准,或硬性将最感兴趣的研究变量选入方程;

④强影响点记录的选择:从理论上讲,每一个样本点对回归模型的影响应该是同等的,实际并非如此。有些样本点(记录)对回归模型影响很大。对由过失或错误造成的点应删去,没有错误的强影响点可能和自变量与应变量的相关有关,不可轻易删除。

⑤多重共线性的诊断(SPSS中的指标):a容许度:越近似于0,共线性越强;b特征根:越近似于0,共线性越强;c条件指数:越大,共线性越强;

⑥异常点的检查:主要包括特异点(outher)、高杠杆点(high leverage points)以及强影响点(influential points)。特异点是指残差较其他各点大得多的点;高杠杆点是指距离其他样品较远的点;强影响点是指对模型有较大影响的点,模型中包含该点与不包含该点会使求得的回归系数相差很大。单独的特异点或高杠杆点不一定会影响回归系数的估计,但如果既是特异点又是高杠杆点则很可能是一个影响回归方程的“有害”点。对特异点、高杠杆点、强影响点诊断的指标有Pearson残差、Deviance残差、杠杆度统计量H(hat matrix diagnosis)、Cook 距离、DFBETA、Score检验统计量等。这五个指标中,Pearson残差、Deviance残差可用来检查特异点,如果某观测值的残差值>2,则可认为是一个特异点。杠杆度统计量H可用来发现高杠杆点, H值大的样品说明距离其他样品较远,可认为是一个高杠杆点。Cook 距离、DFBETA指标可用来度量特异点或高杠杆点对回归模型的影响程度。Cook距离是标准化残差和杠杆度两者的合成指标,其值越大,表明所对应的观测值的影响

越大。DFBETA指标值反映了某个样品被删除后logistic回归系数的变化,变化越大(即DFBETA指标值越大),表明该观测值的影响越大。如果模型中检查出有特异点、高杠杆点或强影响点,首先应根据专业知识、数据收集的情况,分析其产生原因后酌情处理。如来自测量或记录错误,应剔除或校正,否则处置就必须持慎重态度,考虑是否采用新的模型,而不能只是简单地删除就算完事。因为在许多场合,异常点的出现恰好是我们探测某些事先不清楚的或许更为重要因素的线索。

7.回归系数符号反常与主要变量选不进方程的原因:

①存在多元共线性;

②有重要影响的因素未包括在内;

③某些变量个体间的差异很大;

④样本内突出点上数据误差大;

⑤变量的变化范围较小;

⑥样本数太少。

8.参数意义

① Logistic回归中的常数项(b0)表示,在不接触任何潜在危险/保护因素条件下,效应指标发生与不发生事件的概率之比的对数值。

② Logistic回归中的回归系数(b i)表示,其它所有自变量固定不变,某一因素改变一个单位时,效应指标发生与不发生事件的概率之比的对数变化值,即OR或RR的对数值。需要指出的是,回归系数β的大小并不反映变量对疾病发生的重要性,那么哪种因素对模型贡献最大即与疾病联系最强呢? (InL(t-1)-InL(t))三种方法结果基本一致。

③存在因素间交互作用时,Logistic回归系数的解释变得更为复杂,应特别小心。

④模型估计出OR,当发病率较低时,OR≈RR,因此发病率高的疾病资料不适合使用该模型。另外,Logistic模型不能利用随访研究中的时间信息,不考虑发病时间上的差异,因而只适于随访期较短的资料,否则随着随访期的延长,回归系数变得不稳定,标准误增加。9.统计软件

能够进行logistic回归分析的软件非常多,常用的有SPSS、SAS、Stata、EGRET (Epidemiological Graphics Estimation and Testing Package)等。

Logistic回归分析简介

Logistic回归分析简介 Logistic回归:实际上属于判别分析,因拥有很差的判别效率而不常用。1.应用范围: ①适用于流行病学资料的危险因素分析 ②实验室中药物的剂量-反应关系 ③临床试验评价 ④疾病的预后因素分析 2.Logistic回归的分类: ①按因变量的资料类型分: 二分类 多分类 其中二分较为常用 ②按研究方法分: 条件Logistic回归 非条件Logistic回归 两者针对的资料类型不一样,后者针对成组研究,前者针对配对或配伍 研究。 3.Logistic回归的应用条件是: ①独立性。各观测对象间是相互独立的; ②LogitP与自变量是线性关系; ③样本量。经验值是病例对照各50例以上或为自变量的5-10倍(以10倍 为宜),不过随着统计技术和软件的发展,样本量较小或不能进行似然

