七年级角的计算的方法技巧 -
七年级上册角的知识点讲解

七年级上册角的知识点讲解角是数学中一个基本的概念,广泛应用于几何学、三角函数、图形运算等领域。
在初中数学中,学生们需要学习三种角度的度量方法,以及三角函数的基本概念和公式,下面我们将详细介绍七年级上册角的知识点。
一、度量角的方法1.弧度制度量角弧度制是一种计算角度的方法,它常用于数学和物理学中。
一个角的弧度数等于其对应弧长与圆周长之比,即弧度制公式为:$$θ = \frac{l}{r}$$其中,θ代表角度,l为对应的弧长,r为圆的半径。
在弧度制中,一个完整的圆对应的弧长为$2πr$,所以一个完整的角的弧度数为$2π$ 。
2.度制度量角度制度量角是广泛使用的角度计量方法,常用于日常生活和一些工程应用。
在度制中,一个完整的圆角对应 $360°$ 的角度。
因此,如果要将一个弧度转换为度数,我们只需将其乘以$180/π$ 即可。
二、三角函数三角函数是数学中一个重要的分支,它关注的是三角形中的关系。
在初中数学中,学生们需要掌握正弦、余弦和正切这三种基本三角函数的概念及其应用。
1. 正弦函数正弦函数(sin函数)表示直角三角形中,对于某个角度$\theta$, 直角对边与斜边的比值。
即:$$sin(\theta) = \frac{opposite}{hypotenuse}$$其中,opposite代表直角对边,hypotenuse代表斜边。
在计算角度度量时,我们通常使用度制。
例如,sin(30°) = 0.5。
2. 余弦函数余弦函数(cos函数)表示直角三角形中,对于某个角度θ, 直角毗邻边与斜边的比值。
即:$$cos(\theta) = \frac{adjacent}{hypotenuse}$$其中,adjacent代表直角毗邻边,hypotenuse代表斜边。
同样的,在计算角度度量时,我们使用度制。
例如,cos(60°) = 0.5。
3. 正切函数正切函数(tan函数)表示直角三角形中,对于某个角度θ, 直角对边与直角毗邻边的比值。
新人教版初中数学七年级上学期《角》知识点讲解及例题解析

《角》知识讲解及例题解析【学习目标】1.掌握角的概念及角的表示方法,并能进行角度的互换;2. 借助三角尺画一些特殊角,掌握角大小的比较方法;3.会利用角平分线的意义进行有关表示或计算;4. 掌握角的和、差、倍、分关系,并会进行有关计算.【要点梳理】要点一、角的概念1.角的定义:(1)定义一:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.如图1所示,角的顶点是点O,边是射线OA、OB.图1 图2(2)定义二:一条射线绕着它的端点旋转而形成的图形,射线旋转时经过的平面部分是角的内部.如图2所示,射线OA绕它的端点O旋转到OB的位置时,形成的图形叫做角,起始位置OA是角的始边,终止位置OB是角的终边.要点诠释:(1)两条射线有公共端点,即角的顶点;角的边是射线;角的大小与角的两边的长短无关.(2)平角与周角:如图1所示射线OA绕点O旋转,当终止位置OB和起始位置OA成一条直线时,所形成的角叫做平角,如图2所示继续旋转,OB和OA重合时,所形成的角叫做周角.2.角的表示法:角的几何符号用“∠”表示,角的表示法通常有以下四种:要点诠释:用数字或小写希腊字母表示角时,要在靠近角的顶点处加上弧线,且注上阿拉伯数字或小写希腊字母.3.角的画法(1)用三角板可以画出30°、45°、60°、90°等特殊角.(2)用量角器可以画出任意给定度数的角.(3)利用尺规作图可以画一个角等于已知角.要点二、角度制及其换算角的度量单位是度、分、秒,把一个周角平均分成360等份,每一份就是1°的角,1°的160为1分,记作“1′”,1′的160为1秒,记作“1″”.这种以度、分、秒为单位的角的度量制,叫做角度制.1周角=360°,1平角=180°,1°=60′,1′=60″.要点诠释:在进行有关度分秒的计算时,要按级进行,即分别按度、分、秒计算,不够减,不够除的要借位,从高一位借的单位要化为低位的单位后再进行运算,在相乘或相加时,当低位得数大于60时要向高一位进位.要点三、角的比较与运算1.角的比较角的大小比较与线段的大小比较相类似,方法有两种.方法1:度量比较法.先用量角器量出角的度数,然后比较它们的大小.方法2:叠合比较法.把其中的一个角移到另一个角上作比较.如比较∠AOB和∠A′O′B′的大小:如下图,由图(1)可得∠AOB<∠A′O′B′;由图(2)可得∠AOB =∠A′O′B′;由图(3)可得∠AOB>∠A′O′B′.2.