11-1排列组合
高中数学排列组合问题的类型及解答

高中数学排列组合问题的类型及解答一、相邻问题捆绑法例16名同学排成一排,其中甲、乙两人必须排在一起的不同排法有()种A. 720B. 360 C. 240D. 120解:因甲、乙两人要排在一起,故将甲、乙两人捆在一起视作一人,与其余四人进行全排列有种排法;甲、乙两人之间有种排法。
由分步计数原理可知,共有=240种不同排法,选C。
评注:从上述解法可以看出,所谓“捆绑法”,就是在解决对于某几个元素相邻的问题时,可整体考虑将相邻元素视作一个“大”元素。
二、相离问题插空法例2 要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,有多少不同的排法?(只要求写出式子,不必计算)解:先将6个歌唱节目排好,其不同的排法为种;这6个歌唱节目的空隙及两端共7个位置中再排4个舞蹈节目,有种排法。
由分步计数原理可知,任何两个舞蹈节目不得相邻的排法为种。
评注:从解题过程可以看出,不相邻问题是要求某些元素不能相邻,由其它元素将它们隔开。
此类问题可以先将其它元素排好,再将所指定的不相邻的元素插入到它们的间隙及两端位置,故称插空法。
三、定序问题缩倍法例3 信号兵把红旗与白旗从上到下挂在旗杆上表示信号。
现有3面红旗、2面白旗,把这5面旗都挂上去,可表示不同信号的种数是__________(用数字作答)。
解:5面旗全排列有种挂法,由于3面红旗与2面白旗的分别全排列均只能算作一次的挂法,故共有不同的信号种数是=10(种)。
评法:在排列问题中限制某几个元素必须保持一定顺序称为定序问题。
这类问题用缩小倍数的方法求解比较方便快捷。
四、标号排位问题分步法例4同室4人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送来的贺年卡,则四张贺年卡的分配方式有()A. 6种 B. 9种C. 11种D. 23种解:此题可以看成是将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,且每个方格的标号与所填数不同的填法问题。
(新)高中数学排列组合公式排列组合计算公式(供参考)

排列组合公式/排列组合计算公式排列P------和顺序有关组合C -------不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法. "排列"把5本书分给3个人,有几种分法"组合"1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示.p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn (两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。
排列组合方法大全

排列组合方法大全(总7页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除排列组合方法归纳大全复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,先排末位共有13C然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
排 列 组 合 公 式 及 排 列 组 合 算 法

排列组合1. 排列组合公式quad排列与组合二者的区别,排列计较次序而组合不计序。
quad从n从n从n个不同物件随机取rrr个物件,记排列数和组合数分别为AnrA_n^rAnr?和CnrC_n^rCnr?,则:Anr=n(n?1)?(n?r?1)=n!(n?r)!Cnr=Anrr!=n!r!(n?r)!begin{aligned}amp; A_n^r=n(n-1)cdots(n-r-1)=frac{n!}{(n-r)!}amp; C_n^r=frac{A_n^r}{r!}=frac{n!}{r!(n-r)!}end{aligned}Anr=n(n1)(nr1)=(nr)!n!Cnr=r!Anr=r!(nr)!n!quad注:Anr(n≥r≥1)A_n^r(ngeq r geq 1)Anr?(n≥r≥1),Cnr(n≥r≥0)C_n^r(ngeq r geq 0)Cnr?(n≥r≥0),0!=10!=10!=1,Cn0=1C_n^0=1Cn0?=12. 二项式及公式推广quad二项式展开公式为:(a+b)n=∑i=0nCniaibn?i(a+b)^n=sum_{i=0}^nC_n^ia^ib^{n-i}(a+b)n=i=0∑n?Cni?aibn?iquad系数CnrC_n^rCnr?常称为二项式系数。
由(a+b)n=(a+b)?(a+b)?n(a+b)^n=underbrace{(a+b)cdots(a+b)}_{n} (a+b)n=n(a+b)?(a+b)?,若独立nnn次实验从{a,b}{a,b}{a,b}中取数,则有CniC_n^iCni?种情况取到iii个aaa、n?in-in?i个bbb,故aibn?ia^ib^{n-i}aibn?i项的系数为CniC_n^iCni?。