估计的情况下可采用精确logistic回归分析,此时要求分析变量不能太多,且变量分类不能太多; ④当队列资料进行logistic回归分析时,观察时间应该相同,否则需考虑观 察时间的影响(建议用Poisson回归)。 4.拟和logistic回归方程的步骤: ①对每一个变量进行量化,并进行单因素分析; ②数据的离散化,对于连续性变量在分析过程中常常需要进行离散变成等 级资料。可采用的方法有依据经验进行离散,或是按照四分、五分位数 法来确定等级,也可采用聚类方法将计量资料聚为二类或多类,变为离 散变量。 ③对性质相近的一些自变量进行部分多因素分析,并探讨各自变量(等级 变量,数值变量)纳入模型时的适宜尺度,及对自变量进行必要的变量 变换; ④在单变量分析和相关自变量分析的基础上,对P≤α(常取0.2,0.15或 0.3)的变量,以及专业上认为重要的变量进行多因素的逐步筛选;模型 程序每拟合一个模型将给出多个指标值,供用户判断模型优劣和筛选变 量。可以采用双向筛选技术:a进入变量的筛选用score统计量或G统计 量或LRS(似然比统计量),用户确定P值临界值如:0.05、0.1或0.2,选 择统计量显著且最大的变量进入模型;b剔除变量的选择用Z统计量(Wald 统计量),用户确定其P值显著性水平,当变量不显者,从模型中予以剔 除。这样,选入和剔除反复循环,直至无变量选入,也无变量删除为止,选入或剔除的显著界值的确定要依具体的问题和变量的多寡而定,一般

SPSS—二元Logistic回归结果分析报告

SPSS—二元Logistic回归结果分析 2011-12-02 16:48 身心疲惫,睡意连连,头不断往下掉,拿出耳机,听下歌曲,缓解我这严重的睡意吧!今天来分析二元Logistic回归的结果 分析结果如下: 1:在“案例处理汇总”中可以看出:选定的案例489个,未选定的案例361个,这个结果是根据设定的validate = 1得到的,在“因变量编码”中可以看出“违约”的两种结果“是”或者“否” 分别用值“1“和“0”代替,在“分类变量编码”中教育水平分为5类,如果选中“为完成高中,高中,大专,大学等,其中的任何一个,那么就取值为 1,未选中的为0,如果四个都未被选中,那么就是”研究生“ 频率分别代表了处在某个教育水平的个数,总和应该为489个

1:在“分类表”中可以看出:预测有360个是“否”(未违约)有129个是“是”(违约) 2:在“方程中的变量”表中可以看出:最初是对“常数项”记性赋值,B为 -1.026,标准误差为:0.103 那么wald =( B/S.E)2=(-1.026/0.103)2 = 99.2248, 跟表中的“100.029几乎接近,是因为我对数据进行的向下舍入的关系,所以数据会稍微偏小, B和Exp(B) 是对数关系,将B进行对数抓换后,可以得到:Exp(B) = e^-1.026 = 0.358, 其中自由度为1, sig为0.000,非常显著

1:从“不在方程中的变量”可以看出,最初模型,只有“常数项”被纳入了模型,其它变量都不在最初模型 表中分别给出了,得分,df , Sig三个值, 而其中得分(Score)计算公式如下: (公式中(Xi- Xˉ) 少了一个平方) 下面来举例说明这个计算过程:(“年龄”自变量的得分为例) 从“分类表”中可以看出:有129人违约,违约记为“1”则违约总和为 129,选定案例总和为489 那么: yˉ = 129/489 = 0.16 xˉ = 16951 / 489 = 34.2 所以:∑(Xi-xˉ)2 = 30074.9979

条件logistic回归模型的SAS计算程序

条件logistic 回归模型的SAS 计算程序 第四军医大学卫生统计学教研室 宇传华 徐勇勇 病例-对照研究资料的条件logistic 回归模 型计算比较复杂,常需借助统计软件进行计算,国际通用软件S AS (6.04版本)有LOGISTIC 和PHREG 两个过程步能较好拟合各种条件lo gistic 回归模型。 文献〔1〕利用SAS 软件的这两个过程步分别拟合了1 1和m n 配对的条件lo gistic 回归模型。 本文拟定在此基础上进一步探讨这两个过程之间的联系,对配对四格表资料和1 m 配对资料给出条件logistic 回归模型的SAS 计算程序。 一、LO GIS TIC 和PHREG 两个过程步之间的联系 病例-对照研究资料为1 1配对时,这两个过程步均可选用。文献〔1〕的第208页用LO-GIS TIC 过程步对10例胃癌的1 1配对资料作了拟合,给出了拟合程序和结果〔1〕。如果对此资料用PHREG 过程步作拟合,则程序为:D A TA a ; IN PUT pdh y x 1-x 3@@ yy =1-y ;CA RDS ; 数据集; PROC P HR EG ;MOD EL yy #y (0)=x 1-x 3/SELECTION =S TEPW I SE SLE =0.5SL S =0.3;S TR A TA pdh ; RUN ; 此程序产生1个哑变量yy ,取0(病例)和1(对 照)两个值,用y 指示病例(用1表示)和对照(用0表示),x 1、x 2和x 3表示3个危险因素,pdh 表示配对序号。程序须用配对序号进行分层,语句为“S TRA TA pdh ;”。运行该程序获得的结果与文献〔1〕利用LOGISTIC 过程步获得的结果不同之处在于:该程序按RR=ex p(β)多计算了危险比(Risk Ratio ),而LOGISTIC 过程步多计算了标准化参数估计值(Standardized Esti -mate ),其他结果完全一致。 这里要说明的是MODEL 语句后的“SE -LECT ION =ST EPW ISE SLE =0.5SLS =0.3”是选择项,如果需要所有自变量均包括在模型内可不写入此选项。如果选了此选项,则应根据专业知识和实际需要改变SLE (选变量进入方程的显著水准)和SLS (从方程中剔除变量的显著水准)等号后的值。 PHREG 过程步编写的程序与LO GIS TIC 过程步编写的程序比较有以下特点: 1.不仅可用于1 1配对资料,对程序稍加修改还可用于1 m 配对和m n 配对资料的分析。2.不需要按病例和对照分别产生两组变量,以这两组相应变量之差作为自变量放入模型;而只需设立一个指示变量(y )指示是病例还是对照,直接将自变量放入模型。当自变量比较多时这一特点更为重要。3.条件lo gistic 回归通常需要计算相对危险比及其(1-T )%可信区间,在PHREG 过程步M ODEL 语句的选择项写入“ALPHA =αRISKLIM ITS ”可实现这一计算,如需计算99%危险比的可信区间,可在选择项写入“AL-PHA=0.01RISKLIM IT S ”。ALPHA=0.05为 · 50· 中国卫生统计1997 年第14卷第5期

