换元积分法与分部积分法
积分的换元法与分部积分法

积分的换元法与分部积分法积分作为微积分中重要的概念和工具,被广泛应用于数学、物理、工程等领域。
积分可以通过不同的方法来求解,其中换元法和分部积分法是常见且重要的两种方法。
本文将介绍积分的换元法和分部积分法,并对其原理和应用进行详细讨论。
一、换元法换元法又被称为变量代换法,其核心思想是通过引入新的变量来简化被积函数的形式。
具体步骤如下:1. 选择合适的变量代换。
2. 计算新变量关于原变量的导数,确定微元的变换关系。
3. 将被积函数和微元用新变量表示,进行积分计算。
4. 将结果用原变量表示,得到最终的积分结果。
举例来说,如果要计算∫(2x+1)^2 dx,可以选择变量代换u = 2x + 1。
根据导数的链式法则,有du/dx = 2,从而dx = du/2。
将被积函数和微元用新变量表示,得到∫u^2 (du/2)。
对该表达式进行积分计算,并将结果用原变量表示,即可得到∫(2x+1)^2 dx的积分结果。
换元法在解决一些形式复杂的积分问题时非常有用,可以将原函数变换为更简单的形式,进而实现积分的计算。
二、分部积分法分部积分法是对求导和求积分的相互关系的一种应用。
其基本原理是根据乘积的求导法则,将被积函数分解为两个函数的乘积的导数形式,从而利用求导法进行积分的计算。
具体步骤如下:1. 选择合适的分解形式。
2. 对乘积中的一个函数求导。
3. 对另一个函数进行积分。
4. 将结果用原变量表示,得到最终的积分结果。
举例来说,如果要计算∫x*sin(x) dx,可以将被积函数分解为两个函数的乘积形式,即f(x) = x和g(x) = sin(x)。
根据导数的乘法法则,有(fg)' = f'g + fg',其中f'和g'分别表示f(x)和g(x)的导数。
将该等式与积分的相互关系结合,得到∫f(x)g'(x)dx = fg - ∫f'(x)g(x)dx。
利用该等式进行计算,即可得到∫x*sin(x) dx的积分结果。
换元积分法和分部积分法

对于含有根式的函数的 积分,原则上是设法去 掉根式。
有些含有根式的函数的 积分,直接令根式为新 变量 即可将问题转化为一般 的不含根式的函数的积 分。
补充例题11 计算
解:
1 6
dx . 3 x x
xx ,
1 2
3
xx ,
1 3
它们的指数部分的 分母的最小公倍数 为6 .
令 t x , t 0,
则 x t , d x 6 t d t, 故
6 5
t 3 1 1 dx 6 t3 dt d t 6 3 t 1 x x t 1
1 6 ( t t 1 )dt t 1
2
2 t 3 3 t 2 6 t 6 ln | t 1 | C 2 x 33 x 66 x 6 ln( 6 x 1) C .
第二类换元法常见类型:
(1)
(2)
f ( x , n ax b ) dx , 令
a x b n ( x , c x d ) dx ,
f
令 或
第 三 节 讲
(3) (4) (5)
f ( x , a 2 x 2 ) dx , 令 f ( x , a 2 x 2 ) dx , 令 f ( x , x 2 a 2 ) dx , 令
求
f (tan x)sec 2 xdx
补充例题4
1 解: 原式 = 1 2 ln x 2 1 2 ln x
自主学习课本P141例4.2.6、例4.2.7、例4.2.8
例4.2.9 求
tan xdx 和 cot xdx
.
解: cot xdx cos x dx 1 d sin x = ln sinx + C sin x sin x
换元积分法和分部积分法

1 2 x 2 2 a arcsin x a x C . 2 a
例8 求
a2 x2 π 解 设 x a tan t , | t | . 2 dx a sec2 tdt a 2 x 2 a sec t
sec tdt ln | sec t tan t | C
(解法二) sec xdx
sec x(sec x tan x ) dx sec x tan x
d(sec x tan x ) ln | sec x tan x | C . sec x tan x
f (a 2 x 2 ), f (a 2 x 2 ), 第二类换元积分法常用在
例2 解
x d( ) x dx 1 a (令 u ) 2 2 x a a a x 1 ( )2 a 1 du 1 arctan u C 2 a a 1 u
dx a 2 x 2 (a 0).