quad(1) ∑i=0nCni=2nsum_{i=0}^n C_n^i=2^n∑i=0n?Cni?=2n quadquad 当a=b=1a=b=1a=b=1时,(a+b)n=2n=∑i=0nCni(a+b)^n=2^n=sum_{i=0}^nC_n^i(a+b)n=2n=∑i=0n?Cni?;quad(2)Cm+nk=∑i=0kCmiCnk?iC_{m+n}^k=sum_{i=0}^kC_m^iC_n^{k-i}Cm+n k?=∑i=0k?Cmi?Cnk?i?quadquad 因为(1+x)m+n=(1+x)m(1+x)n(1+x)^{m+n}=(1+x)^m(1+x)^n(1+x)m+n=(1+ x)m(1+x)n,即∑j=0m+nCm+njxj=(∑j=0mCmjxj)?(∑j=0nCnjxj)sum_{j=0}^{m+n}C _{m+n}^jx_j=(sum_{j=0}^mC_m^jx_j)cdot(sum_{j=0}^nC_n^jx_j)∑j=0m+n?Cm+nj?xj?=(∑j=0m?Cmj?xj?)?(∑j=0n?Cnj?xj?),由等式两边同幂项系数相同知Cm+nk=∑i=0kCmiCnk?iC_{m+n}^k=sum_{i=0}^kC_m^iC_n^{k-i}Cm+n k?=∑i=0k?Cmi?Cnk?i?。
11减几教案-1

一、导入同学们,上课之前老师想考考你们还记不记得10的减法啊?那我就出几个题来考考你们?看看你们是不是真的记得。
看来你们队以前学的知识都掌握的非常好呀!今天我们要一起来学习一个新知识——11减几。
二、新授1.请观察这幅图片,你能找到哪些数学信息?可以提出数学问题吗?请一位同学提问:原来有11支铅笔,先男孩拿走了2支,请问,还剩下几支?你们怎么知道有11支铅笔呢?一捆代表10支,加上单着的一支,就是11支铅笔观察的非常仔细,那剩下几支铅笔应该怎么列式呢?11-2=?(书写)这个算式跟我们以前学过的减法算式有什么不一样的啊?个位上只有1,不够减2(好像有的同学知道这个题的答案是9,那你是用怎么计算的呢?)11-2这个算式应该怎么计算吗?(1)11-1-1=9(这种方法叫做平十法,个位上有多少先减多少,再用10去减剩下的)(2)倒着数(从11开始倒着数两个,10,9)(3)直接从10里面减掉2,再把两部分合起来,这种方法叫做破十法。
(4)想加算减(根据学过的加法9+2=11想减法)(如果没有人想出来,就由老师演示:平十法(从各位先拿走一个,再从10里面拿走1个,这种方法就叫做平十法),破十法(直接从10里面拿走2,这种方法就叫做破十法),倒着数(之前我们学加法可以用接着数的方法计算,那我们减法可以用什么方法来计算呢?——倒着数),想加算减(之前我们学过9+?=11,我们可不可以通过这个加法算式得出我们减法算式的答案呢?——这种方法就叫做想加算减))你们找到的方法都超级棒,(虽然有这么多的方法可以帮我们解决退位减法,但我们今天重点要学习的方法是破十法)今天我们重点要学习的就是破十法。
破十法听名字就是要把10破开,那我们这个算式里没有10,应该怎么办?这时候就需要用到我们的分一分了,11可以分成10和1,10直接减掉2。
就像我们之前的凑十法我们有一个写法,那我们破十法又应该如何书写呢?我们一起来想一想,我们是要分谁,所以在11下面写上分解,再把要做的第一个运算用线连起来就好了,你会写了吗?尝试在你的书上写一写。
排列组合中关于捆绑法、插空法、插隔板法的应用 (1)

排列组合中关于捆绑法、插空法、插隔板法的应用捆绑法:当要求某几个元素必须相邻(挨着)时,先将这几个元素看做一个整体,(比如:原来3个元素,整体考虑之后看成1个元素)然后将这个整体和其它元素进行考虑。
这时要注意:一般整体内部各元素如果在前后顺序上有区别的还需进行一定的顺序考虑。
插空法:当要求某几个元素必须不相邻(挨着)时,可先将其它元素排好,然后再将要求不相邻的元素根据题目要求插入到已排好的元素的空隙或两端位置。
插隔板法:指在解决若干相同元素分组,要求每组至少一个元素时,采用将比分组数目少1的隔板插入到元素中的一种解题策略。
题目特点:“若干相同元素分组”、“ 每组至少一个元素”。
例1:一张节目表上原有3个节目,如果保持这3个节目的相对顺序不变,再添进去2个新节目,有多少种安排方法? A.20 B.12 C.6 D.4分两种情况考虑C=8种1、这两个新节目挨着,那么三个节目有4个空,又考虑到这两个节目的先后顺序共有2×14P=12种2、这两个节目不挨着,那么三个节目有4个空,这就相当于考虑两个数在4个位置的排列,由24综上得,共8+12=20种此题中使用了捆绑法和插空法。
例2:A、B、C、D、E五个人排成一排,其中A、B两人不站一起,共有()种站法。
A.120B.72C.48D.24插空法:我们来这样考虑,因A、B两人不站一起,故可考虑的位置C、D、E,C、D、E三个人站在那有P=12。
一共留出4个空,将A、B分别放入这4个空的不同的空中,那就是4个空中取2个空的全排列,即24P=6,综上,共有6*12=72种这样考虑了之后,还有一点就是C、D、E三个人也存在一个排列问题,即23例3:A、B、C、D、E五个人排成一排,其中A、B两人必须站一起,共有()种站法。
A.120B.72C.48D.24捆绑法:此题和上一题实质是一样的,我们来这样考虑,A、B两人既然必须站在一起,那么索性我们就把他P=24,又因为A、B两人虽然是站们看成一个人,那么我们就要考虑其和C、D、E共4个人的全排列,即44P=2,综上,共有48种。
