logistic回归分析
Logistic回归分析报告结果解读分析-logit回归解读

Logistic回归分析报告结果解读分析Logistic回归常用于分析二分类因变量(如存活与死亡、患病与未患病等)与多个自变量得关系。
比较常用得情形就是分析危险因素与就是否发生某疾病相关联。
例如,若探讨胃癌得危险因素,可以选择两组人群,一组就是胃癌组,一组就是非胃癌组,两组人群有不同得临床表现与生活方式等,因变量就为有或无胃癌,即“就是”或“否”,为二分类变量,自变量包括年龄、性别、饮食习惯、就是否幽门螺杆菌感染等。
自变量既可以就是连续变量,也可以为分类变量。
通过Logistic回归分析,就可以大致了解胃癌得危险因素。
Logistic回归与多元线性回归有很多相同之处,但最大得区别就在于她们得因变量不同。
多元线性回归得因变量为连续变量;Logistic回归得因变量为二分类变量或多分类变量,但二分类变量更常用,也更加容易解释。
1、Logistic回归得用法一般而言,Logistic回归有两大用途,首先就是寻找危险因素,如上文得例子,找出与胃癌相关得危险因素;其次就是用于预测,我们可以根据建立得Logistic 回归模型,预测在不同得自变量情况下,发生某病或某种情况得概率(包括风险评分得建立)。
2、用Logistic回归估计危险度所谓相对危险度(risk ratio,RR)就是用来描述某一因素不同状态发生疾病(或其它结局)危险程度得比值。
Logistic回归给出得OR(odds ratio)值与相对危险度类似,常用来表示相对于某一人群,另一人群发生终点事件得风险超出或减少得程度。
如不同性别得胃癌发生危险不同,通过Logistic回归可以求出危险度得具体数值,例如1、7,这样就表示,男性发生胃癌得风险就是女性得1、7倍。
这里要注意估计得方向问题,以女性作为参照,男性患胃癌得OR就是1、7。
如果以男性作为参照,算出得OR将会就是0、588(1/1、7),表示女性发生胃癌得风险就是男性得0、588倍,或者说,就是男性得58、8%。
LOGISTIC回归分析

LOGISTIC回归分析前⾯的博客有介绍过对连续的变量进⾏线性回归分析,从⽽达到对因变量的预测或者解释作⽤。
那么如果因变量是离散变量呢?在做⾏为预测的时候通常只有“做”与“不做的区别”、“0”与“1”的区别,这是我们就要⽤到logistic分析(逻辑回归分析,⾮线性模型)。
参数解释(对变量的评价)发⽣⽐(odds): ODDS=事件发⽣概率/事件不发⽣的概率=P/(1-P)发⽣⽐率(odds ratio):odds ratio=odds B/odds A (组B相对于组A更容易发⽣的⽐率)注:odds ratio⼤于1或者⼩于1都有意义,代表⾃变量的两个分组有差异性,对因变量的发⽣概率有作⽤。
若等于1的话,该组变量对事件发⽣概率没有任何作⽤。
参数估计⽅法线性回归中,主要是采⽤最⼩⼆乘法进⾏参数估计,使其残差平⽅和最⼩。
同时在线性回归中最⼤似然估计和最⼩⼆乘发估计结果是⼀致的,但不同的是极⼤似然法可以⽤于⾮线性模型,⼜因为逻辑回归是⾮线性模型,所以逻辑回归最常⽤的估计⽅法是极⼤似然法。
极⼤似然公式:L(Θ)=P(Y1)P(Y2)...p(Y N) P为事件发⽣概率P I=1/(1+E-(α+βX I))在样本较⼤时,极⼤似然估计满⾜相合性、渐进有效性、渐进正太性。
但是在样本观测少于100时,估计的风险会⽐较⼤,⼤于100可以介绍⼤于500则更加充分。
模型评价这⾥介绍拟合优度的评价的两个标准:AIC准则和SC准则,两统计量越⼩说明模型拟合的越好,越可信。
若事件发⽣的观测有n条,时间不发⽣的观测有M条,则称该数据有n*m个观测数据对,在⼀个观测数据对中,P>1-P,则为和谐对(concordant)。
P<1-P,则为不和谐对(discordant)。
P=1-P,则称为结。
在预测准确性有⼀个统计量C=(NC-0.5ND+0.5T)/T,其中NC为和谐对数,ND为不和谐对数,这⾥我们就可以根据C统计量来表明模型的区分度,例如C=0.68,则表⽰事件发⽣的概率⽐不发⽣的概率⼤的可能性为0.68。
数据分析知识:数据分析中的Logistic回归分析

