logistic回归分析
Logistic回归分析报告结果解读分析-logit回归解读

Logistic回归分析报告结果解读分析Logistic回归常用于分析二分类因变量(如存活与死亡、患病与未患病等)与多个自变量得关系。
比较常用得情形就是分析危险因素与就是否发生某疾病相关联。
例如,若探讨胃癌得危险因素,可以选择两组人群,一组就是胃癌组,一组就是非胃癌组,两组人群有不同得临床表现与生活方式等,因变量就为有或无胃癌,即“就是”或“否”,为二分类变量,自变量包括年龄、性别、饮食习惯、就是否幽门螺杆菌感染等。
自变量既可以就是连续变量,也可以为分类变量。
通过Logistic回归分析,就可以大致了解胃癌得危险因素。
Logistic回归与多元线性回归有很多相同之处,但最大得区别就在于她们得因变量不同。
多元线性回归得因变量为连续变量;Logistic回归得因变量为二分类变量或多分类变量,但二分类变量更常用,也更加容易解释。
1、Logistic回归得用法一般而言,Logistic回归有两大用途,首先就是寻找危险因素,如上文得例子,找出与胃癌相关得危险因素;其次就是用于预测,我们可以根据建立得Logistic 回归模型,预测在不同得自变量情况下,发生某病或某种情况得概率(包括风险评分得建立)。
2、用Logistic回归估计危险度所谓相对危险度(risk ratio,RR)就是用来描述某一因素不同状态发生疾病(或其它结局)危险程度得比值。
Logistic回归给出得OR(odds ratio)值与相对危险度类似,常用来表示相对于某一人群,另一人群发生终点事件得风险超出或减少得程度。
如不同性别得胃癌发生危险不同,通过Logistic回归可以求出危险度得具体数值,例如1、7,这样就表示,男性发生胃癌得风险就是女性得1、7倍。
这里要注意估计得方向问题,以女性作为参照,男性患胃癌得OR就是1、7。
如果以男性作为参照,算出得OR将会就是0、588(1/1、7),表示女性发生胃癌得风险就是男性得0、588倍,或者说,就是男性得58、8%。
LOGISTIC回归分析

LOGISTIC回归分析前⾯的博客有介绍过对连续的变量进⾏线性回归分析,从⽽达到对因变量的预测或者解释作⽤。
那么如果因变量是离散变量呢?在做⾏为预测的时候通常只有“做”与“不做的区别”、“0”与“1”的区别,这是我们就要⽤到logistic分析(逻辑回归分析,⾮线性模型)。
参数解释(对变量的评价)发⽣⽐(odds): ODDS=事件发⽣概率/事件不发⽣的概率=P/(1-P)发⽣⽐率(odds ratio):odds ratio=odds B/odds A (组B相对于组A更容易发⽣的⽐率)注:odds ratio⼤于1或者⼩于1都有意义,代表⾃变量的两个分组有差异性,对因变量的发⽣概率有作⽤。
若等于1的话,该组变量对事件发⽣概率没有任何作⽤。
参数估计⽅法线性回归中,主要是采⽤最⼩⼆乘法进⾏参数估计,使其残差平⽅和最⼩。
同时在线性回归中最⼤似然估计和最⼩⼆乘发估计结果是⼀致的,但不同的是极⼤似然法可以⽤于⾮线性模型,⼜因为逻辑回归是⾮线性模型,所以逻辑回归最常⽤的估计⽅法是极⼤似然法。
极⼤似然公式:L(Θ)=P(Y1)P(Y2)...p(Y N) P为事件发⽣概率P I=1/(1+E-(α+βX I))在样本较⼤时,极⼤似然估计满⾜相合性、渐进有效性、渐进正太性。
但是在样本观测少于100时,估计的风险会⽐较⼤,⼤于100可以介绍⼤于500则更加充分。
模型评价这⾥介绍拟合优度的评价的两个标准:AIC准则和SC准则,两统计量越⼩说明模型拟合的越好,越可信。
若事件发⽣的观测有n条,时间不发⽣的观测有M条,则称该数据有n*m个观测数据对,在⼀个观测数据对中,P>1-P,则为和谐对(concordant)。
P<1-P,则为不和谐对(discordant)。
P=1-P,则称为结。
在预测准确性有⼀个统计量C=(NC-0.5ND+0.5T)/T,其中NC为和谐对数,ND为不和谐对数,这⾥我们就可以根据C统计量来表明模型的区分度,例如C=0.68,则表⽰事件发⽣的概率⽐不发⽣的概率⼤的可能性为0.68。
数据分析知识:数据分析中的Logistic回归分析