Logistic回归分析报告结果解读分析

Logistic 回归分析报告结果解读分析 Logistic 回归常用于分析二分类因变量(如存活和死亡、患病和未患病等)与多个自变量的关系。比较常用的情形是分析危险因素与是否发生某疾病相关联。例如,若探讨胃癌的危险因素,可以选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群有不同的临床表现和生活方式等,因变量就为有或无胃癌,即“是” 或“否”,为二分类变量,自变量包括年龄、性别、饮食习惯、是否幽门螺杆菌感染等。自变量既可以是连续变量,也可以为分类变量。通过Logistic 回归分析,就可以大致了解胃癌的危险因素。 Logistic 回归与多元线性回归有很多相同之处,但最大的区别就在于他们的因变量不同。多元线性回归的因变量为连续变量;Logistic 回归的因变量为二分类变量或多分类变量,但二分类变量更常用,也更加容易解释。 1. Logistic 回归的用法 一般而言,Logistic 回归有两大用途,首先是寻找危险因素,如上文的例子,找出与胃癌相关的危险因素;其次是用于预测,我们可以根据建立的Logistic 回归模型,预测在不同的自变量情况下,发生某病或某种情况的概率(包括风险评分的建立)。 2. 用Logistic回归估计危险度 所谓相对危险度(risk ratio , RR)是用来描述某一因素不同状态发生疾病(或其它结局)危险程度的 比值。Logistic回归给出的OR(odds ratio)值与相对危险度类似,常用来表示相对于某一人群,另一人群发生终点事件的风险超出或减少的程度。如不同性别的

胃癌发生危险不同,通过Logistic回归可以求出危险度的具体数值,例如1.7,

logistic回归介绍

logistic回归介绍之三——logistic回归的应用条件 logistic回归与多重线性回归一样,在应用之前也是需要分析一下资料是否可以采用 logistic回归模型。并不是说因变量是分类变量我就可以直接采用logistic回归,有些条件 仍然是需要考虑的。 首要的条件应该是需要看一下自变量与因变量之间是什么样的一种关系。多重线性回归中,要求自变量与因变量符合线性关系。而logistic回归则不同,它要求的是自变量与logit(p)符合线性关系,所谓logit实际上就是ln(P/1-P)。也就是说,自变量应与ln(P/1-P)呈 线性关系。当然,这种情形主要针对多分类变量和连续变量。对于二分类变量就无所谓了,因为两点永远是一条直线。 这里举一个例子。某因素y与自变量x之间关系分析,y为二分类变量,x为四分类变量。如果x的四分类直接表示为1,2,3,4。则分析结果为p=0.07,显示对y的影响在0.05 水准时无统计学意义,而如果将x作为虚拟变量,以1为参照,产生x2,x3,x4三个变量,重新分析,则结果显示:x2,x3,x4的p值分别为0.08,0.05和0.03。也就是说, 尽管2和1相比无统计学意义,但3和1相比,4和1相比,均有统计学意义。 为什么会产生如此结果?实际上如果仔细分析一下,就可以发现,因为x与logit(y)并 不是呈线性关系。而是呈如下图的关系: 这就是导致上述差异的原因。从图中来看,x的4与1相差最大,其次是2,3与1相差 最小。实际分析结果也是如此,上述分析中,x2,x3,x4产生的危险度分别为3.1,2.9,3.4。 因此,一开始x以1,2,3,4的形式直接与y进行分析,默认的是认为它们与logit(p)呈直线关系,而实际上并非如此,因此掩盖了部分信息,从而导致应有的差异没有被检验出来。而一旦转换为虚拟变量的形式,由于虚拟变量都是二分类的,我们不再需要考虑其与logit(p)的关系,因而显示出了更为精确的结果。 最后强调一下,如果你对自变量x与y的关系不清楚,在样本含量允许的条件下,最好转换为虚拟变量的形式,这样不至于出现太大的误差。 如果你不清楚应该如何探索他们的关系,也可以采用虚拟变量的形式,比如上述x,如果 转换的虚拟变量x2,x3,x4他们的OR值呈直线关系,那x基本上可以直接以1,2,3,