对换元积分法较熟练后,可以不写出换元变量 , 而直接使用公式(1) 例3 求
一、 换元积分法
由复合函数求导法,可以导出换元积分法。 设 g( u)在 [ , ] 上有定义, u ( x ) 在 [a , b]上可导,且 ( x ) , x [a, b] 并记 f ( x ) g( ( x )) ( x ), x [a, b]. (i) 若 g ( u) 在 [ , ] 上存在原函数 G( u) ,则 f ( x ) 在 [a , b] 上也存在原函数F ( x ), F ( x ) G( ( x )) C , 即
第一换元积分法亦称为凑微分法, 即
g( ( x )) ( x )dx g( ( x ))d ( x ) G( ( x )) C ,
数学分析8.2换元积分法与分部积分法(讲义)

第八章 不定积分2 换元积分法与分部积分法(讲义)一、换元积分法定理8.4:(换元积分法)设g(u)在[α,β]上有定义,u=φ(x)在[a,b]上可导,且α≤φ(x)≤β,x ∈[a,b],并记f(x)=g(φ(x))φ’(x), x ∈[a,b].1、(第一换元积分法)若g(u)在[α,β]上存在原函数G(u),则f(x)在[a,b]上也存在原函数F(x),且F(x)=G(φ(x))+C ,即 ∫f(x)dx=∫g(φ(x))φ’(x)dx=∫g(u )du=G(u)+C=G(φ(x))+C .2、(第二换元积分法)若φ’(x)≠0, x ∈[a,b],则命题1可逆,即f(x)在[a,b]上存在原函数F(x)时,g(u)在[α,β]上也存在原函数G(u),且G(u)=F(φ-1(u))+C, 即∫g(u )du=∫g(φ(x))φ’(x)dx=∫f(x)dx=F(x)+C=F(φ-1(u))+C. 证:1、∵dxdG(φ(x))=G ’(φ(x))φ’(x)=g(φ(x))φ’(x)=f(x), ∴∫f(x)dx=∫g(φ(x))φ’(x)dx=∫g(u )du=G(u)+C=G(φ(x))+C . (亦可简写为:∫g(φ(x))φ’(x)dx=∫g(φ(x))d φ(x)=G(φ(x))+C .) 2、若φ’(x)≠0, x ∈[a,b],则u=φ(x)有反函数x=φ-1(x),且du dx =(x)φx 1-(x)φ1=',∴dx d F(φ-1(u))=F ’(x)·(x)φ1'=f(x)·(x)φ1'=g(φ(x))φ’(x)·(x)φ1'=g(φ(x))=g(u). ∴∫g(u )du=∫g(φ(x))φ’(x)dx=∫f(x)dx=F(x)+C=F(φ-1(u))+C.例1:求∫tanxdx. 解:∫tanxdx=∫cosx sinx dx=-∫cosx1d(cosx). 令u=cosx ,则 ∫tanxdx=-∫u1du=-ln|u|+C=-ln|cosx|+C.例2:求∫22xa dx+(a>0). 解:∫22x a dx +=a 1∫2a x 1ax d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=a 1arctan a x +C.例3:求∫22x-a dx (a>0).解:∫22x -a dx =∫2a x -1a x d ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=arcsin ax +C.例4:求∫22a -x dx(a ≠0). 解:∫22a -x dx =2a 1∫⎪⎭⎫⎝⎛+--a x 1a x 1dx=2a 1[∫a x 1-d(x-a)-∫a x 1+d(x+a)] =2a 1[ln|x-a|-ln|x+a|]+C=2a 1ln ax a-x ++C.例5:求∫secxdx.解法1:∫secxdx=∫cosxdx =∫2x sin 2x cos dx 22-=21∫⎪⎪⎪⎪⎭⎫⎝⎛+-+-+2x sin 2x cos 2x sin 2x cos 2x sin 2x cos 2x sin 2x cos dx =21(∫2x sin2x cos 2x sin 2x cos -+dx+∫2x sin 2x cos 2x sin 2x cos +-dx)= -∫2x sin 2x cos 2x sin 2x cos d -⎪⎭⎫ ⎝⎛-+∫2x sin 2x cos 2x sin 2x cos d +⎪⎭⎫ ⎝⎛+=-ln 2x sin 2x cos -+ln 2x sin 2x cos ++C=ln2x sin2x cos 2x sin2x cos -++C=ln cosx sinx 1++C. 