数据分析知识:数据分析中的Logistic回归分析Logistic回归分析是数据分析中非常重要的一种统计分析方法,它主要用于研究变量之间的关系,并且可以预测某个变量的取值概率。
在实际应用中,Logistic回归分析广泛应用于医学疾病、市场营销、社会科学等领域。
一、Logistic回归分析的原理1、概念Logistic回归分析是一种分类分析方法,可以将一个或多个自变量与一个二分类的因变量进行分析,主要用于分析变量之间的关系,并确定自变量对因变量的影响。
Logistic回归分析使用的是逻辑回归模型,该模型是将自变量与因变量的概率映射到一个范围为0-1之间的变量上,即把一个从负无穷到正无穷的数映射到0-1的范围内。
这样,我们可以用这个数值来表示某个事件发生的概率。
当这个数值大于0.5时,我们就可以判定事件发生的概率比较高,而当这个数值小于0.5时,我们就可以判定事件发生的概率比较小。
2、方法Logistic回归分析的方法有两种:一是全局最优化方法,二是局部最优化方法。
其中全局最优化方法是使用最大似然估计方法,而局部最优化方法则是使用牛顿法或梯度下降算法。
在进行Logistic回归分析之前,我们首先要对数据进行预处理,将数据进行清洗、变量选择和变量转换等操作,以便进行回归分析。
在进行回归分析时,我们需要先建立逻辑回归模型,然后进行参数估计和模型拟合,最后进行模型评估和预测。
在进行参数估计时,我们通常使用最大似然估计方法,即在估计参数时,选择最能解释样本观测数据的参数值。
在进行模型拟合时,我们需要选取一个合适的评价指标,如准确率、召回率、F1得分等。
3、评价指标在Logistic回归分析中,评价指标包括拟合度、准确性、鲁棒性、可解释性等。
其中最常用的指标是拟合度,即模型对已知数据的拟合程度,通常使用准确率、召回率、F1得分等指标进行评价。
此外,还可以使用ROC曲线、AUC值等指标评估模型的性能。
二、Logistic回归分析的应用1、医学疾病预测在医学疾病预测中,Logistic回归分析可以用来预测患某种疾病的概率,如心脏病、肺癌等。
统计学中的Logistic回归分析

统计学中的Logistic回归分析Logistic回归是一种常用的统计学方法,用于建立并探索自变量与二分类因变量之间的关系。
它在医学、社会科学、市场营销等领域得到广泛应用,能够帮助研究者理解和预测特定事件发生的概率。
本文将介绍Logistic回归的基本原理、应用领域以及模型评估方法。
一、Logistic回归的基本原理Logistic回归是一种广义线性回归模型,通过对数据的处理,将线性回归模型的预测结果转化为概率值。
其基本原理在于将一个线性函数与一个非线性函数进行组合,以适应因变量概率为S形曲线的特性。
该非线性函数被称为logit函数,可以将概率转化为对数几率。
Logistic回归模型的表达式如下:\[P(Y=1|X) = \frac{1}{1+e^{-(\beta_0+\beta_1X_1+...+\beta_pX_p)}}\]其中,P(Y=1|X)表示在给定自变量X的条件下,因变量为1的概率。
而\(\beta_0\)、\(\beta_1\)、...\(\beta_p\)则是待估计的参数。
二、Logistic回归的应用领域1. 医学领域Logistic回归在医学领域中具有重要的应用。
例如,研究者可以使用Logistic回归分析,探索某种疾病与一系列潜在风险因素之间的关系。
通过对患病和非患病个体的数据进行回归分析,可以估计各个风险因素对疾病患病的影响程度,进而预测某个个体患病的概率。
2. 社会科学领域在社会科学研究中,研究者常常使用Logistic回归来探索特定变量对于某种行为、态度或事件发生的影响程度。
例如,研究者可能想要了解不同性别、教育程度、收入水平对于选民投票行为的影响。
通过Logistic回归分析,可以对不同自变量对于投票行为的作用进行量化,进而预测某个选民投票候选人的概率。
3. 市场营销领域在市场营销中,Logistic回归也被广泛应用于客户分类、市场细分以及产品销量预测等方面。
通过分析客户的个人特征、购买习惯和消费行为等因素,可以建立Logistic回归模型,预测不同客户购买某一产品的概率,以便制定个性化的市场营销策略。
统计学-logistic回归分析

在患病率较小情况下,OR≈RR