角的和、差运算如图所示,∠AOB是∠1与∠2的和,记作:∠AOB=∠1+∠2;∠1是∠AOB与∠2的差,记作:∠1=∠AOB-∠2.要点诠释:(1)用量角器量角和画角的一般步骤:①对中(角的顶点与量角器的中心对齐);②重合(一边与刻度尺上的零度线重合);③读数(读出另一边所在线的度数).(2) 利用三角板除了可以做出30°、45°、60°、90°外,根据角的和、差关系,还可以画出15°,75°,105°,120°,135°,150°,165°的角.3.角平分线从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线.如图所示,OC是∠AOB的角平分线,∠AOB=2∠AOC=2∠BOC,∠AOC=∠BOC =12∠AOB.要点诠释:由角平分线的概念产生的合情推理其思维框架与线段中点的思维框架一样.要点四、方位角在航行和测绘等工作中,经常要用到表示方向的角.例如,图中射线OA的方向是北偏东60°;射线OB的方向是南偏西30°.这里的“北偏东60°”和“南偏西30°”表示方向的角,就叫做方位角.要点诠释:(1)正东,正西,正南,正北4个方向不需要用角度来表示.(2)方位角必须以正北和正南方向作为“基准”,“北偏东60°”一般不说成“东偏北30°”.(3)在同一问题中观察点可能不止一个,在不同的观测点都要画出表示方向的“十字线”,确定其观察点的正东、正西、正南、正北的方向.(4)图中的点O是观测点,所有方向线(射线)都必须以O为端点.要点五、钟表上有关夹角问题钟表中共有12个大格,把周角12等分、每个大格对应30°的角,分针1分钟转6°,时针每小时转30°,时针1分钟转0.5°,利用这些关系,可帮助我们解决钟表中角度的计算问题.【典型例题】类型一、角的概念1. 利用一副三角板上的角,能画出多少个小于180°的角,试一一画出来.【思路点拨】首先发现一副三角板上有30°,45°,60°,90°这样4个不相等的角,利用这些角进行一次和差,可得小于180°的所有角.【答案与解析】解:除了可以画30°,45°,60°,90°外,还可画15°,75°,105°,120°,135°,150°,165°的七个度数的角,画法如图所示.【总结升华】利用一副三角板共可以画出11个度数的角,分别是:30°,45°,60°,90°,15°,75°,105°,120°,135°,150°,165°.举一反三:【变式】下列说法中,正确的是()A.两条射线组成的图形叫做角B.有公共端点的两条线段组成的图形叫做角C.角可以看做是由一条射线绕着它的端点旋转而形成的图形D.角可以看做是由一条线段绕着它的端点旋转而形成的图形【答案】C.类型二、角度制的换算2. 计算下列各题:(1)152°49′12″+20.18°; (2)82°-36°42′15″;(3)35°36′47″×9; (4)41°37′÷3.【答案与解析】解:(1)解法一:∵ 20.18°=20°10′48″即:152°49′12″+20.18°=173°.解法二:∵ 152°49′12″=152.82°,∴ 152.82°+20.18°=173°.即:152°49′12″+20.18°=173°.(2)将82°化为81°59′60″,则∴ 82°-36°42′15″=45°17′45″.423″=7′3″, 324′+7′=5°31′,∴ 35°36′47″×9=320°31′3″.∴ 41°37′÷3=13°52′20″.【总结升华】在角度的和、差运算中应先统一单位,都化成度或分、秒表示,然后进行计算;在进行乘法运算时,往往先把度、分、秒分别乘以倍数,将结果满60″进1′,满60′进1°;对于除法运算则是从度开始除,将余数化为分和以前的分数相加再除,将余数再化成秒和以前的秒数相加再除,若除不尽往往四舍五入.举一反三:【变式】计算:(1)23°45′36″+66°14′24″;(2)180°-98°24′30″;(3)15°50′42″×3; (4)88°14′48″÷4.【答案】(1)23°45′36″+66°14′24″=90°;(2)180°-98°24′30″=81°35′30″;(3)15°50′42″×3=47°32′6″;(4)88°14′48″÷4=22°3′42″.类型三、角的比较与运算3. 如图所示表示两块三角板.(1)用叠合法比较∠1,∠α,∠2的大小;(2)量出图中各角的度数,并把图中的6个角从小到大排列,然后用“<”或“=”连接.【答案与解析】解:(1)如图所示,把两块三角板叠在一起,可得∠1>∠α,用同样的方法,可得∠α<∠2.所以∠2=∠1>∠α.