数据分析知识:数据分析中的Logistic回归分析Logistic回归分析是数据分析中非常重要的一种统计分析方法,它主要用于研究变量之间的关系,并且可以预测某个变量的取值概率。
在实际应用中,Logistic回归分析广泛应用于医学疾病、市场营销、社会科学等领域。
一、Logistic回归分析的原理1、概念Logistic回归分析是一种分类分析方法,可以将一个或多个自变量与一个二分类的因变量进行分析,主要用于分析变量之间的关系,并确定自变量对因变量的影响。
Logistic回归分析使用的是逻辑回归模型,该模型是将自变量与因变量的概率映射到一个范围为0-1之间的变量上,即把一个从负无穷到正无穷的数映射到0-1的范围内。
这样,我们可以用这个数值来表示某个事件发生的概率。
当这个数值大于0.5时,我们就可以判定事件发生的概率比较高,而当这个数值小于0.5时,我们就可以判定事件发生的概率比较小。
2、方法Logistic回归分析的方法有两种:一是全局最优化方法,二是局部最优化方法。
其中全局最优化方法是使用最大似然估计方法,而局部最优化方法则是使用牛顿法或梯度下降算法。
在进行Logistic回归分析之前,我们首先要对数据进行预处理,将数据进行清洗、变量选择和变量转换等操作,以便进行回归分析。
在进行回归分析时,我们需要先建立逻辑回归模型,然后进行参数估计和模型拟合,最后进行模型评估和预测。
在进行参数估计时,我们通常使用最大似然估计方法,即在估计参数时,选择最能解释样本观测数据的参数值。
在进行模型拟合时,我们需要选取一个合适的评价指标,如准确率、召回率、F1得分等。
3、评价指标在Logistic回归分析中,评价指标包括拟合度、准确性、鲁棒性、可解释性等。
其中最常用的指标是拟合度,即模型对已知数据的拟合程度,通常使用准确率、召回率、F1得分等指标进行评价。
此外,还可以使用ROC曲线、AUC值等指标评估模型的性能。
二、Logistic回归分析的应用1、医学疾病预测在医学疾病预测中,Logistic回归分析可以用来预测患某种疾病的概率,如心脏病、肺癌等。
统计学中的Logistic回归分析

统计学中的Logistic回归分析Logistic回归是一种常用的统计学方法,用于建立并探索自变量与二分类因变量之间的关系。
它在医学、社会科学、市场营销等领域得到广泛应用,能够帮助研究者理解和预测特定事件发生的概率。
本文将介绍Logistic回归的基本原理、应用领域以及模型评估方法。
一、Logistic回归的基本原理Logistic回归是一种广义线性回归模型,通过对数据的处理,将线性回归模型的预测结果转化为概率值。
其基本原理在于将一个线性函数与一个非线性函数进行组合,以适应因变量概率为S形曲线的特性。
该非线性函数被称为logit函数,可以将概率转化为对数几率。
Logistic回归模型的表达式如下:\[P(Y=1|X) = \frac{1}{1+e^{-(\beta_0+\beta_1X_1+...+\beta_pX_p)}}\]其中,P(Y=1|X)表示在给定自变量X的条件下,因变量为1的概率。
而\(\beta_0\)、\(\beta_1\)、...\(\beta_p\)则是待估计的参数。
二、Logistic回归的应用领域1. 医学领域Logistic回归在医学领域中具有重要的应用。
例如,研究者可以使用Logistic回归分析,探索某种疾病与一系列潜在风险因素之间的关系。
通过对患病和非患病个体的数据进行回归分析,可以估计各个风险因素对疾病患病的影响程度,进而预测某个个体患病的概率。
2. 社会科学领域在社会科学研究中,研究者常常使用Logistic回归来探索特定变量对于某种行为、态度或事件发生的影响程度。
例如,研究者可能想要了解不同性别、教育程度、收入水平对于选民投票行为的影响。
通过Logistic回归分析,可以对不同自变量对于投票行为的作用进行量化,进而预测某个选民投票候选人的概率。
3. 市场营销领域在市场营销中,Logistic回归也被广泛应用于客户分类、市场细分以及产品销量预测等方面。
通过分析客户的个人特征、购买习惯和消费行为等因素,可以建立Logistic回归模型,预测不同客户购买某一产品的概率,以便制定个性化的市场营销策略。