如何用spss17.0进行二元和多元logistic回归分析

如何用spss17.0 进行二元和多元logistic 回归分析一、二元logistic 回归分析 二元logistic 回归分析的前提为因变量是可以转化为0、1 的二分变量,如:死亡或者生存,男性或者女性,有或无,Yes 或No,是或否的情况。 下面以医学中不同类型脑梗塞与年龄和性别之间的相互关系来进行二元logistic 回归分析。 (一)数据准备和SPSS 选项设置 第一步,原始数据的转化:如图1-1 所示,其中脑梗塞可以分为ICAS、ECAS 和NCAS 三种,但现在我们仅考虑性别和年龄与ICAS 的关系,因此将分组数据ICAS、ECAS 和NCAS 转化为1、0 分类,是ICAS 赋值为1,否赋值为0。年龄为数值变量,可直接输入到spss中,而性别需要转化为(1、0)分类变量输入到spss当中,假设男性为1,女性为0,但在后续分析中系统会将1,0 置换(下面还会介绍),因此为方便期间我们这里先将男女赋值置换,即男性为“0”,女性为“1”。 图1-1 第二步:打开“二值Logistic 回归分析”对话框:沿着主菜单的“分析(Analyze)→回归(Regression)→二元logistic(Binary Logistic)” 的路径(图1-2)打开二值Logistic 回归分析选项框(图1-3)。 如图1-3左侧对话框中有许多变量,但在单因素方差分析中与ICAS显著相关的为性别、年龄、有无高血压,有无糖尿病等(P<0.05),因此我们这里选择以性别和年龄为例进行分析。

图1-2 图1-3 在图1-3中,因为我们要分析性别和年龄与ICAS的相关程度,因此将ICAS选入因变量(Dependent)中,而将性别和年龄选入协变量(Covariates)框中,在协变量下方的“方法(Method)”一栏中,共有七个选项。采用第一种方法,即系统默认的强迫回归方法(进入“Enter”)。 接下来我们将对分类(Categorical),保存(Save),选项(Options)按照如图1-4、1-5、1-6中所示进行设置。在“分类”对话框中,因为性别为二分类变量,因此将其选入分类协变量中,参考类别为在分析中是以最小数值“0(第一个)”作为参考,还是将最大数值“1(最后一个)”作为参考,这里我们选择第一个“0”作为参考。在“存放”选项框中是指将不将数据输出到编辑显示区中。在“选项”对话框中要勾选如图几项,其中“exp(B)的CI(X)”一定要勾选,这个就是输出的OR和CI值,后面的95%为系统默认,不需要更改。

如何用spss17.0进行二元和多元logistic回归分析

如何用spss17.0进行二元和多元logistic 回归分析 一、二元logistic 回归分析 二元logistic 回归分析的前提为因变量是可以转化为0、1的二分变量,如:死亡或者生存,男性或者女性,有或无,Yes 或No ,是或否的情况。 下面以医学中不同类型脑梗塞与年龄和性别之间的相互关系来进行二元logistic 回归分析。 (一)数据准备和SPSS 选项设置 第一步,原始数据的转化:如图1-1所示,其中脑梗塞可以分为ICAS 、ECAS 和NCAS 三种,但现在我们仅考虑性别和年龄与ICAS 的关系,因此将分组数据ICAS 、ECAS 和NCAS 转化为1、0分类,是ICAS 赋值为1,否赋值为0。年龄为数值变量,可直接输入到spss 中,而性别需要转化为(1、0)分类变量输入到spss 当中,假设男性为1,女性为0,但在后续分析中系统会将1,0置换(下面还会介绍),因此为方便期间我们这里先将男女赋值置换,即男性为“0”,女性为“1”。 第二步:打开“二值Logistic 回归分析”对话框: 沿着主菜单的“分析(Analyze )→回归(Regression )→二元logistic (Binary Logistic )”的路径(图1-2)打开二值Logistic 回归分析选项框(图1-3)。 如图1-3左侧对话框中有许多变量,但在单因素方差分析中与ICAS 显著相关的为性别、年龄、有无高血压,有无糖尿病等(P<0.05 ),因此我们这里选择以性别和年龄为例进行分 图 1-1

析。

在图1-3中,因为我们要分析性别和年龄与ICAS 的相关程度,因此将ICAS 选入因变量(Dependent )中,而将性别和年龄选入协变量(Covariates )框中,在协变量下方的“方法(Method )”一栏中,共有七个选项。采用第一种方法,即系统默认的强迫回归方法(进入“Enter ”)。 接下来我们将对分类(Categorical ),保存(Save ),选项(Options )按照如图1-4、1-5、1-6中所示进行设置。在“分类”对话框中,因为性别为二分类变量,因此将其选入分类协变量中,参考类别为在分析中是以最小数值“0(第一个)”作为参考,还是将最大数值“1(最后一个)”作为参考,这里我们选择第一个“0”作为参考。在“存放”选项框中是指将不将数据输出到编辑显示区中。在“选项”对话框中要勾选如图几项,其中 图 1-2 图1-3 图1-3