(2)用量角器量出图中各个角的度数,分别是∠1=∠2=45°,∠3=90°,∠α=30°,∠β=60°,∠γ=90°,把它们从小到大排列,有∠α<∠1=∠2<∠β<∠3=∠γ.【总结升华】比较角的大小有叠合法和度量法两种:①先将两个角的顶点与顶点重合,一条边与一条边重合再比较.②先量出每个角的度数,然后按它们的度数来比较.举一反三:【变式】如图,∠AOB的平分线OM,ON为∠MOA内的一条射线,OG为∠AOB外的一条射线.某同学经过认真分析,得到一个关系式是∠MON=12(∠BON-∠AON),你认为这个同学得到的关系式正确吗?若正确,请把得到这个结论的过程写出来.【答案】解:正确,理由如下:∵∠AOB的平分线OM,∴∠AOM=∠MOB又∵∠MON=∠AOM-∠AON=∠MOB-∠AON=(∠BON-∠MON) -∠AON 即有∠MON=∠BON-∠MON -∠AON∴ 2∠MON=∠BON-∠AON∴∠MON=12(∠BON-∠AON)4. 如图,∠AOB=90°,∠AOC=30°,且OM平分∠BOC,ON平分∠AOC,(1)求∠MON的度数;(2)若∠AOB=α其他条件不变,求∠MON的度数;(3)若∠AOC=β(β为锐角)其他条件不变,求∠MON的度数;(4)从上面结果中看出有什么规律?【思路点拨】(1)要求∠MON,即求∠COM﹣∠CON,再根据角平分线的概念分别进行计算即可求得;(2)和(3)均根据(1)的计算方法进行推导即可.(4)根据(2)和(3)中的结论进行总结.【答案与解析】解:(1)∵∠AOB=90°,∠AOC=30°,∴∠BOC=120°∵OM平分∠BOC,ON平分∠AOC∴∠COM=60°,∠CON=15°∴∠MON=∠COM﹣∠CON=45°.(2)∵∠AOB=α,∠AOC=30°,∴∠BOC=α+30°∵OM平分∠BOC,ON平分∠AOC∴∠COM=+15°,∠CON=15°∴∠MON=∠COM﹣∠CON=.(3)∵∠AOB=90°,∠AOC=β,∴∠BOC=90°+β∵OM平分∠BOC,ON平分∠AOC∴∠COM=45°+,∠CON=.∴∠MON=∠COM ﹣∠CON=45°. (4)从上面的结果中,发现:∠MON 的大小只和∠AOB 得大小有关,与∠A0C 的大小无关.【总结升华】能够结合图形表示角之间的和差关系,根据角平分线的概念运用几何式子表示角之间的倍分关系.举一反三:【变式】如图,已知O 是直线AC 上一点,OD 平分∠AOB ,OE 在∠BOC 内,且∠BOE =12∠EOC ,∠DOE =70°,求∠EOC 的度数.【答案】解:设∠EOC=x °,则∠BOE =12∠EOC =12x °,根据题意可得:1180127022x xx --+= ,解得: 80x = .∠EOC =2∠BOE =80°. 类型四、方位角5.已知小岛A 位于基地O 的东南方向,货船B 位于基地O 的北偏东50°方向,那么∠AOB 的度数等于 . 【答案】85°. 【解析】解:如图:∵∠2=50°,∴∠3=40°, ∵∠1=45°,∴∠AOB=∠1+∠3=45°+40°=85°, 故答案为:85°.【总结升华】本题主要考查了方位角的概念,根据方位角的概念,画图正确表示出A ,B 的方位,注意东南方向是45度是解答此题的关键. 类型五、钟表上有关夹角问题6. 在7时到7时10分之间的什么时刻,时针与分针成一条直线? 【答案与解析】解:设7时x 分钟,时针与分针成一条直线,由题意得:16302x x -=,5511x =. 答:7时5511分钟时针与分针成一条直线.【总结升华】时钟上的分针与时针绕着中心顺时针均匀转动,在不同时刻,两针之间形成一定的角度.如果把单位时间分针和时针转过的度数当作它们的速度则: ① 分针的速度为36060=6°/分;②时针的速度为3060°分=0.5°/分. 故分针速度是时针速度的12倍. 举一反三:【变式】某人下午6点多外出购物,表上的时针和分针的夹角恰为110°,下午7点前回家时,发现表上的时针和分针的夹角又是110°,试算出此人外出用了多长时间? 【答案】解:设此人外出用了x 分钟,则分针转了6x 度,时针转了0.5x 度.根据题意得:6x-0.5x =110×2,解之得x =40. 答:此人外出购物用了40分钟的时间.。
七年级求角的度数知识点

七年级求角的度数知识点角是数学中的一个重要概念,学习角度的大小和度数,可以帮助学生更好地理解几何形体、图形的特性和关系。
在数学学习中,求角的度数是一项必不可少的基础知识之一,下面就来详细了解一下七年级求角的度数知识点。
一、角的基本概念角是由两条有公共端点的线段所夹的图形部分,通常用$\angle$ 符号代表。