统计学-logistic回归分析

在患病率较小情况下,OR≈RR
• Logistic回归中的常数项(b0)表示, 在不接触任何潜在危险/保护因素条 件下,效应指标发生与不发生事件的 概率之比的对数值。 • Logistic回归中的回归系数( bi )表示, 某一因素改变一个单位时,效应指标 发生与不发生事件的概率之比的对数 变化值,即OR的对数值。
( 0 1 x1 ) ( 0 x0 ) 1 x1
OR e
P odds1 1 /(1 P 1) OR P0 /(1 P0 ) odds0
Y 发病=1 不发病=0
危险因素 x= 1 x= 0 30(a) 10( b) 70(c) 90(d) a+c b+d 危险因素 x= 1 x= 0 p1 p0 1-p1 1-p0
i
事件发生率很小,OR≈RR。
二、 Logistic回归模型
• Logistic回归的分类
二分类 多分类
条件Logistic回归 非条件Logistic回归
• Logit变换
也称对数单位转换
P logit P= ln 1 P
流行病学概念:
设P表示暴露因素X时个体发病的概率, 则发病的概率P与未发病的概率1-P 之 比为优势(odds), logit P就是odds 的对数值。
Y 发病=1 不发病=0a p1 ac源自有暴露因素人群中发病的比例
多元回归模型的的 i 概念
P logit(p) ln = 0 1 X 1 1 P m X m
i 反映了在其他变量固定后,X=1与x=0相比
发生Y事件的对数优势比。 回归系数β与OR X与Y的关联 • β=0,OR=1, 无关 β>0,OR>1 , 有关,危险因素 β<0,OR<1, 有关,保护因子
第十九章 Logistic回归分析

三、回归模型的假设和回归系数的区间估计
1. 回归模型的假设检验 H0:β=0 (模型中不含变量) H1: β≠ 0 (模型中含变量)
统计量:G = - 2lnL- (-2lnL') ~ χ2(k) 在例19-1中的SAS结果中:
Model Fit Statistics Criterion Pr > ChiSq AIC SC <0.0001 -2 Log L Intercept Only 246.346 249.644 244.346 Intercept and Covariates 230.616 243.809 222.616
Logistic回归模型的分类 按反应变量的类型分:
1.两分类的 Logistic 回归模型
2.多分类有序反应变量的 Logistic 回归模型
3.多分类无序反应变量的 Logistic 回归模型式
按设计类型分: 1.非条件 Logistic 回归模型,研究对象未经过配对的成组资料 2.条件 Logistic 回归模型,研究对象为1︰1或1︰m 配对资料
一、 Logistic 回归分析的实例
例19-1 在抢救急性心肌梗死(AMI)患者能否成功的危险因素调查中,某
医院收集了5年中该院所有的AMI患者的抢救病史共200例。在抢救前:X1=1表 示已发生休克,X1=0表示未发生休克;X2=1表示发生心衰, X2=0表示未发生
心衰;X3=1表示12小时内将患者送往医院, X3=0表示12小时内未将患者送往
第二节
Logistic 回归模型的参数估计和假设检验
一、参数意义(释义同于病例-对照设计研究)
1. 相对危险度RR (Re lative Risk) RR P 1 P0
logistic回归分析
Logistic回归分析
数学模型:
e p 1 e
1 X 1 2 X 2 m X m
1 X 1 2 X 2 m X m
Logistic回归分析
一、基本思想
用模型去描述实际资料时,须使 得理论结果与实际结果尽可能的一致。
资料整理格式
Logistic回归分析
1
消除xj量纲的影响
2.标准化偏回归系数j 的意义
果的发生,为“不利因素”;
xij
xij x j sj
(1)符号:取 “+”,xj 增大,则P增大,即促进阳性结
取 “-”,xj增大,则P减小,即抑制阳性结 果的发生,为“保护因素”。 (2)大小 :∣ j ∣越大,则xj 对结果的影响也就越大。
i 1 2 n
x1 x11 x21 xn1
x2
...