如何用SPSS做logistic回归分析

如何用spss17.0进行二元和多元logistic回归分析 一、二元logistic回归分析 二元logistic回归分析的前提为因变量是可以转化为0、1的二分变量,如:死亡或者生存,男性或者女性,有或无,Yes或No,是或否的情况。 下面以医学中不同类型脑梗塞与年龄和性别之间的相互关系来进行二元logistic回归分析。 (一)数据准备和SPSS选项设置 第一步,原始数据的转化:如图1-1所示,其中脑梗塞可以分为ICAS、ECAS和NCAS三种,但现在我们仅考虑性别和年龄与ICAS的关系,因此将分组数据ICAS、ECAS和NCAS转化为1、0分类,是ICAS赋值为1,否赋值为0。年龄为数值变量,可直接输入到spss中,而性别需要转化为(1、0)分类变量输入到spss当中,假设男性为1,女性为0,但在后续分析中系统会将1,0置换(下面还会介绍),因此为方便期间我们这里先将男女赋值置换,即男性为“0”,女性为“1”。 图1-1 第二步:打开“二值Logistic 回归分析”对话框: 沿着主菜单的“分析(Analyze)→回归(Regression)→二元logistic (Binary Logistic)”的路径(图1-2)打开二值Logistic 回归分析选项框(图1-3)。

如图1-3左侧对话框中有许多变量,但在单因素方差分析中与ICAS 显著相关的为性别、年龄、有无高血压,有无糖尿病等(P<0.05),因此我们这里选择以性别和年龄为例进行分析。

在图1-3中,因为我们要分析性别和年龄与ICAS的相关程度,因此将ICAS选入因变量(Dependent)中,而将性别和年龄选入协变量(Covariates)框中,在协变量下方的“方法(Method)”一栏中,共有七个选项。采用第一种方法,即系统默认的强迫回归方法(进入“Enter”)。 接下来我们将对分类(Categorical),保存(Save),选项(Options)按照如图1-4、1-5、1-6中所示进行设置。在“分类”对话框中,因为性别为二分类变量,因此将其选入分类协变量中,参考类别为在分析中是以最小数值“0(第一个)”作为参考,还是将最大数值“1(最后一个)”作为参考,这里我们选择第一个“0”作为参考。在“存放”选项框中是指将不将数据输出到编辑显示区中。在“选项”对话框中要勾选如图几项,其中“exp(B)的CI(X)”一定要勾选,这个就是输出的OR和CI值,后面的95%为系统默认,不需要更改。

二元logistic逻辑回归分析8)

《应用二分类Logistic回归模型分析浅表淋巴结良恶性的超声诊断结果》文中把与恶性相关的指标赋值记录为1,与良性相关的指标赋值记录为0:单发(记 为0),多发(记为1)。测量淋巴结最大切面的长径和短径,计算长短径比值,大于等于2 记为0,小于2记为1。边界以淋巴结周围亮线样回声完整为清晰(记为0),回声不完整或与其他淋巴结融合为不清晰(记为1)。内部回声及分布主要分析皮质回声,低于髓质为低回声(记为0),高于髓质为高回声(记为1);分布均匀一致(记为1),内部回声混杂多样(记 为0)。如果淋巴结内存在无回声区则为透声(记为0),否则为无透声(记为1)。淋巴结门结构主要分析髓质,以中心高回声带存在为清晰(记为0),消失为不清晰(记为1)。肿大淋巴结彼此孤立为不融合(记为0),不同肿大淋巴结不能区分开为相互融合(记为1)。淋巴结血供以清晰显示多条血管状血流信号为丰富(记为1),无明显血流或只有少量点状血流信号为不丰富(记为0)。其血流信号类型为无血流型(0 型),血流信号沿淋巴门分布为淋巴门型血流(1 型),淋巴结内有血流信号但无规则分布为中心型血流(2 型),淋巴门处无血流信号而血流信号主要分布在淋巴结周围为周边型血流(3 型),淋巴结内部及周边均有血流为混合型血流(4 型)。 本文以超声检查淋巴结的各观察值为自变量,以淋巴结的良恶性为因变量,构建二分类Logistic回归模型,采用偏最大似然估计前进法进行对因变量逐步回归,对模型的拟合优度进行Hosmer-Lemeshow(HL)检验,并采用2x检验,自由度为8,P=(>),证明模型拟合得较好,说明当前数据中的信息以及被充分提取,并且可以排除混杂因素的影响。模型判断恶性淋巴结概率预测值的ROC曲线中,得到AUC为±,P<,95%可信区间为(,),证明该模型的拟合效果较好,用于预测淋巴结的良恶性效果也很好。另外,血流类型亚变量分析结果显示,均以无血流信号型血流为参照水平,淋巴门型血流的OR值小于1,提示支持良性诊断,中心型血流的OR 值大于1,提示支持恶性诊断,但两组P值均大于,无显著统计学意义。而与无血流信号型相比,周边型血流和混合型血流的OR值均大于1,支持恶性诊断,且P值均小于,有非常显著的统计学意义。 在良恶性淋巴结超声诊断指标的对比结果中,其中边界是否清晰、内部回声是否均匀、有无淋巴门结构、血流是否丰富、是否有透声区以及长短径比值的赋值在良恶性淋巴结比较中P 值均小于,说明有显著统计学差异。血流类型的统计结果显示,淋巴结的良恶性与血流类型的P值小于,表示有非常显著统计学相关性。 因此,二分类Logistic 回归多元分析模型能够很好地描述和分析良恶性淋巴结的超声鉴别