排列组合基础知识及解题技巧

排列组合基础知识及习题分析在介绍排列组合方法之前 我们先来了解一下基本的运算公式!35C =(5×4×3)/(3×2×1) 26C =(6×5)/(2×1)通过这2个例子 看出n mC 公式 是种子数M 开始与自身连续的N 个自然数的降序乘积做为分子。
以取值N 的阶层作为分母提供10道习题供大家练习1、三边长均为整数,且最大边长为11的三角形的个数为( C )(A)25个 (B)26个 (C)36个 (D)37个------------------------------------------------------【解析】根据三角形边的原理 两边之和大于第三边,两边之差小于第三边可见最大的边是11则两外两边之和不能超过22 因为当三边都为11时 是两边之和最大的时候 因此我们以一条边的长度开始分析如果为11,则另外一个边的长度是11,10,9,8,7,6,。
1如果为10 则另外一个边的长度是10,9,8。
2,(不能为1 否则两者之和会小于11,不能为11,因为第一种情况包含了11,10的组合) 如果为9 则另外一个边的长度是 9,8,7,。
3(理由同上 ,可见规律出现)规律出现 总数是11+9+7+。
1=(1+11)×6÷2=362、(1)将4封信投入3个邮筒,有多少种不同的投法?------------------------------------------------------------【解析】 每封信都有3个选择。
信与信之间是分步关系。
比如说我先放第1封信,有3种可能性。
接着再放第2封,也有3种可能性,直到第4封, 所以分步属于乘法原则 即3×3×3×3=3^4(2)3位旅客,到4个旅馆住宿,有多少种不同的住宿方法?-------------------------------------------------------------【解析】跟上述情况类似 对于每个旅客我们都有4种选择。
排列组合公式排列组合计算公式

排列组合公式排列组合计算公式文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)排列组合公式/排列组合计算公式2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。
公式C是指组合,从N个元素取R个,不进行排列。
N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9*8*7*6*5*4*3*2*1从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1);因为从n到(n-r+1)个数为n-(n-r+1)=r举例:Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数A1: 123和213是两个不同的排列数。
即对排列顺序有要求的,既属于“排列P”计算范畴。
上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。
计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。
即不要求顺序的,属于“组合C”计算范畴。
上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1排列、组合的概念和公式典型例题分析例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.例2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:∴ 符合题意的不同排法共有9种.点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.例3判断下列问题是排列问题还是组合问题并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信②每两人互握了一次手,共握了多少次手(2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法②从中选2名参加省数学竞赛,有多少种不同的选法(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商②从中任取两个求它的积,可以得到多少个不同的积(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法②从中选出2盆放在教室有多少种不同的选法分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.(1)①是排列问题,共用了封信;②是组合问题,共需握手(次).(2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法.(3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积.(4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法.例4证明.证明左式右式.∴ 等式成立.点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化.