xm x1m x2m xnm
δ δ δ δ
1 2
x12 ... x22 ... …... xn2 ...
n
Logistic回归分析
二、基本原理
1.结果问题 : 对于第i个个体而言,其理论结果为pi , 而实际结果是i 。 2.一致问题: 对于第i个个体而言, i =1 pi i =0 qi
m
▲
OR e j 1
j ) ˆ j ( x*j x
(1)对多指标的共同效应进行评价:
若OR>1,则处于X*水平下的阳性结果发生风险要高于X 水平, 即“不利因素”占主导地位;
▲
▲
若OR<1,则处于X*水平下的阳性结果发生风险要低于X 水平, 即“保护因素”占主导地位;
▲
Logistic回归分析
注:因为p>a,所以认为样本实际值得到的分布与 预测值得到的分布无显著差异,模型拟合优度较好 。
33
注:模型整体的准确度不高,对不购买人群的准确 率极高,对购买人群的准确率很低。
34
注:预测类别图上可以看出,预测概率在0.4附近的 样本预测准确率相对最低。事实上,无论用什么分 类方法,这类样本身就是最难预测的。
Hosmer—Lemeshow检验:通过模型可以计算出给 定解释变量取值时被解释变量取1的概率预测。如 果模型拟合较好,则应给实际值为1的样本以较高 的概率,给实际值为0的样本以低的概率预测值。 于是对概率预测值进行分位数分组(通常为10分位 数,将样本分为10组),预测概率大小分得的10组 和实际观测值0/1类别分组形成了交叉列联表。由 观测频数和期望频数计算卡方统计量,即Hosmer— Lemeshow统计量,它服从自由度为n-2的卡方分布 ,n为组数。
39
模型拟合优度的评价与检验 目的:第一,回归方程能够解释被解释变量变差的 程度,即线性回归的部分能解释LogitP的程度,这 一点与一般线性回归分析是相同的;第二,由回归 方程得到的概率进行分别判别的准确率。 方法: 第一目的:Cox &Snell R2 统计量和 Nagel ker ke R2 统计量 第二目的:混淆矩阵(错判矩阵)和 Hosmer-Lemeshow检验
16
2 L0 N 1 ( ) 2 Cox & Snell R 统计量= L1
,N为样本容量。 该统计量类似于一般线性模型中的R方,统计量的值 越大表明模型的拟合优度越高。不足之处在于其取值 范围无法确定,不利于模型之间的比较。
Cox &Snell R 2
logistic回归分析
队列研究(cohort study):也称前瞻性研究、随访研究等。是一种由因及果的研
究,在研究开始时,根据以往有无暴露经历,将研究人群分为暴露人群和非暴 露人群,在一定时期内,随访观察和比较两组人群的发病率或死亡率。如果两 组人群发病率或死亡率差别有统计学意义,则认为暴露和疾病间存在联系。队 列研究验证的暴露因素在研究开始前已存在,研究者知道每个研究对象的暴露 情况。
调查方向:追踪收集资料 暴露 疾病 +
人数
比较
aபைடு நூலகம்
b c
+
研究人群
a/(a+b)
+ -
-
c/(c+d)
d
队列研究原理示意图
暴露组 非暴露组
病例 a c
非病例 b d
合计 n1=a+b n0=c+d
发病率 a/ n1 c/ n0
相对危险度(relative risk, RR)也称危险比(risk ratio) 或率比(rate ratio) RR I e a / n1 、 I e a / n1 、 I 0 c / n2 。
研究,先按疾病状态确定调查对象,分为病例(case)和对照 (control)两组,然后利用已有的记录、或采用询问、填写调查表 等方式,了解其发病前的暴露情况,并进行比较,推测疾病与 暴露间的关系。
调查方向:收集回顾性资料
比较 a/(a+b)
人数 a b c
暴露 +
疾病 病例