多元logistic回归实习题

多元logistic回归 1. 下面是子宫内膜癌的病例对照研究数据,暴露因素是雌激素。 分组使用过雌激素未使用过雌激素 病例组55(a)128(b) 对照组19(c)164(d) 问题:使用过雌激素是否是子宫内膜癌的危险因素?危险强度为多少? 2. 为了探讨糖尿病与血压、血脂等因素的关系,研究者对56例糖尿病病人和65例对照者进行病例-对照研究,收集了性别、年龄、学历、体重指数、家族史、吸烟、血压、总胆固醇、甘油三脂、高密度脂蛋白、低密度脂蛋白11个因素的资料,各因素的观察结果见下表。问题:糖尿病的相关因素有哪些?如何解释相关因素的作用大小?如何评价模型优劣? 因素变量名赋值 性别X1男=1,女=2 年龄X2 学历X3小学以下=1,小学=2,初中=3,高中=4,大专及以上=5 体重指数X4<24=1,24~<26=2,26~=3 家族史X5无=1,有=2 吸烟X6不吸=1 吸=2 血压X7正常=1, 高=2 总胆固醇X8 甘油三脂X9 高密度脂蛋白X10 低密度脂蛋白X11 糖尿病Y 对照=0,病例=1 编号性别年龄学历体重 指数 家族史吸烟血压 总胆 固醇 甘油 三脂 高密度 脂蛋白 低密度 脂蛋白 糖尿病 1 1 60 2 2 1 1 1 4.30 1.50 1.24 2.30 0 2 1 48 3 2 1 1 1 4.60 1.32 1.15 2.30 0 3 2 63 2 1 1 1 2 4.60 1.15 1.15 2.30 0 4 1 68 3 2 2 1 1 4.1 5 1.43 1.07 3.21 0 5 1 45 2 1 2 1 1 3.42 1.22 0.63 2.30 0 6 1 45 3 3 2 1 1 4.16 0.96 0.98 2.65 0 7 1 59 2 1 1 1 1 4.32 1.02 1.05 3.49 0 8 1 68 3 3 1 1 1 3.80 1.42 2.86 0.85 0 9 2 63 2 2 1 1 1 3.87 1.55 2.44 0.81 0 10 2 58 2 2 1 1 1 5.42 0.87 4.46 3.14 0 11 1 44 2 2 2 1 2 4.35 1.01 5.13 2.20 0 12 1 46 3 1 1 2 1 3.42 1.26 1.40 0.28 0 13 2 62 1 2 1 1 2 3.18 1.38 1.67 0.48 0 14 2 65 1 2 1 1 1 3.30 0.85 1.92 0.69 0 15 2 58 2 1 1 1 2 4.41 1.05 2.97 1.79 0

Logistic回归分析

Logistic 回归分析 Logistic 回归分析是与线性回归分析方法非常相似的一种多元统计方法。适用于因变量的取值仅有两个(即二分类变量,一般用1和0表示)的情况,如发病与未发病、阳性与阴性、死亡与生存、治愈与未治愈、暴露与未暴露等,对于这类数据如果采用线性回归方法则效果很不理想,此时用Logistic 回归分析则可以很好的解决问题。 一、Logistic 回归模型 设Y 是一个二分类变量,取值只可能为1和0,另外有影响Y 取值的n 个自变量12,,...,n X X X ,记12(1|,,...,)n P P Y X X X ==表示在n 个自变量的作用下Y 取值为1的概率,则Logistic 回归模型为: [] 011221 1exp (...)n n P X X X ββββ= +-++++ 它可以化成如下的线性形式: 01122ln ...1n n P X X X P ββββ??=++++ ?-?? 通常用最大似然估计法估计模型中的参数。 二、Logistic 回归模型的检验与变量筛选 根据R Square 的值评价模型的拟合效果。 变量筛选的原理与普通的回归分析方法是一样的,不再重复。 三、Logistic 回归的应用 (1)可以进行危险因素分析 计算结果各关于各变量系数的Wald 统计量和Sig 水平就直接反映了因素i X 对因变量Y 的危险性或重要性的大小。

(2)预测与判别 Logistic回归是一个概率模型,可以利用它预测某事件发生的概率。当然也可以进行判别分析,而且可以给出概率,并且对数据的要求不是很高。 四、SPSS操作方法 1.选择菜单 2.概率预测值和分类预测结果作为变量保存 其它使用默认选项即可。