角的顶点为两条线段的公共端点,两条线段分别为角的两条边。
二、角的度数我们可以用角度的概念来描述角的大小,一个角的度数通常用$\degree$ 表示,1个圆周分为360份,即360度。
例如,我们常见的直角角度为90度,钝角角度介于180度到360度之间,锐角角度则小于90度。
三、求角的度数在实际的运用中,我们需要求解某个角的度数。
以下介绍几种求角度的方法:1.用圆形量角器测量使用圆形量角器将角所在的直线对齐,读出旋转的角度,即为角的度数。
2.用角度制的公式求解已知三角形的三条边的长度时,可以通过余弦定理和正弦定理来计算三个内角的度数。
例如,对于已知三角形的三边长为a、b、c,a、b所夹角度数为 $\alpha$,b、c所夹角度数为 $\beta$,c、a所夹角度数为 $\gamma$ 的情况,可以使用余弦定理和正弦定理公式计算出三个角的度数。
$\cos \alpha = \frac{b^2+c^2-a^2}{2bc}$$\cos \beta = \frac{a^2+c^2-b^2}{2ac}$$\cos \gamma = \frac{a^2+b^2-c^2}{2ab}$3.使用角度制的一个简单公式在七年级中,对于角度的度数,还容易求解的一种简单公式:已知锐角 $\theta$ 的正弦、余弦、正切与它的度数 $\alpha$ 之间的关系如下:$\sin \theta = \frac{a}{h}$$\cos \theta = \frac{o}{h}$$\tan \theta = \frac{a}{o}$其中,$a$ 表示角 $\alpha$ 所对边的长度,$o$ 表示相邻的一条直角边的长度,$h$ 表示斜边的长度。
人教版七年级数学上册第四章4.3《角》例题与讲解

4.3 角1.角的定义及其表示方法(1)角的定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.角也可以看作是由一条射线绕着它的端点旋转而形成的图形.当终边和始边成一条直线时,形成等角;当终边和始边重合时,形成周角.(2)角的表示方法:有四种表示角的方法:①用一个阿拉伯数字表示单独的一个角,在角内用一段弧标注; ②用一个大写英文字母表示单独的一个角,当角的顶点处有两个或两个以上的角时,不能用这种方法表示角;③用一个小写希腊字母表示单独的一个角;④用三个大写英文字母表示任意一个角,这时表示顶点的字母一定要写在中间. 破疑点 角的理解 (1)角的大小与边的长短无关,只与构成角的两条射线张开的幅度大小有关,角可以度量,可以比较大小,可以进行运算;(2)如果没有特别说明,所说的角都是指小于平角的角.【例1-1】 下列说法正确的是( ).A .平角是一条直线B .一条射线是一个周角C .两边成一条直线时组成的角是平角D .一个角不是锐角就是钝角解析:要做对这类题目,一定要理解概念,严格按照概念进行判断,才能得出正确的结论.平角、周角都是特殊角,虽然它们与一般角形象不符,但是它们仍然是角,它们都具有一个顶点和两条边,只不过平角的两边成一条直线,周角的两边重合成一条射线罢了. 答案:C【例1-2】 如图,以点B 为顶点的角有几个?请分别把它们表示出来.分析:.射线BA 与BD ,BA 与BC ,BD 与BC 各组成一个角.表示顶点的字母必须写在中间.当一个顶点处有多个角时,不能用一个表示顶点的大写字母表示,所以不能把∠ABC 错写成“∠B ”.书写力求规范,如用数字或希腊字母表示角时要在靠近顶点处加弧线注上阿拉伯数字或小写的希腊字母.注意:角的符号一定要用“∠”,而不能用“<”. 解:以B 为顶点的角有3个,分别是∠ABC ,∠ABD ,∠DBC .2.角的度量与换算(1)角度制:以度、分、秒为单位的角的度量制,叫做角度制.(2)角度的换算:角的度量单位是度、分、秒,把一个周角360等分,每一份就是1度的角,记作1°;把1度的角60等分,每一份就是1分的角,记作1′;把1分的角60等分,每一份就是1秒的角,记作1″.谈重点 角度的换算 (1)度、分、秒的换算是60进制,与时间中的时、分、秒的换算相同;(2)角的度数的换算有两种方法:①由度化成度、分、秒的形式(即从高位向低位化),用乘法,1°=60′,1′=60″;②由度、分、秒化成度的形式(即从低位向高位化),1″=⎝⎛⎭⎫160′,1′=⎝⎛⎭⎫160°,用除法.度及度、分、秒之间的转化必须逐级进行转化,“越级”转化容易出错.【例2】 (1)将70.23°用度、分、秒表示;(2)将26°48′36″用度表示.分析:(1)70.23°实际是70°+0.23°,这里70°不要变,只要将0.23°化为分,然后再把所得的分中的小数部分化为秒.