+ 对照 -
c/(c+d) d
二、 logistic回归模型的参数估计
logistic 回归模型的参数估计常采用最大似然估计。 其基本思想是先建立似然函数与对数似然函数, 求使对数似然函数最大时的参数值,其估计值即 为最大似然估计值。 建立样本似然函数:
Logistic回归分析
Logistic 回归分析Logistic 回归分析是与线性回归分析方法非常相似的一种多元统计方法。
适用于因变量的取值仅有两个(即二分类变量,一般用1和0表示)的情况,如发病与未发病、阳性与阴性、死亡与生存、治愈与未治愈、暴露与未暴露等,对于这类数据如果采用线性回归方法则效果很不理想,此时用Logistic 回归分析则可以很好的解决问题。
一、Logistic 回归模型设Y 是一个二分类变量,取值只可能为1和0,另外有影响Y 取值的n 个自变量12,,...,n X X X ,记12(1|,,...,)n P P Y X X X ==表示在n 个自变量的作用下Y 取值为1的概率,则Logistic 回归模型为:[]0112211exp (...)n n P X X X ββββ=+-++++它可以化成如下的线性形式:01122ln ...1n n P X X X P ββββ⎛⎫=++++ ⎪-⎝⎭通常用最大似然估计法估计模型中的参数。
二、Logistic 回归模型的检验与变量筛选根据R Square 的值评价模型的拟合效果。
变量筛选的原理与普通的回归分析方法是一样的,不再重复。
三、Logistic 回归的应用(1)可以进行危险因素分析计算结果各关于各变量系数的Wald 统计量和Sig 水平就直接反映了因素i X 对因变量Y 的危险性或重要性的大小。
(2)预测与判别Logistic回归是一个概率模型,可以利用它预测某事件发生的概率。
当然也可以进行判别分析,而且可以给出概率,并且对数据的要求不是很高。
四、SPSS操作方法1.选择菜单2.概率预测值和分类预测结果作为变量保存其它使用默认选项即可。
例:试对临床422名病人的资料进行分析,研究急性肾衰竭患者死亡的危险因素和统计规律。
Logistic回归分析.sav解:在SPSS中采用Logistic回归全变量方式分析得到:(1)模型的拟合优度为0.755。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则该因素的优势比: OR j exp[ j (c1 c0 )]
式中 P1 和 P0 分别表示在 X j 取值为 c1 和 c0 时的发病 概率, OR j 为调整后优势比(adjusted odds ratio), 表示扣除了其它自变量影响后危险因素 X j 的作用。
设 X j 为两分类变量: c1 =1 为暴露, c0 =0 为非暴露,
(二)病例与对照匹配---条件logistic回归
1、成组匹配(category matching):匹配的因素所占的比例,在对照组 和在病例组一致。如病例组中男女各半,65岁以上者占1/3,则对照组 也是如此。
2、个体匹配(individual matching):以病例和对照的个体为单位进行 匹配叫个体匹配。1:1匹配又叫配对(pair matching), 1:2,┅ ,1:m 匹配时称为匹配。
PYi i
(1
Pi
)1Yi
(i 1, 2, , n ) (15.6)
其中, Pi 表示第 i 例观察对象处于暴露条件下时阳
性结果发生的概率。阳性结果时,Yi 1 ;阴性结
果时,Yi 0 。
根据最大似然原理,似然函数 L 应取最大值。
对似然函数取对数形式:
n
ln L i1[Yi ln Pi (1 Yi ) ln(1 Pi )]
则暴露组和非暴露组发病的优势比为: OR j exp j