Logistic回归模型

Logistic 回归模型 1 Logistic 回归模型的基本知识 1.1 Logistic 模型简介 主要应用在研究某些现象发生的概率p ,比如股票涨还是跌,公司成功或失败的概率,以及讨论概率 p 与那些因素有关。显然作为概率值,一定有10≤≤p ,因此很难用线性模型描述概率p 与自变量的关 系,另外如果p 接近两个极端值,此时一般方法难以较好地反映p 的微小变化。为此在构建p 与自变量关系的模型时,变换一下思路,不直接研究p ,而是研究p 的一个严格单调函数)(p G ,并要求)(p G 在p 接近两端值时对其微小变化很敏感。于是Logit 变换被提出来: p p p Logit -=1ln )( (1) 其中当p 从10→时,)(p Logit 从+∞→∞-,这个变化范围在模型数据处理上带来很大的方便, 解决了上述面临的难题。另外从函数的变形可得如下等价的公式: X T X T T e e p X p p p Logit ββ β+= ?=-=11ln )( (2) 模型(2)的基本要求是,因变量(y )是个二元变量,仅取0或1两个值,而因变量取1的概率) |1(X y P =就是模型要研究的对象。而T k x x x X ),,,,1(21Λ=,其中i x 表示影响y 的第i 个因素,它可以是定性变量也可以是定量变量,T k ),,,(10ββββΛ=。为此模型(2)可以表述成: k x k x k x k x k k e e p x x p p βββββββββ+++++++= ?+++=-ΛΛΛ11011011011ln (3) 显然p y E =)(,故上述模型表明) (1) (ln y E y E -是k x x x ,,,21Λ的线性函数。此时我们称满足上面条件 的回归方程为Logistic 线性回归。 Logistic 线性回归的主要问题是不能用普通的回归方式来分析模型,一方面离散变量的误差形式服从伯努利分布而非正态分布,即没有正态性假设前提;二是二值变量方差不是常数,有异方差性。不同于多元线性回归的最小二乘估计法则(残差平方和最小),Logistic 变换的非线性特征采用极大似然估计的方法寻求最佳的回归系数。因此评价模型的拟合度的标准变为似然值而非离差平方和。 定义1 称事件发生与不发生的概率比为 优势比(比数比 odds ratio 简称OR),形式上表示为 OR= k x k x e p p βββ+++=-Λ1101 (4) 定义2 Logistic 回归模型是通过极大似然估计法得到的,故模型好坏的评价准则有似然值来表征,称

如何用spss实现配比的条件logistics回归分析

如何用spss实现配比的条件logistics回归分析 孙大鹏sundapeng87@https://www.360docs.net/doc/368381602.html, 仅以此篇献给那些专注于使用spss而不会使用sas、R、epiinfo 等统计软件的同志,spss是大家用的非常广泛的统计工具,它的数据管理非常直观,但是有一点就是它的回归分析中没有条件logistics回归分析模块。而这个分析模块在后三个软件中可以轻松实现。 下面就给大家介绍一下如何使用spss进行条件logistics回归分析。原理就是利用生存分析中的cox回归模型。 一、变量准备。 (一)首先我们准备好的数据应该有个因变量y,为0,1格式的,0代表对照或未发病,1代表病例或已发病。 (二)我们要分析的自变量x1,x2,一般为二分类变量,1或0,是否。当然也可以是多组的分类变量,这个比较麻烦(一般不推荐,后面结果分析会说一下)。 (三)分组变量标注分组的代码group。假设1:4配比,这5个个案为一组,共用一个group号。 (四)Cox回归模型,需要一个time的生存时间变量,这个变量我们这样设置,首先有个因变量y,为0,1格式的,计算time=2-y。这样子就是设置成病例生存时间为1,对照生存时间为2。病例发病对照不发病,对照的生存时间必然要长于病例。 数据见附件1 二、操作步骤

(一)数据导入spss。不会的回家自己学去。 (二)分析----生存函数----Cox回归打开对话框 (三)选取变量,第一时间选入time变量;第二个状态选入y 即病例和对照,定义事件为为1; 协变量选择X,你要分析的因素 方法选择向前条件 分层选择group;重要 选项中可以设置计算可信区间

利用SPSS进行logistic回归分析(二元、多项)

线性回归是很重要的一种回归方法,但是线性回归只适用于因变量为连续型变量的情况,那如果因变量为分类变量呢?比方说我们想预测某个病人会不会痊愈,顾客会不会购买产品,等等,这时候我们就要用到logistic回归分析了。Logistic回归主要分为三类,一种是因变量为二分类得logistic回归,这种回归叫做二项logistic回归,一种是因变量为无序多分类得logistic回归,比如倾向于选择哪

种产品,这种回归叫做多项 logistic回归。还有一种是因变量为有序多分类的logistic回归,比如病重的程度是高,中,低呀等等,这种回归也叫累积logistic回归,或者序次logistic回归。 欧阳学文 二值logistic回归: 选择分析——回归——二元logistic,打开主面板,因变量勾选你的二分类变量,这个没有什么疑问,然后看下边写着一个协变量。有没有很奇怪什么叫做协变量?在二元logistic 回归里边可以认为协变量类似于自变量,或者就是自变量。把你的自变量选到协变量的框框里边。

细心的朋友会发现,在指向协变量的那个箭头下边,还有一个小小的按钮,标着a*b,这个按钮的作用是用来选择交互项的。我们知道,有时候两个变量合在一起会产生新的效应,比如年龄和结婚次数综合在一起,会对健康程度有一个新的影响,这时候,我们就认为两者有交互效应。那么我们为了模型的准确,就把这个交互效应也选到模型里去。我们在右边的那个框框里选择变量a,按住ctrl,在选择变量b,那么我们就同时选住这两个变量了,然后点那个a*b的按钮,这样,一个新的名字很长的变量就出现在协变量的框框里了,就是我们的交互作用的变量。 然后在下边有一个方法的下拉菜单。默认的是进入,就是强迫所有选择的变量都进入到模型里边。除去进入法以外,还有三种向前法,三种向后法。一般默认进入就可以了,如果做出来的模型有变量的p值不合格,就用其他方法在做。再下边的选择变量则是用来选择你的个案的。一般也不用管它。 选好主面板以后,单击分类(右上角),打开分类对话框。在这个对话框里边,左边的协变量的框框里边有你选