将0.23°化为分,只要用0.23乘以60′即可.(2)将26°48′36″用度表示,应先将36″化成分,然后再将分化成度就可以了.将36″化成分,可以用⎝⎛⎭⎫160′乘以36.解:(1)将0.23°化为分,可得0.23×60′=13.8′,再把0.8′化为秒,得0.8×60″=48″.所以70.23°=70°13′48″.(2)把36″化成分,36″=⎝⎛⎭⎫160′×36=0.6′,48′+0.6′=48.6′,把48.6′化成度,48.6′=⎝⎛⎭⎫160°×48.6=0.81°. 所以26°48′36″=26.81°.3.角的比较与运算(1)角的比较: ①度量法:用量角器量出角的度数,然后按照度数比较角的大小,度数大的角大,度数小的角小;反之,角大度数大,角小度数小. ②叠合法:把两个角的顶点和一边分别重合,另一边放在重合边的同旁,通过另一边的位置关系比较大小.解技巧 角的比较 ①在度量法中,注意三点:对中、重合、度数;②在叠合法中,要注意顶点重合,一边重合,另一边落在重合这边的同侧.(2)角的和差:角的和、差有两种意义,几何意义和代数意义.几何意义对于今后读图形语言有很大帮助,代数意义是今后角的运算的基础.①几何意义:如图所示,∠AOB 与∠BOC 的和是∠AOC ,表示为∠AOB +∠BOC =∠AOC ;∠AOC 与∠BOC 的差为∠AOB ,表示为∠AOC -∠BOC =∠AOB .②代数意义:如已知∠A =23°17′,∠B =40°50′,∠A +∠B 就可以像代数加减法一样计算,即∠A +∠B =23°17′+40°50′=64°7′,∠B -∠A =40°50′-23°17′=17°33′.(3)角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线.如图所示,射线OC 是∠AOB 的平分线,则有∠1=∠2=12∠AOB 或∠AOB =2∠1=2∠2.警误区 角的平分线的理解 角的平分线是一条射线,不是线段,也不是直线,它必须满足下面的条件:①是从角的顶点引出的射线,且在角的内部;②把已知角分成了两个角,且这两个角相等.【例3】 如图所示,OE 平分∠BOC ,OD 平分∠AOC ,∠BOE =20°,∠AOD =40°,求∠DOE 的度数.解:∵OE平分∠BOC,∴∠BOE=∠COE.∵OD平分∠AOC,∴∠AOD=∠COD.又∵∠BOE=20°,∠AOD=40°,∴∠COE=20°,∠COD=40°.∴∠DOE=∠COE+∠COD=20°+40°=60°.4.余角和补角(1)余角和补角的概念:①余角:如果两个角的和等于90°(直角),就说这两个角互为余角,即其中一个角是另一个角的余角;②补角:如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角.(2)性质:余角的性质:同角(等角)的余角相等.用数学式子表示为:∠1+∠2=90°,∠3+∠4=90°,又因为∠2=∠4,所以∠1=∠3.补角的性质:同角(等角)的补角相等.用数学式子表示为:∠1+∠2=180°,∠3+∠4=180°,又因为∠2=∠4,所以∠1=∠3.(3)方位角:在航海、航空、测绘中,经常会用到一种角,它是表示方向的角,叫做方位角.通常以正北、正南方向为基准,描述物体运动的方向.通常要先写北或南,再写偏东还是偏西.警误区余角和补角的理解余角和补角是成对出现的,它们之间互相依存,只能说∠1的余角是∠2,∠2的余角是∠1,或者说∠1与∠2互余,而不能说∠1是余角.【例4】如图所示,直线AB,CD,EF相交于点O,且∠AOD=90°,∠1=40°,求∠2的度数.解:因为∠AOD+∠AOC=∠AOD+∠BOD=180°,所以∠AOD=∠AOC=∠BOD=90°.又因为∠1+∠FOC=180°,∠DOF+∠FOC=180°,所以∠DOF=∠1=40°.所以∠2=∠BOD-∠DOF=90°-40°=50°.5.运用整体思想解决角的计算问题整体思想就是根据问题的整体结构特征,不拘泥于部分而是从整体上去把握解决问题的一种重要的思想方法.整体思想突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理.整体思想方法在代数式的化简与求值、解方程、几何解证等方面都有广泛的应用,整体代入、整体运算、整体设元、整体处理、几何中的补形等都是整体思想方法在解数学问题中的具体运用.【例5】如图所示,∠AOB =90°,ON 是∠AOC 的平分线,OM 是∠BOC 的平分线,求∠MON 的大小.