解法2:∫secxdx=∫x cos cosx 2dx=∫xsin -112d(sinx)=21ln x sin 1sinx1-++C.解法3:∫secxdx=∫tanx secx tanx)secx(secx ++dx=∫tanxsecx tanx)d(secx ++=ln|secx+tanx|+C.例6:求∫3u-u du .解:令u=x 6,则x=6u ,原式=∫236x -x dx =6∫1-x x 3dx=6∫(1-x 1x 1-x 13-+)dx=6∫(1-x 1+x 2+x+1)dx=6[∫1-x 1d(x-1)+ ∫x 2dx+∫xdx+∫dx]=6(ln|x-1|+3x 3+2x 2+x)+C=6ln|x-1|+2x 3+3x 2+6x+C=6ln|6u -1|+2u +33u +66u +C.例7:求∫22x -a dx (a>0).解:令x=asint, |t|<2π,则t=arcsin ax ,原式=∫t sin a -a 222d(asint)=a 2∫cos 2tdt=4a 2∫(cos2t+1)d(2t)=4a 2[∫cos2td(2t)+∫d(2t)]=4a 2(sin2t+2t)+C =4a 2(2sinarcsin a x cosarcsin a x +2arcsin a x )+C=2a 2(ax2a x -1⎪⎭⎫⎝⎛+arcsin a x )+C.例8:求∫22a-x dx (a>0).解:令x=asect, 0<t<2π, 则t=arcsec ax , 原式=∫22a -)asect (d(asect)=∫ttan tantdtsect ⋅=∫sectdt=ln|sect+tant|+C 1 =ln|secarcsec a x +tanarcsec a x |+C 1=ln|a x +ax22xa -1|+C 1 =ln|a x +aa -x 22|+C 1=ln|x+22a -x |-lna+C 1=ln|x+22a -x |+C.例9:求∫222)a (x dx+(a>0). 解:令x=atant, |t|<2π, 则t=arctan ax ,原式=∫222]a )atant ([d(atant)+=3a 1∫t sec t sec 42dt=3a 1∫cos 2tdt=3a 1∫21cos2t +dt =34a 1∫(cos2t+1)d(2t)=34a 1[∫cos2td(2t)+∫d(2t)]=34a 1(sin2t+2t)+C =32a 1sintcost+32a t +C=)t tan 1(2a tant23++32a t +C=)ax1(2a a x223++32a a x arctan +C=32a 1(22a x ax ++arctan a x )+C.例10:求∫1-x xdx 22.解法1:(运用第一换元积分法)原式=∫23x1-1x dx =-∫2x 1-1)x 1d(x 1=2x 1-1+C=1-x x 12+C .解法2:(运用第二换元积分法)令x=sect, 则t=arcsecx. 原式=∫1-t sec t sec d(sect)22=∫tant t sec tant sect 2⋅⋅dt=∫costdt=sint+C=tsec 1-12+C =2x1-1+C=1-x x 12+C .二、分部积分法:定理8.5:(分部积分法)若u(x)与v(x)可导,不定积分∫u ’(x)v(x)dx 存在,则∫u(x)v ’(x)dx 也存在,并有∫u(x)v ’(x)dx=u(x)v(x)-∫u ’(x)v(x)dx. 可简写为:∫udv=uv-∫vdu. (分部积分公式) 证:由(u(x)v(x))’=u ’(x)v(x)+u(x)v ’(x),得∫(u(x)v(x))’dx=∫[u ’(x)v(x)+u(x)v ’(x)]dx=∫u ’(x)v(x)dx+∫u(x)v ’(x)dx ,即有 ∫u(x)v ’(x)dx=∫(u(x)v(x))’dx-∫u ’(x)v(x)dx=u(x)v(x)-∫u ’(x)v(x)dx.