• Logistic回归中的常数项(b0)表示, 在不接触任何潜在危险/保护因素条 件下,效应指标发生与不发生事件的 概率之比的对数值。 • Logistic回归中的回归系数( bi )表示, 某一因素改变一个单位时,效应指标 发生与不发生事件的概率之比的对数 变化值,即OR的对数值。
( 0 1 x1 ) ( 0 x0 ) 1 x1
OR e
P odds1 1 /(1 P 1) OR P0 /(1 P0 ) odds0
Y 发病=1 不发病=0
危险因素 x= 1 x= 0 30(a) 10( b) 70(c) 90(d) a+c b+d 危险因素 x= 1 x= 0 p1 p0 1-p1 1-p0
i
事件发生率很小,OR≈RR。
二、 Logistic回归模型
• Logistic回归的分类
二分类 多分类
条件Logistic回归 非条件Logistic回归
• Logit变换
也称对数单位转换
P logit P= ln 1 P
流行病学概念:
设P表示暴露因素X时个体发病的概率, 则发病的概率P与未发病的概率1-P 之 比为优势(odds), logit P就是odds 的对数值。
Y 发病=1 不发病=0a p1 ac源自有暴露因素人群中发病的比例
多元回归模型的的 i 概念
P logit(p) ln = 0 1 X 1 1 P m X m
i 反映了在其他变量固定后,X=1与x=0相比
发生Y事件的对数优势比。 回归系数β与OR X与Y的关联 • β=0,OR=1, 无关 β>0,OR>1 , 有关,危险因素 β<0,OR<1, 有关,保护因子
第十九章 Logistic回归分析

三、回归模型的假设和回归系数的区间估计
1. 回归模型的假设检验 H0:β=0 (模型中不含变量) H1: β≠ 0 (模型中含变量)
统计量:G = - 2lnL- (-2lnL') ~ χ2(k) 在例19-1中的SAS结果中:
Model Fit Statistics Criterion Pr > ChiSq AIC SC <0.0001 -2 Log L Intercept Only 246.346 249.644 244.346 Intercept and Covariates 230.616 243.809 222.616
Logistic回归模型的分类 按反应变量的类型分:
1.两分类的 Logistic 回归模型
2.多分类有序反应变量的 Logistic 回归模型
3.多分类无序反应变量的 Logistic 回归模型式
按设计类型分: 1.非条件 Logistic 回归模型,研究对象未经过配对的成组资料 2.条件 Logistic 回归模型,研究对象为1︰1或1︰m 配对资料
一、 Logistic 回归分析的实例
例19-1 在抢救急性心肌梗死(AMI)患者能否成功的危险因素调查中,某
医院收集了5年中该院所有的AMI患者的抢救病史共200例。在抢救前:X1=1表 示已发生休克,X1=0表示未发生休克;X2=1表示发生心衰, X2=0表示未发生
心衰;X3=1表示12小时内将患者送往医院, X3=0表示12小时内未将患者送往
第二节
Logistic 回归模型的参数估计和假设检验
一、参数意义(释义同于病例-对照设计研究)
1. 相对危险度RR (Re lative Risk) RR P 1 P0
logistic回归分析

Logistic回归分析
数学模型:
e p 1 e
1 X 1 2 X 2 m X m
1 X 1 2 X 2 m X m
Logistic回归分析
一、基本思想
用模型去描述实际资料时,须使 得理论结果与实际结果尽可能的一致。
资料整理格式
Logistic回归分析
1
消除xj量纲的影响
2.标准化偏回归系数j 的意义
果的发生,为“不利因素”;
xij
xij x j sj
(1)符号:取 “+”,xj 增大,则P增大,即促进阳性结
取 “-”,xj增大,则P减小,即抑制阳性结 果的发生,为“保护因素”。 (2)大小 :∣ j ∣越大,则xj 对结果的影响也就越大。
i 1 2 n
x1 x11 x21 xn1
x2
...
xm x1m x2m xnm
δ δ δ δ
1 2
x12 ... x22 ... …... xn2 ...