分析:解决问题的关键是把∠AOC -∠BOC 视为一个整体,代入求值.解:因为ON 是∠AOC 的平分线,OM 是∠BOC 的平分线,所以∠NOC =12∠AOC ,∠MOC =12∠BOC , 所以∠MON =∠NOC -∠MOC =12∠AOC -12∠BOC =12(∠AOC -∠BOC )=12∠AOB =12×90°=45°. 6.钟表问题对于钟表问题要掌握基本的数量关系,如走一大格为30度,一小格为6度,分针每分钟转6度,时针每分钟转0.5度,分针是时针转速的12倍等.若已知具体时间,求时针与分针的夹角,只需知道它们相距的格数,便可求得;若是已知时针与分针的夹角求相应的时间,则一般需要建立方程求解.【例6】上午9点时,时针与分针成直角,那么下一次时针与分针成直角是什么时候?解:设经过x 分钟,时针与分针再次成直角,则时针转过(0.5x )°,分针转过(6x )°,如图所示,可列方程360-6x -(90-0.5x )=90,解得x =32811.即过32811分钟,时针与分针再一次成直角.7.角中的实验操作题实验操作题是近年来悄然兴起的一种新形式的考题,它集阅读、作图、实验于一体,要求在规定的条件下进行实验,在动手操作中找出答案.这类题目主要是能画出整个过程中的状态示意图,进而求出点的转动角度.【例7】如图,把作图用的三角尺(含30°,60°的那块)从较长的直角边水平状态下开始,在平面上转动一周,求B 点转动的角度(在点的位置没有发生变化的情况下,一律看作点没有转动).解:如图,从位置①到位置②,B 点转过90°;从位置②到位置③,B 点转过120°;从位置③到位置④,由题意B点看作不动.于是在整个过程中B点转过的角度为90°+120°=210°.8.归纳猜想在角的问题中的运用归纳猜想,是一种很重要的数学思想方法,数学史上的许多重要发现:如哥德巴赫猜想、四色猜想、角谷猜想、费马定理等都是由数学家的探究、猜想、总结而得到的.学习数学必须不断地去探索、猜想,不断地总结规律,才会有新发现.运用n(n-1)2这个式子,能解决很多类似的问题,能达到一石数鸟,这都是大家善于借鉴的结果.在学习过程中,注意不断总结、归纳规律,积累经验,运用总结出来的方法、技巧解决问题.【例8】(1)若在n个人的聚会上,每个人都要与另外所有的人握一次手,问握手总次数是多少?(2)如图①中共有多少条线段?如图②中共有多少个角(指小于平角的角)?解:(1)每个人可与另外(n-1)个人握一次手,n个人就有(n-1)·n次握手,其中各重复一次,所以,握手总次数是n(n-1)÷2次.(2)图①中每两个点构成一条线段(类似于两个人握一次手),所以共有n(n-1)÷2条线段.图②中每条射线都与另外(n-1)条射线构成一个角(类似于握手),所以共有n(n-1)÷2个角.9.方位角的应用(1)如图,画两条互相垂直的直线AB和CD相交于点O,其中一条为水平线,则图中四条射线所指方向就是东西南北四大方向,具体是:向上的射线OA表示正北方向,向下的射线OB表示正南方向,向右的射线OD表示正东方向,向左的射线OC表示正西方向.这四大方向简称为上北下南左西右东.建立这四条方向线后,对于点P,如果点P在射线OA上,则称点P在正北方向;如果点P在射线OB上,则称点P在正南方向;如果点P在射线OC上,则称点P在正西方向;如果点P在射线OD上,则称点P在正东方向.(2)在图中,东西和南北方向线把平面分成四个直角,如果点P在正北方向线OA与正东(或正西)方向线OD(或OC)的夹角内,且射线OP与正北方向线OA的夹角是m°,则称点P在北偏东(或西)m°方向;如果点P在正南方向线OB与正东(或正西)方向线OD(或OC)的夹角内,且射线OP与正南方向线OB的夹角为m°,则称点P在南偏东(或西)m°方向.例如图中的射线OA,OB,OC,OD分别称为:北偏东40°、北偏西65°、南偏西45°、南偏东20°.对于偏向45°的方位角,有时也可以说成东南(北)方向或西南(北)方向.如图中的OC,除了说成南偏西45°外,还可以说是西南方向,但不要说成南西方向.【例9】如图,OA的方向是北偏东15°,OB的方向是西偏北50°.(1)若∠AOC=∠AOB,则OC的方向是________;(2)OD是OB的反向延长线,OD的方向是____;(3)∠BOD可看作是OB绕点O逆时针方向至OD,作∠BOD的平分线OE,OE的方向是____;(4)在(1)、(2)、(3)的条件下,∠COE=____.解析:(1)∵OB的方向是西偏北50°,∴∠1=90°-50°=40°,∴∠AOB=40°+15°=55°∵∠AOC=∠AOB,∴∠AOC=55°,∴∠FOC=∠AOF+∠AOC=15°+55°=70°,∴OC的方向是北偏东70°.