当 j =0 时, OR j =1,表示因素 X j 对疾病的发生不起 作用; j >0 时, OR j >1,表示 X j 是一个危险因素; j <0 时, OR j <1,表示 X j 是一个保护因素。 由于 OR j 值与模型中的常数项 0 无关,因此 0 在危 险因素分析中常常被视为无效参数。对于发病率很低 的慢性疾病如心脑血管病、恶性肿瘤等,优势比可作 为相对危险度(relative risk ,RR)的近似估计。
观
在logistic过程步
察
中加“descending”
例 数
选项的目的是使 SAS过程按阳性
率(y=1)拟合模
型,得到阳性病
例对应于阴性病
例的优势比。
OR值
OR的95%CI
对偏回归系数 的假设检验
吸烟与不吸烟的优势比: ORˆ1 expb1 exp 0.8856 2.42 ,其OR1 的 95%可信区间: exp[b1 u0.05 2Sb1 ] exp(0.8856 1.96 0.1500) (1.81,3.25) 饮酒与不饮酒的优势比: ORˆ2 expb2 exp 0.5261 1.69 ,其OR2 的 95%可信区间: exp[b2 u0.05 S2 b2 ] exp(0.52611.96 0.1572) (1.24, 2.30) 由结果可看出,吸烟和饮酒均为食管癌发病的危险因素,
调查方向:追踪收集资料
暴露
疾病 人数
比较
+
研究人群
-
+a -b
+c -d
a/(a+b) c/(c+d)
队列研究原理示意图
暴露组 非暴露组
病例 a c
非病例 b d
合计 n1=a+b n0=c+d
发病率 a/ n1 c/ n0
相对危险度(relative risk, RR)也称危险比(risk ratio)
OR>1,说明 该因素是疾病的危险性增加,为危险因素; OR<1,说明 该因素是疾病的危险性减小,为保护因素;
病例对照研究的类型
(一)病例与对照不匹配---非条件logistic回归 在设计所规定的病例和对照人群中,分别抽取一定量的研究 对象,一般对照应等于或多于病例数,此外无其他任何限制。
(二)病例与对照匹配---条件logistic回归 匹配或称配比(matching),即要求对照在某些因素或特征 上与病例保持一致,目的是对两组比较时排除混杂因素的 干扰。匹配分为成组匹配和个体匹配。
或率比(rate ratio)。 RR Ie a /n1 、 Ie a / n1 、 I0 c / n2
I0 c / n0
RR(相对危险度relative risk):表示暴露组与非暴露组 发病率(或死亡率)的比值。也称为危险比(risk ratio)。 反映了暴露与疾病发生的关联强度。
RR表明暴露组发病或死亡的危险是非暴露组的多少倍。
• 病例对照研究(case-control studies):一种由果及因的回顾性
研究,先按疾病状态确定调查对象,分为病例(case)和对照 (control)两组,然后利用已有的记录、或采用询问、填写调查表 等方式,了解其发病前的暴露情况,并进行比较,推测疾病与 暴露间的关系。
比较
调查方向:收集回顾性资料
个自变量(即暴露因素)作用下阳性结果发生的条件
ቤተ መጻሕፍቲ ባይዱ
概率为 P P(Y 1 X1, X 2 ,, X m ) ,则 logistic 回归模
型可表示为:
P
1
exp(
exp(
0
1X1 0 1X
2 X 2 1 2X
m 2
Xm mX
)
m
)
其中, 0 为常数项, 1, 2 ,, m 为偏回归系数。
阳性数 dg 阴性数ng dg
1
0
0
199
63
136
2
0
1
170
63
107
3
1
0
101
44
57
4
1
1
416
265
151
首先确定变量的赋值或编码:
1 吸烟 X1 0 不吸烟
1 饮酒 X 2 0 不饮酒