n
Logistic回归分析
二、基本原理
1.结果问题 : 对于第i个个体而言,其理论结果为pi , 而实际结果是i 。 2.一致问题: 对于第i个个体而言, i =1 pi i =0 qi
m
▲
OR e j 1
j ) ˆ j ( x*j x
(1)对多指标的共同效应进行评价:
若OR>1,则处于X*水平下的阳性结果发生风险要高于X 水平, 即“不利因素”占主导地位;
▲
▲
若OR<1,则处于X*水平下的阳性结果发生风险要低于X 水平, 即“保护因素”占主导地位;
▲
Logistic回归分析

注:因为p>a,所以认为样本实际值得到的分布与 预测值得到的分布无显著差异,模型拟合优度较好 。
33
注:模型整体的准确度不高,对不购买人群的准确 率极高,对购买人群的准确率很低。
34
注:预测类别图上可以看出,预测概率在0.4附近的 样本预测准确率相对最低。事实上,无论用什么分 类方法,这类样本身就是最难预测的。
Hosmer—Lemeshow检验:通过模型可以计算出给 定解释变量取值时被解释变量取1的概率预测。如 果模型拟合较好,则应给实际值为1的样本以较高 的概率,给实际值为0的样本以低的概率预测值。 于是对概率预测值进行分位数分组(通常为10分位 数,将样本分为10组),预测概率大小分得的10组 和实际观测值0/1类别分组形成了交叉列联表。由 观测频数和期望频数计算卡方统计量,即Hosmer— Lemeshow统计量,它服从自由度为n-2的卡方分布 ,n为组数。
39
模型拟合优度的评价与检验 目的:第一,回归方程能够解释被解释变量变差的 程度,即线性回归的部分能解释LogitP的程度,这 一点与一般线性回归分析是相同的;第二,由回归 方程得到的概率进行分别判别的准确率。 方法: 第一目的:Cox &Snell R2 统计量和 Nagel ker ke R2 统计量 第二目的:混淆矩阵(错判矩阵)和 Hosmer-Lemeshow检验
16
2 L0 N 1 ( ) 2 Cox & Snell R 统计量= L1
,N为样本容量。 该统计量类似于一般线性模型中的R方,统计量的值 越大表明模型的拟合优度越高。不足之处在于其取值 范围无法确定,不利于模型之间的比较。
Cox &Snell R 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0
1X1
2X2
mXm
10
若 Z 0 1X1 2 X 2 m X m 则 P 1 1 eZ
1P
00..55
0
Z
-4 -3 -2 -1 0 1 2 3 4
图16-1 logistic函数的图形
11
2.模型参数的意义
ln P 1 P
0
1X1
2X2
mXm
logitP
常数项β0表示暴露剂量为0时个体发病与
20
二、logistic回归模型的参数估计
数据格式: 同多元线性回归分析的数据格式 参数估计:
最大似然估计(maximum likelihood
estimate,MLE)法 可利用统计软件实现。
21
优势比估计: 某一因素两个不同水平优势比的估计值为
OR j exp bj C1 C0
Xj只有两个水平时ORj的1-α可信区间为:
研究二分类或多分类观察结果与一些影响
因素之间关系的一种多变量分析方法。
7
一、基本概念
二分类变量
连续变量
因变量Y=
1 0
阳性率P:(0,1)
ln
P 1-P
:
(,
)
Logit变换
8
ln P 1 P
0
1X1
2X2
mXm
P
1
1 exp[(0 1 X1 2 X 2 L m X m )]
32
33
34
Variables in the Equation
S1ta ep
x6 Constant
S2tb ep
x5 x6
Constant
B 2.826 -.523 1.828 3.059
-1.281
S.E. 1.095 .315 .680 1.144
.461
Wald 6.657 2.751 7.227 7.143
X7
<24=1, 24<26=2, 26=3
A型性格
X8
否=0,是=1
冠心病
Y
对照=0,病例=1
30
表16-3 冠心病危险因素的病例对照调查资料
序 号
X1
X2
X3
X4
X5
X6
X7
X8
Y
1 31 0 1 0 0 1 1 0
2 20 1 1 0 0 1 0 0
3 21 0 1 0 0 1 0 0
… …… … … … … … … …
OR95%CI
1.039 1.989 1.333 1.039
19.181 265.945 36.834 19.181
36
SPSS中筛选自变量的方法: 1.Forward:即表示逐步回归
三种方法:选入时用记分检验,剔除时 标准不同
54 3 1 1 0 1 0 3 1 1
31
SPSS的应用:
Analyze→ Regression→ binary logistic →dependent:y covariates:x1-x8 method: forward: LR options: enter: 0.10 remove: 0.15 →OK
exp0.8856 1.96 0.1500 1.81, 3.25 24
b1 0.8856 Sb1 0.1500 b2 0.5261 Sb2 0.1572 饮酒与不饮酒优势比:
OR2 expb2 exp0.5261 1.69 OR2 95%可 信 区 间 :
exp b2 u S 0.05/ 2 b2
.044
4.464
1
.012
23.000
1
.021
7.008
1
.002
.009
如何解释?(X6: 动物脂肪摄入)
35
标准化回归系数:
bj' bj sj / / 3
进入变量 Intercept x1 x5 x6 x8
b -4.7050 0.9239 1.4959 3.1355 1.9471
7.715
df 1 1 1 1
1
Sig. .010 .097 .007 .008
.005
Exp(B) 16.875 .593 6.219 21.303
.278
S3tc ep
x5 x6
x8
Constant
S4td ep
x1 x5
x6
x8
Constant
1.722 3.028 1.663 -2.359 .924 1.496 3.135 1.947 -4.705
exp(bj u/ 2Sbj )
22
表 16-1 吸烟、饮酒与食管癌关系的病例-对照调查资料
分层 吸烟 饮酒 观察例数 阳性数 阴性数
k
X1
X2
nk
dk
nk-dk
1
0
0
199
63
136
2
0
1
170
63
107
3
1
0
101
44
57
4
1
1
416
265
151
1 吸烟
1 饮酒
1 病例
X1
X2
Y
0 不吸烟
0 不饮酒
<24=1, 24<26=2, 26=3
A型性格
X8
否=0,是=1
冠心病
Y
对照=0,病例=1
4
表16-3 冠心病危险因素的病例对照调查资料
序 号
X1
X2
X3
X4
X5
X6
X7
X8
Y
1 31 0 1 0 0 1 1 0
2 20 1 1 0 0 1 0 0
3 21 0 1 0 0 1 0 0
… …… … … … … … … …
Sb 1.5433 0.4766 0.7439 1.2489 0.8466
Waldχ2 9.2950 3.7583 4.0440 6.3031 5.2893
P 0.0023 0.0525 0.0443 0.0121 0.0215
b’
0.4009 0.4058 0.7028 0.5233
OR
4.464 23.000 7.008 4.464
0 对照 23
logistic回归分析结果:
b0 0.9099 Sb0 0.1358 b1 0.8856 Sb1 0.1500 b2 0.5261 Sb2 0.1572 吸烟与不吸烟优势比:
OR1 expb1 exp0.8856 2.42 OR1 95%可 信 区 间 :
exp b1 u S 0.05/ 2 b1
13
食管癌病例对照研究结果
暴露(E)
病例
E+(如吸烟)
aE-(如不吸烟) Nhomakorabeac
对照 b d
暴露(exposure)因素:研究者所关心的任 何因素 E+ :暴露 E- :非暴露
有害的-危险因素 有益的-保护因素
比值(odds) :又称为优势,某事物发生 的可能性与不发生的可能性之比
14
比数比(odds ratio,OR):又称比值比、优 势比,指病例组的暴露比值与对照组的 暴露比值之比,表示疾病与暴露之间的 联系强度。
注: exp x ex
9
1.logistic回归模型
1 阳性结果 (发病、有效、死亡等)
Y
0
阴性结果
(未发病、无效、存活等)
P=P(Y=1 | X1, X2,…, Xm)表示在m个自 变量影响下阳性结果发生的概率
P
1
1 exp - 0 1X1 2 X 2 L m X m
或
ln P 1 P
βj >0:exp(βj)即OR>1 表示Xj是危险因素 βj <0:exp(βj)即OR<1 表示Xj是保护因素 βj =0:exp(βj)即OR=1 表示Xj不起作用
19
二、logistic回归模型的参数估计 logistic回归的分析步骤: 1.根据样本资料估计参数; 2.对参数进行假设检验; 3.筛选变量、并对各自变量的作用大小 作出评价。
不发病概率之比的自然对数。
回归系数βj表示在其它自变量保持不变的情况
下自变量Xj改变一个单位时logitP的平均改变量, 它与衡量危险因素作用大小的OR值有一个对应
的关系。
12
流行病学中的几个概念:
病例对照研究(case-control study):选 择患有特定疾病的人群作为病例组,以不患 有该病但具有可比性的人群作为对照组,调 查两组人群过去暴露于某种可能危险因素的 比例,判断暴露危险因素是否与疾病有关联 及其关联程度大小的一种观察性研究方法。
相对危险度(relative risk,RR):暴露组
与非暴露组发病率之比
发病率小于5%时,OR近似等于RR OR、RR:>1:危险因素
0~1:保护因素
15
ln P 1 P
0
1X1
2X2
mXm
假定其它自变量保持不变时,把X1的某
两个不同暴露水平分别赋值为c1和c0
X1=c1
:
ln P1 1 P1
.714 1.176 .785 .770 .477 .744 1.249 .847 1.543
a. Variable(s) entered on step 1: x6.
b. Variable(s) entered on step 2: x5.
c. Variable(s) entered on step 3: x8.
Exp(B) 2.424 1.692 .403