例5 化简.解法一原式解法二原式点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化.例6 解方程:(1);(2).解(1)原方程解得.(2)原方程可变为∵ ,,∴ 原方程可化为.即,解得第六章排列组合、二项式定理一、考纲要求1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题.2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题.3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题.二、知识结构三、知识点、能力点提示(一)加法原理乘法原理说明加法原理、乘法原理是学习排列组合的基础,掌握此两原理为处理排列、组合中有关问题提供了理论根据.例15位高中毕业生,准备报考3所高等院校,每人报且只报一所,不同的报名方法共有多少种解:5个学生中每人都可以在3所高等院校中任选一所报名,因而每个学生都有3种不同的报名方法,根据乘法原理,得到不同报名方法总共有3×3×3×3×3=35(种)(二)排列、排列数公式说明排列、排列数公式及解排列的应用题,在中学代数中较为独特,它研究的对象以及研究问题的方法都和前面掌握的知识不同,内容抽象,解题方法比较灵活,历届高考主要考查排列的应用题,都是选择题或填空题考查.例2由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50 000的偶数共有()个个个个解因为要求是偶数,个位数只能是2或4的排法有P1;小于50 000的五位数,2万位只能是1、3或2、4中剩下的一个的排法有P13;在首末两位数排定后,中间3个位数的排法有P33,得P13P33P12=36(个)由此可知此题应选C.例3将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有多少种解:将数字1填入第2方格,则每个方格的标号与所填的数字均不相同的填法有3种,即214 3,3142,4123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对应3种填法,因此共有填法为3P13=9(种).例四例五可能有问题,等思考三)组合、组合数公式、组合数的两个性质说明历届高考均有这方面的题目出现,主要考查排列组合的应用题,且基本上都是由选择题或填空题考查.例4从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有()种种种种解:抽出的3台电视机中甲型1台乙型2台的取法有C14·C25种;甲型2台乙型1台的取法有C24·C15种根据加法原理可得总的取法有C24·C25+C24·C15=40+30=70(种 )可知此题应选C.例5甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1 项,丙、丁公司各承包2项,问共有多少种承包方式解:甲公司从8项工程中选出3项工程的方式 C38种;乙公司从甲公司挑选后余下的5项工程中选出1项工程的方式有C15种;丙公司从甲乙两公司挑选后余下的4项工程中选出2项工程的方式有C24种;丁公司从甲、乙、丙三个公司挑选后余下的2项工程中选出2项工程的方式有C 22种.根据乘法原理可得承包方式的种数有C 3 8×C 15×C 24×C 22= ×1=1680(种). (四)二项式定理、二项展开式的性质说明二项式定理揭示了二项式的正整数次幂的展开法则,在数学中它是常用的基础知识 ,从1985年至1998年历届高考均有这方面的题目出现,主要考查二项展开式中通项公式等,题型主要为选择题或填空题. 例6在(x- )10的展开式中,x 6的系数是() -27CB.27C 410-9CD.9C 410解设(x- )10的展开式中第γ+1项含x 6, 因T γ+1=C γ10x 10-γ(- )γ,10-γ=6,γ=4于是展开式中第5项含x 6,第5项系数是C 410(- )4=9C 410 故此题应选D.例7(x-1)-(x-1)2+(x-1)3-(x-1)+(x-1)5的展开式中的x 2的系数等于解:此题可视为首项为x-1,公比为-(x-1)的等比数列的前5项的和,则其和为 在(x-1)6中含x 3的项是C 36x 3(-1)3=-20x 3,因此展开式中x 2的系数是-2 0. (五)综合例题赏析例8若(2x+ )4=a 0+a 1x+a 2x 2+a 3x 3+a 4x 4,则(a 0+a 2+a 4)2-(a 1+a 3)2的值为()解:A.例92名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2 名护士,不同的分配方法共有() 种种种种解分医生的方法有P 22=2种,分护士方法有C 24=6种,所以共有6×2=12种不同的分配方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A级基础达标演练
(时间:40分钟满分:60分)
一、选择题(每小题5分,共25分)
1.如图,A、B、C、D为四个村庄,要修筑三条公路,将这四个村庄连接起来,则不同的修筑方案共有().