例11:求∫xcosxdx.解:∵∫sinxdx=-cosx+C ,∴∫xcosxdx=∫xdsinx=xsinx-∫sinxdx=xsinx+cosx+C.例12:求∫arctanxdx.解:∵∫xd(arctanx)=∫1x x 2+dx=21∫1x 12+d(x 2+1)=21ln(x 2+1)+C ,∴∫arctanxdx=xarctanx-∫xd(arctanx)=xarctanx-21ln(x 2+1)+C.例13:求∫x 3lnxdx.解:令t=lnx ,则x=e t ,∫x 3lnxdx=∫e 3t tde t =∫e 4t tdt=41∫tde 4t .∵∫e 4t dt=41e 4t +C ,∴41∫tde 4t =41(te 4t -∫e 4t dt)=161e 4t(4t-1)+C. ∴原式=161x 4(4lnx-1)+C.例14:求∫x 2e -x dx.解:∫x 2e -x dx=-∫x 2de -x ,又∫e -x dx 2=2∫x e -x dx=-2∫x de -x .∵∫e -x dx=-e -x +C ,∴∫xde -x =xe -x -∫e -x dx=xe -x +e -x +C ,∴∫e -x dx 2=-2(xe -x +e -x )+C , 原式=-(x 2e -x -∫e -x dx 2)=-x 2e -x -2(xe -x +e -x )+C=-x 2e -x -2xe -x -2e -x +C.例15:求I 1=∫e ax cosbxdx 和I 2=∫e ax sinbxdx.解:I 1=a1∫cosbxde ax =a1[e ax cosbx-∫e ax d(cosbx)]=a1(e ax cosbx+bI 2). I 2=a1∫sinbxde ax =a1[e ax sinbx-∫e ax d(sinbx)]=a1(e ax sinbx-bI 1).由此得方程组:⎩⎨⎧sinbx e =aI +bI coxbx e =bI -aI ax21ax 21. 解方程组得: I 1=22ax b a bsinbx)(acosbx e +++C ;I 2=22ax b a bcosbx)(asinbx e +-+C.。
第五章 第4节定积分的换元法和分部积分法

sin
3
x sin
5
5
x cos x sin x 2
3
0
sin
3
x sin
3
x dx
0
cos x sin x 2 dx
3
3
0
2
cos x sin x 2 dx
3
cos x sin x 2 dx
2 3
0 sin x 2 d sin
3
( t 3) d t
2
1
3 1 1 3 22 ( t 3t ) 2 3 3 1
6
例3
计算 0
x 2
cos
0
5
2
cos
5
x sin xdx .
解
令 t cos x ,
2
dt sin xdx ,
t 0,
x sin xdx
5
x 0 t 1,
a
a x d x (a 0).
2 2
0
解: 令 x a sin t , 则 d x a cos t d t , 且当 x 0 时 t 0 , x a 时 t
2
∴ 原式 = a
2
2
2
cos t d t
(1 cos 2 t ) d t 1 2
2
0
2
a
2 a
则 有 f ( x )dx
a
b
f [ ( t )] ( t )dt .
2
证
定积分的换元法和分部积分法

不定积分法
定积分法,
且使用方法与相应的不定积分法类似。
一、定积分的换元法
我们知道,不定积分的换元法有两种,下面就分别 介绍对应于这两种换元法的定积分的换元法。
1. 第一类换元积分法(凑微分法)
设函数 f ( x) 在区间 [a, b]上连续, f (x)dx F( x) C
那么
b a
0
1
1
t
)dt
2t
ln
|
1
t
|
2 0
4 2ln3
(2)根号下为 x 的二次式
例8 计算
1
2
0
x2 dx 1 x2
解 设 x sint, π t π , 则 dx cos t dt,
2
2
且当 x 0 时,t 0; 当 x 1 时,t π, 因此
2
6
1 2 0
x2 dx 1 x2
0
分部积分
t sint
6
0
6 sintdt
0
1 62
[
cos
t
]6 0
3 1.