(2)∵OB的方向是西偏北50°,∴∠1=40°,∴∠DOH=40°,∴OD的方向是南偏东40°.(3)∵OE是∠BOD的平分线,∴∠DOE=90°.∵∠DOH=40°,∴∠HOE=50°,∴OE的方向是南偏西50°.(4)∵∠AOF=15°,∠AOC=55°,∴∠COG=90°-∠AOF-∠AOC=90°-15°-55°=20°.∵∠EOH=50°,∠HOG=90°,∴∠COE=∠EOH+∠HOG+∠COG=50°+90°+20°=160°.答案:(1)北偏东70°(2)南偏东40°(3)南偏西50°(4)160°。
人教版七年级上册数学4.3.2角的运算教案

-对于角的加减运算,通过画图直观展示角的方向和度数变化,帮助学生理解。
-在角的乘除运算中,运用实际例题和图形,解释乘除运算的规律,加深学生理解。
-在角度与弧度互化过程中,强调π的值和运用方法,多次练习,使学生熟练掌握。
-对于实际问题,引导学生分析问题,找出关键角度信息,选择合适的运算方法,逐步引导学生解决问题。
-角度与弧度的互化方法:使学生能够熟练地进行角度与弧度之间的互换计算,如180°=π弧度。
-应用角的运算解决实际问题:培养学生将角的运算应用于实际情境,如计算两个角的和或差,以解决生活中的问题。
2.教学难点
-角的加减运算中的方向问题:学生在进行角的加减运算时,容易忽略角的方向,导致计算错误。例如,当两个角的度数相加超过360°时,需要调整方向或减去360°。
4.角的除法:了解角的除法运算,理解除法运算中角度的除法原理,能够进行角的除法运算。
5.角度与弧度的互化:掌握角度与弧度之间的互化方法,能够进行角度与弧度的互换计算。
二、核心素养目标
1.培养学生运用数学语言进行表达和交流的能力,通过角的运算,使学生能够准确地描述和求解实际问题。
2.提升学生几何直观和空间想象能力,通过角的加、减、乘、除运算,培养学生对几何图形的认识和角度关系的理解。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《角的运算》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算两个角度之和或差的情况?”比如,在拼接两块木板时,需要计算两个角度以确保它们能够完美对接。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索角的运算的奥秘。
2024新人编版七年级数学上册《第六章6.3.2角的比较与计算》教学课件

示的图形,已知∠CEF=50º,则∠AED的度数是
( C)
A.40°
B.50 °
C.65 ° D.76 °
课堂小结
1.角的比较:①度量法
②叠合法
2.角的和差
课堂小结
3.角的平分线:
射线OC是∠AOB的角平分线或OC
平分∠AOB,
1
记作:① ∠AOC=∠BOC= ∠AOB
2
②∠AOB=2∠AOC=2∠BOC.
③EF边落在∠ABC的外部,∠DEF大于∠ABC,记做∠DEF>∠ABC.
探究新知
思考: 我们已经学过哪几类角?
三角板上的各个角分别属于哪类角?
角的分类
锐角
0 α 90
直角
α 90
钝角
90 α 180
平角
α 180
周角
α 360
直角可以用Rt∠
表示,画图时常在
直角的顶点处加上
“ ”来表示这个角
是直角.
探究新知
例1 根据右图解下列问题:
A
B
(1)比较∠AOB, ∠AOC,
∠AOD, ∠AOE的大小;
∠AOB<∠AOC<∠AOD<∠AOE
O
C
D
E
探究新知
例1 根据右图解下列问题:
A
B
(2)找出图中的直角、锐角和钝角.
直角:∠AOC、∠BOD、∠COE;
锐角:∠AOB、∠BOC、∠COD、
类似地,∠AOC-∠AOB= ∠BOC .
探究新知
学生活动三 【一起探究】 探究三角板中的角
你知道下面这些角是怎样用三角板画出来的吗?
探究新知
15°
6.3.2.2角的运算课件 人教版数学七年级上册

2
2
跟踪训练
如图,O 是直线AB上一点,OC是∠AOB 的 平分线,∠COD=31°28'.求∠AOD 的度数.
解:因为O 是直线AB上一点,
所以∠AOB=180°.
因为OC是∠AOB 的平分线,
所以∠AOC=∠BOC= 1∠AOB= 2
因为∠COD=31°28',
1×180°=90°. 2
所以∠AOD=90°-31°28'=58°32'.
(3) 如果∠AOE=140°, ∠COD=30°,那么∠AOB 是多少度?