A.8种B.12种
C.16种D.20种
解析修筑方案可分为两类,一类是“折线型”,用三条公路把四个村庄连在一
条曲线上(如图(1),A-B-C-D),有1
2A
4
4
种方法;另一类是“星型”,以某一个
村庄为中心,用三条公路发散状连接其他三个村庄(如图(2),A-B,A-C,A-D),有4种方法.共有12+4=16种方法.
图(1)图(2)
答案 C
2.(2012·汕头模拟)如图,用6种不同的颜色把
图中A、B、C、D四块区域分开,若相邻区域
不能涂同一种颜色,则不同的涂法共有().
A.400种B.460种
C.480种D.496种
解析从A开始,有6种方法,B有5种,C有4种,D、A同色1种,D、A 不同色3种,∴不同涂法有6×5×4×(1+3)=480(种),故选C.
答案 C
3.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有().
A.20种B.30种C.40种D.60种
解析分三类:甲在周一,共有A24种排法;
甲在周二,共有A23种排法;甲在周三,共有A22种排法;
∴A24+A23+A22=20.
答案 A
4.(2011·西安模拟)三个人踢毽,互相传递,每人每次只能踢一下,由甲开始踢,经过5次传递后,毽又被踢回给甲,则不同的传递方式共有().
A.6种B.8种C.10种D.16种
解析如下图,甲第一次传给乙时有5种方法,同理,甲传给丙也可以推出5种情况,综上有10种传法,故选C.
答案 C
5.(2012·杭州五校联考)如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是().
A.60 B.48 C.36 D.24
解析长方体的6个表面构成的“平行线面组”有6×6=36个,另含4个顶点的6个面(非表面)构成的“平行线面组”有6×2=12个,共36+12=48个,故选B.
答案 B
二、填空题(每小题4分,共12分)
6.(2012·泉州模拟)将数字1,2,3,4,5,6按第一行1个数,第二行2个数,第三行3个数的形式随机排列,设N i(i=1,2,3)表示第i行中最大的数,则满足N1<N2<N3的所有排列的个数是________.(用数字作答)
解析由已知数字6一定在第三行,第三行的排法种数为A13A25=60;剩余的三个数字中最大的一定排在第二行,第二
行的排法种数为A12A12=4,由分步计数原理满足条件的排列个数是240.
答案240
7.(2012·马鞍山质检)数字1,2,3,…,9这九个数字填写在如图的9个空格中,要求每一行从左到右依次增大,每列从上到下也依次增大,当数字4固定在中心位置时,则所有填写空格的方法共有________种.
解析必有1、4、9在主对角线上,2、3只有两种不同的填法,对于它们的每一种填法,5只有两种填法.对于5的每一种填法,6、7、8只有3种不同的填法,由分步计数原理知共有22×3=12种填法.
答案12
8.8名世界网球顶级选手在上海大师赛上分成两组,每组各4人,分别进行单循环赛,每组决出前两名,再由每组的第一名与另一组的第二名进行淘汰赛,获胜者角逐冠、亚军,败者角逐第3、4名,大师赛共有________场比赛.
解析小组赛共有2C24场比赛;半决赛和决赛共有2+2=4场比赛;根据分类计数原理共有2C24+4=16场比赛.
答案16
三、解答题(共23分)
9.(11分)(2012·深圳模拟)如右图所示三组平
行线分别有m、n、k条,在此图形中
(1)共有多少个三角形?
(2)共有多少个平行四边形?
解(1)每个三角形与从三组平行线中各取一条的取法是一一对应的,由分步计数原理知共可构成m·n·k个三角形.
(2)每个平行四边形与从两组平行线中各取两条的取法是一一对应的,由分类和分步计数原理知共可构成C2m C2n+C2n C2k+C2k C2m个平行四边形.