12 2
例16
计算
e-1
ln(1
x)dx
0
解
e-1
ln(1
x)dx
e-1
ln(1
x)d( x)
0
0
x
ln(1
x)
e1 0
e1
0
xd
ln(1
x)
e
1
e-1 0
x
1
1
x
dx
e
1
e-1 0
(1
1
1
x
高等数学:第三节 定积分的换元法、分部积分法

(1)换元的基本思路是方便有效地找出被积函
数的原函数。这与不定积分的换元思路相同。
(2)换元的同时一定要相应地变换积分的上、 下限。
(3)同不定积分的换元法不同的是,在用换元 法求出原函数后,不必代回原来的变量,这使 问题变得更加方便、简单。
(4)同不定积分一样,d x 可看作对 x 的微分 .
(5)上述换元公式也可反过来使用。
a
0
0
a
0 [ f (x ) f ( x) ]d x
即
a
a
f ( x)d x [ f ( x) f ( x) ] d x
a
0
a
a
即
f (x)d x [ f (x) f (x) ] d x
a
0
(1)若 f (x) 为偶函数,即 f (x ) f ( x )
a
a
a f (x)d x 2 0 f (x)d x
则
b
f (x)d x F(b) F(a)
a
由不定积分换元法有 f [ (t)] '(t)d t F[ (t)] c
f [ (t)] '(t)d t F[ (t)]
F[( )] F[( )]
b
F(b) F(a) a f (x)d x
几点注记:
b
a
f ( x)d x
f [ (t)] '(t)d t
第四节 定积分的换元法和分部积分法 一、定积分的换元法 不定积分的换元法
• 第一类换元公式
u (x)
f [(x)] '(x) d x
f (u) du (1)
• 第二类换元公式
x (t)
f (x) d x f [ (t) ] '(t)dt (2)
定积分的换元积分法与分部积分法

解:对 p 1,
a
dx (a 0) p x
收敛或发散
b
1
1 1 1 p 1 p 1 ( b ) x dx x p 1 p 1 p 1
p
重要的问题是b的指数是正数还是负数. 假如是
负数, 则当b趋向无穷时, b–p+1趋向于0. 若指数为
正数,则b–p+1当b趋于无穷时无界增长. 因此, 若–
a
udv uv a vdu .
a
回忆::
定积分的分部积分公式
不定积分的分部积分公 式为 :
udv uv vdu .
例1. 计算
解: 原式 =
x arctan x
1 2
1 0
1
0
1 1 2 d (1 x ) 2 4 2 0 1 x
1 2 ln( 1 x ) 2 4 0 1 ln 2 2 4
当p>1时积分有值
1
b 1 1 1 1 p 1 b ) dx lim p dx lim ( p b p 1 b 0 x p 1 x
1 1 ( ) p 1 p 1
定理1 (比较判别法) [a,), g ( x) f ( x) 0, 设 且f ( x), ( x)于[a,)内有界, 则 g (1) 当 a g ( x)dx 收敛时,a f ( x)dx 也收敛 ; (2) 当
1
dx 增长且无界, x
y 1 x
dx 发散. y x
1
b
dx x
0
1
b
x
2. 其它情形意义
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
换元积分法与分部积分
法
文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]
换元积分法与分部积分法(4时)
【教学目的】熟练掌握换元积分法和分步积分法。
【教学重点】换元积分法和分步积分法。
【教学难点】灵活运用换元积分法和分步积分法。
【教学过程】
一 换元积分法
由复合函数求导法,可以导出换元积分法.
定理8.4(换元积分法) 设g(u )在[]βα,上有定义,)(x u ϕ=在[]b a ,上可导,且[]b a x x ,,)(∈≤≤βϕα,并记
(i)若)(u g 在[]βα,上存在原函数)(u G ,则)(x f 在[]b a ,上也存在原函数
C x G x F x F +=))(()(),(ϕ,即
(ii) 又若[],,,0)(b a x x ∈≠'ϕ则上述命题(i)可逆,即当)(x f 在[]b a ,上存在原函数F(x )时,g(u )在[βα,]上也存在原函数G(u ),且G(u )=C u F +-))((1ϕ,即
⎰⎰⎰='=dx x f dx x x g du u g )()())(()(ϕϕ.
证 (i ) 用复合函数求导法进行验证:
所以)(x f 以))((x G ϕ为其原函数,(1)式成立.