logistic回归

定性资料的回归分析------Logistic 回归 Logistic 模型的主要用途: 1. 用作影响因素分析 2.作为判别分析方法 第一节 二分类变量的logistic 回归 逻辑回归区别于线性回归,最主要的特点就一个:它的因变量是0-1型数据。啥是0-1型数据?就是这个数据有且仅有两个可能的取值。数学上为了方便,把其中一个记作0,另外一个记作1. 例1:购买决定:我是买呢?还是买呢?还是买呢?如果您的决策永远是:买、买、买,这不是0-1数据。我们说的购买决策是:买还是不买? 定义:1=购买,0=不购买。这个关于购买决定的0-1变量老牛了。为啥?因为它支撑了太多的重要应用。例如,我生产了一瓶矿泉水,叫做“农妇山泉有点咸”, 到底卖给谁呢?为此,我们需要做市场定位。什么是市场定位?市场定位从回归分析的角度看,就是想知道:谁会买这个产品?谁不会买?或者说:谁购买这个产品的可能性大,谁购买的可能性小。这样我们就可以瞄准可能性最高的一批人,他们就构成了我的目标市场。这就是我们通常所说的市场定位。 令Y 表示购买决定,那么影响它的因素有很多。比如,消费者自己的人口特征1X 、消费者过去的购买记录是2X 、来自社交网络朋友的行为信息3X 、产品自己的特征4X 、产品正在承受的市场手段策略(例如:促销)5X 、竞争对手的市场动作6X 等等。 一.模型建立 理论回归模型:01122ln ...,1p p p x x x p ββββ=+++-其中1(1,...,)p p p y x x ==。 注: 1p p - 称为优势(odds), 表示某个事件的相对危险度. 获得容量为n 的样本()12,,,,1,...,i i ip i x x x y i n =后可得样本回归模型: 01122ln ,1i i i p ip i p x x x p ββββ=+++-其中1(1,...,)i i p p p y x x ==,1,...,i n =。 补充说明 (1)逻辑回归模型的整个生成过程是以构造性的思想为主,而不是因为:上帝他老人家生成数据的真实机制是这样的,没有那么巧的事。 (2)逻辑回归构造的核心思想是通过逻辑变换把0-1之间的概率变换为正负无穷之间的一个数字。给定一组数据,如果赶巧了,他能够被逻辑回归模型很好的拟合,那么相应的估计精度和预测精度都会很优秀。但是,绝大多数情况下,拟合效果跟上帝比,差得远,跟拍脑袋比,好很多。所以,这就成就了逻辑回归,作为一种最常见的0-1回归分析方法的重要地位。 (3)通过逻辑回归模型,我们可以对一个样本Y 取值为1的概率予以测算,然

如何用spss170进行二元和多元logistic回归分析

` 如何用spss17.0进行二元和多元logistic回归分析 一、二元logistic回归分析 二元logistic回归分析的前提为因变量是可以转化为0、1的二分变量,如:死亡或者生存,男性或者女性,有或无,Yes或No,是或否的情况。 下面以医学中不同类型脑梗塞与年龄和性别之间的相互关系来进行二元 logistic回归分析。 (一)数据准备和SPSS选项设置 第一步,原始数据的转化:如图1-1所示,其中脑梗塞可以分为ICAS、ECAS和NCAS三种,但现在我们仅考虑性别和年龄与ICAS的关系,因此将分组数据ICAS、ECAS和NCAS转化为1、0分类,是ICAS赋值为1,否赋值为0。年龄为数值变量,可直接输入到spss中,而性别需要转化为(1、0)分类变量输入到spss 当中,假设男性为1,女性为0,但在后续分析中系统会将1,0置换(下面还会介绍),因此为方便期间我们这里先将男女赋值置换,即男性为“0”,女性为“1”。 图1-1 第二步:打开“二值Logistic 回归分析”对话框: )”(Binary LogisticRegression)→二元logistic((沿着主菜单的“分析Analyze)→回归的路径(图1-2)打开二值Logistic 回归分析选项框(图1-3)。 如图1-3左侧对话框中有许多变量,但在单因素方差分析中与ICAS显著相关的为性别、年龄、有无高血压,有无糖尿病等(P<0.05),因此我们这里选择以性别和年龄为例进行分析。 文档Word `

图1-2 图1-3 在图1-3中,因为我们要分析性别和年龄与ICAS的相关程度,因此将ICAS选入因变量(Dependent)中,而将性别和年龄选入协变量(Covariates)框中,在协变量下方的“方法(Method)”一栏中,共有七个选项。采用第一种方法,即系统默认的强迫回归方法(进入“Enter”)。 接下来我们将对分类(Categorical),保存(Save),选项(Options)按照如图1-4、1-5、1-6中所示进行设置。在“分类”对话框中,因为性别为二分类变量,因此将其选入分类协变量中,参考类别为在分析中是以最小数值“0(第一个)”作为参考,还是将最大数值“1(最后一个)”作为参考,这里我们选择第一个“0”作为参考。在“存放”选项框中是指将不将数据输出到编辑显示区中。在“选项”对话框中要勾选如图几项,其中“exp(B)的CI(X)”一定要勾选,这个就是输出的OR和CI值,后面的95%为系统默认,不需要更改。 文档Word `

相关文档
最新文档