10.(12分)如图,用四种不同颜色给图中的A,B,C,D,E,F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色.则不同的涂色方法共有多少种?
解先涂A、D、E三个点,共有4×3×2=24种涂法,然后再按B、C、F的顺序涂色,分为两类:一类是B与E或D同色,共有2×(2×1+1×2)=8种涂法;另一类是B与E或D不同色,共有1×(1×1+1×2)=3种涂法.所以涂色方法共有24×(8+3)=264(种).
B级综合创新备选
(时间:30分钟满分:40分)
一、选择题(每小题5分,共10分)
1.(2012·福州模拟)高三年级的三个班去甲、乙、丙、丁四个工厂参加社会实践,但去何工厂可自由选择,甲工厂必须有班级要去,则不同的分配方案有().A.16种B.18种C.37种D.48种
解析三个班去四个工厂不同的分配方案共43种,甲工厂没有班级去的分配方案共33种,因此满足条件的不同的分配方案共有43-33=37(种).
答案 C
2.(2011·全国高考)4位同学从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法有().
A.12种B.24种C.30种D.36种
解析分三步,第一步先从4位同学中选2人选修课程甲.共有C24种不同选法,第二步给第3位同学选课程,有2种选法.第三步给第4位同学选课程,也有2种不同选法.故共有C24×2×2=24(种).
答案 B
二、填空题(每小题4分,共8分)
3.(2010·上海理)从集合U={a,b,c,d}的子集中选出4个不同的子集,需同时满足以下两个条件:
(1)∅,U都要选出;
(2)对选出的任意两个子集A和B,必有A⊆B或A⊇B.那么,共有________种不同的选法.
解析将选法分成两类.第一类:其中一个是单元素集合,则另一集合为两个或三个元素且含有单元素集合中的元素,有C14×6=24(种).
第二类:其中一个是两个元素集合,则另一个是含有这两个元素的三元素集合,有C24×2=12(种).
综上共有24+12=36(种).
答案36
4.五名学生报名参加四项体育比赛,每人限报一项,则报名方法的种数为________.五名学生争夺四项比赛的冠军(冠军不并列),获得冠军的可能性有________种.
解析报名的方法种数为4×4×4×4×4=45(种).获得冠军的可能情况有5×5×5×5=54(种).
答案4554
三、解答题(共22分)
5.(10分)现安排一份5天的工作值班表,每天有一个人值班,共有5个人,每个人都可以值多天班或不值班,但相邻两天不准由同一个人值班,问此值班表共
有多少种不同的排法?
解可将星期一、二、三、四、五分给5个人,相邻的数字不分给同一个人.星期一:可分给5人中的任何一人,有5种分法;
星期二:可分给剩余4人中的任何一人,有4种分法;星期三:可分给除去分到星期二的剩余4人中的任何一人,有4种分法;
同理星期四和星期五都有4种不同的分法,由分步计数原理共有5×4×4×4×4=1 280种不同的排法.
6.(12分)(2012·太原月考)已知集合A={a1,a2,a3,a4},B={0,1,2,3},f是从A到B的映射.
(1)若B中每一元素都有原象,这样不同的f有多少个?
(2)若B中的元素0必无原象,这样的f有多少个?
(3)若f满足f(a1)+f(a2)+f(a3)+f(a4)=4,这样的f又有多少个?
解(1)显然对应是一一对应的,即为a1找象有4种方法,a2找象有3种方法,a3找象有2种方法,a4找象有1种方法,所以不同的f共有4×3×2×1=24(个).(2)0必无原象,1,2,3有无原象不限,所以为A中每一元素找象时都有3种方法.所以不同的f共有34=81(个).
(3)分为如下四类:
第一类,A中每一元素都与1对应,有1种方法;
第二类,A中有两个元素对应1,一个元素对应2,另一个元素与0对应,有C24·C12=12种方法;
第三类,A中有两个元素对应2,另两个元素对应0,有C24·C22=6种方法;
第四类,A中有一个元素对应1,一个元素对应3,另两个元素与0对应,有C14·C13=12种方法.
所以不同的f共有1+12+6+12=31(个).。