Y
1 0
病例 对照
logistic 回归分析过程可通过 SAS 统计软件包中 logistic 过程步实现
第十五章 logistic回归分析
Logistic Regression Analysis
山东大学公共卫生学院
回归分析的分类
一个 因变 量y
连续型因变量 (y) --- 线性回归分析 分类型因变量 (y) ---Logistic 回归分析 生存时间因变量 (t) ---生存风险回归分析 时间序列因变量 (t) ---时间序列分析
人数 暴露
疾病
a/(a+b) c/(c+d)
a
+
b
-
c
+
d
-
病例对照原理示意图
病例 对照
是否暴露 暴露组 未暴露组 合计
病例 a c a+c
对照 b d b+d
合计 a+b(n1) c+d(n2) n
比数比(odds ratio、OR):病例对照研究中表示疾病与暴露间
联系强度的指标,也称比值比。
比值(odds):某事物发生的可能性与不发生的可能性之比。
病例组暴露的比值 a /(a b) 、对照组暴露的比值 c /(c d)
b /(a b)
d /(c d )
该暴露因素的优势比: OR = a /(a b) c /(c d) ad
b /(a b) d /(c d) bc
相对危险度RR的本质是暴露组与非暴露组发病率之比或发病概率 之比。但病例对照研究不能计算发病率,只能计算比值比OR值。 OR与RR的含义是相同的,也是指暴露组的疾病危险性为非暴露组 的多少倍。当疾病发病率小于5%时,OR是RR的极好近似值。
logit 变换:logit P = ln P 为 P 的 logit 变换, 1 P
通过 logit 变换之后,就可将 0 P 1 的资料转换为
log it(P) 的资料。
作 logit 变换后,logistic 回归模型可以表示成如下
的线性形式:
exp(0 1X1 2 X 2 m X m )
即 OR P1 (1 P1) P1 RR P0 (1 P0 ) P0
二、 logistic回归模型的参数估计
logistic 回归模型的参数估计常采用最大似然估计。
其基本思想是先建立似然函数与对数似然函数,
求使对数似然函数最大时的参数值,其估计值即
为最大似然估计值。 建立样本似然函数:
n
L
i 1
logistic回归:不仅适用于病因学分析,也可用于其他方面的研究,研 究某个二分类(或无序及有序多分类)目标变量与有关因素的关 系。
logistic回归的分类:
(1)二分类资料logistic回归: 因变量为两分类变量的资料,可用非 条件logistic回归和条件logistic回归进行分析。非条件logistic回归 多用于非配比病例-对照研究或队列研究资料,条件logistic回归多 用于配对或配比资料。
当各种暴露因素为 0 时:
ln( P 1 P
)
0
1
X1
2
X
2
mXm
0 1 0 m 0 0
可看出:常数项 0 是当各种暴露因素为 0 时,个体发病
与不发病概率之比的自然对数值。 偏回归系数 j ( j 1,2,, m )表示在其它自变量固定的
条件下,第 j 个自变量每改变一个单位时 logit (P) 的改变
(2)多分类资料logistic回归: 因变量为多项分类的资料,可用多项 分类logistic回归模型或有序分类logistic回归模型进行分析。
• 队列研究(cohort study):也称前瞻性研究、随访研究等。是一种由因及果 的研究,在研究开始时,根据以往有无暴露经历,将研究人群分为暴露人 群和非暴露人群,在一定时期内,随访观察和比较两组人群的发病率或死 亡率。如果两组人群发病率或死亡率差别有统计学意义,则认为暴露和疾 病间存在联系。队列研究验证的暴露因素在研究开始前已存在,研究者知 道每个研究对象的暴露情况。