解:因为 ∠COD=30°,OD 平分∠COE, 所以 ∠COE=2∠COD=60°,
E
DC
B
所以 ∠AOC=∠AOE-∠COE =140°-60°= 80°. O
A
又因为 OB 平分∠AOC,
所以∠AOB= 1 ∠AOC= 1 ×80°= 40°.
或∠AOC=2∠AOB=2∠BOC,
所以射线OB是∠AOC的平分线.
C B
O
A
反之也成立:
因为射线OB是∠AOC的平分线.
所以∠AOB=∠BOC= 1∠AOC, 2
或∠AOC=2∠AOB=2∠BOC,
题讲解
例1. 如图,OB 是∠AOC 的平分线,OD 是∠COE的平分线.
(1) 如果∠AOC=80°,那么∠BOC 是多少度? E
说明:度、分、秒是六十进制的,不能整除时要把剩余的度 数化成分
跟踪训练
1.如图,把一个蛋糕等分成8份,每份中的角是多少度? 要使每份中的角是15°,这个蛋糕应等分成多少份? 解:360°÷8=45°.
360°÷15°=24. 答:把一个蛋糕等分成8份,每份中的角是45度;
初一数学上册:角度的运算要点+练习

分析:角度与一个数相除,要从度、分、秒依次相除,每次相除所得余数必须化为更小的度量单位,并注意题中要求的精确度,进行四舍五入.
解:49°28′52″4
= 12°+88′52″÷4(49°÷4 = 12°余1°加到28′52″上为88′52″,以下依次计算.)
= 12°22′+52″÷4
=86°22′72″-67°36′50″
=85°82′72″-67°36′50″
=(85-67)°(82-36)′(72-50)″
=18°46′22″.
三、利用乘法分配律进行乘法运算
把一个角度扩大几倍(一个角度乘以一个正整数),可借助乘法分配律的思想,把这个数分别与角度的度、分、秒单位上的数相乘,再把分、秒单位下满60的数向上一位进一.
用竖式计算多位数的加法时,首先要把数位对齐,满十向上一位进一.与多位数的加法类似,在角度的加法运算中,我们可以把度与度、分与分、秒与秒单位上的数分别相加,然后先把满60秒的进为一分,再把满60分的进为一度.
【例1】计算:48°39′40″+67°41′35″.
解:先算秒和秒相加;
40″+35″= 75″= 1′15″;
再算分和分相加;
39′+41′= 80′=1°20′,加上进位的一分为1°21′;
最后算度和度相加;
48°+67°= 115°,再加上进位的度为116°.
所以,48°39′40″+67°41′35″= 116°21′15″.
二、仿照多位数的减法进行减法运算
进行角度的减法运算也与多位数的减法有很多相同的地方,即把同单位的数相减,不够减时,应仿照计算多位数减法的方法先向上一级单位“借一”,把被减数的角度化为分、秒单位上的数都大于作为减数的角度的相应单位上的数,然后再减.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形认识—角的计算
1.如图,OC 平分∠AOD,∠BOD=2∠AOB.若∠AOD=114°,求∠BOC 的度数?
2. 如图所示, 直线AB 、CD 相交于O, OE 平分∠AOD, ∠FOC=900
, ∠1=400
, 求∠2和∠3的度数.
3.如图,已知2BOC AOC =∠∠,OD 平分AOB ∠,且20COD =∠,求AOB ∠的度数.
4.如图,O 是直线AB 上一点,OC 为任一条射线,OD 平分∠BOC,OE 平分∠AOC.
⑴指出图中∠AOD 与∠BOE 的补角;
⑵试说明∠COD 与∠COE 具有怎样的数量关系.
5.已知∠AOB = 50°,∠BOD= 3∠AOB ,OC 平分∠AOB ,OM 平分∠AOD ,求∠MOC
A
B
C
D
O
A
O C D B O A B C
D
E
的度数。
6.已知∠COD = 30°,∠AOC = 90°,∠BOD =80°,OM平分∠AOD,ON平分∠BOC,求∠MON的度数。
7.如图,OC平分∠AOD,OE是∠BOD的平分线,如果∠AOB=130º,那么∠COE是多少度?
8.一个角的余角的补角比这个角的补角的一半大90º,求这个角。
9.(1)如图,CB⊥AB,∠CBA与∠CBD
是_________度.
.
(2)如图,∠AOB=600,OD 、OE分别平分∠
∠AOC,那么∠EOD=0.
10、如图,∠AOB=110°,∠COD=70°,OA
E
A
D
C
O
B
11.如图所示,OE ,OD 分别平分∠AOB 和∠BOC ,且∠AOB=90°; (1)如果∠BOC=40°,求∠EOD 的度数; (2)如果∠EOD=70°,求∠BOC 的度数。
12、如图,∠AOB 为直角,∠AOC 为锐角,且OM 平分∠BOC , ON 平分∠AOC ,求∠MON 的
度数.
O
A
E B
D C。