( ii ) 在0)(≠'x ϕ的条件下,)(x u ϕ=存在反函数)(1u x -=ϕ,且
于是又能验证(2)式成立:
)())((u g x g ==ϕ. 口
上述换元积分法中的公式(1)与(2)反映了正、逆两种换元方式,习惯上分别称为第一换元积分法和第二换元积分法(公式(1)与(2)分别称为第一换元公式与第二换元公式).
下面的例1至例5采用第一换元积分法求解.在使用公式(1)时,也可把它写成如下简便形式:
例1 求⎰.tan xdx
解 由 ,cos )(cos cos sin tan dx x x dx x x xdx ⎰⎰⎰
'-== 可令,1)(,cos u
u g x u ==则得 例 2 求).0(2
2>+⎰a x a dx 解 ⎰⎰⎪⎭
⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+2
2211a x a x d a x a dx )(a x u =令 对换元积分法比较熟练后,可以不写出换元变量u ,而直接使用公式)1('.
例 3 求⎰-22x a dx
)0(>a
解 ⎰⎰⎰⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=-2222111a x dx a x dx
a x a dx
例 4 求).0(22≠-⎰
a a x dx 解 ⎰-22a x dx dx a x a x a ⎰⎪⎭
⎫ ⎝⎛+--=1121 例 5 求⎰.sec xdx
解 [解法一]利用例4的结果可得
[解法二]
⎰xdx sec =dx x
x x x x ⎰++tan sec )tan (sec sec C x x ++=tan sec ln .
这两种解法所得结果只是形式上的不同,请读者将它们统一起来.
从以上几例看到,使用第一换元积分法的关键在于把被积表达式dx x f )(凑成()()()dx x x g ϕϕ'的形式,以便选取变换)(x u ϕ=,化为易于积分的()⎰du u g .最终不要忘记把新引入的变量()u 还原为起始变量()x .
第二换元公式(2)从形式上看是公式(1)的逆行,但目的都是为了化为容易求得原函数的形式(最终同样不要忘记变量还原),以下例6至例9采用第二换元积分法求解. 例6 求⎰+3u u du
.
解 为去掉被积函数中的根式,取根次数2与3的最小公倍数6,并令6x u =,则可把原来的不定积分化为简单有理式的积分: C u u u u ++-+-=1ln 6632663.
例7 求 )0(22>-⎰a dx x a
解 令,sin t a x = 2π<
t (这是存在反函数a x t arcsin =的一个单调区间).于是 例8 求()022>-⎰a a x dx
.
解 令t a x sec =,20π
<
<t (同理可考虑0<t 的情况),于是有 借助辅助直角三角形,便于求出a
x t =
sec , a a x t 2
2tan -=,故得 例9 求)0()(222>+⎰a a x dx
解 令t a x tan =,2π
<t ,于是有
有些不定积分还可采用两种换元方法来计算.
例10 求.122⎰-x x dx
解 [解法一]采用第一换元积分法:
[解法二] 采用第二换元积分法(令t x sec =):
二 分部积分法
由乘积求导法,可以导出分部积分法.
定理(分部积分法)若()x u 与()x v 可导,不定积分()()dx x v x u ⎰'存在,则()()dx x v x u '⎰也存在,并有 ()()dx x v x u '⎰=()x u ()-x v ()()dx x v x u ⎰' (3)
证 由 ()()[]()()()()x v x u x v x u x v x u '+'='
或 ()()x v x u '=()()[]'x v x u ()()x v x u '-,
对上式两边求不定积分,就得到(3)式.
公式(3)称为分部积分公式,常简写作⎰⎰-=vdu uv udv (4)
例11 求⎰xdx x cos .
解 令x u =,x v cos =',则有.sin ,1x v u =='由公式(3)求得
例12 求⎰.arctan xdx .
解 令=u x arctan ,1=v ,则211x u +=
',x v =,由公式(3)求得 例13 求⎰.ln 3xdx x
解 令3,ln x v x u ='=,由公式(4)则有
有时需要接连使用几次分部积分才能求得结果;有些还会出现与原不定积分同类的项,需经移项合并后方能完成求解.现分别示例如下
例14 求.2dx e x x -⎰
解 ()
⎰⎰⎰----+-=-=dx xe e x e d x dx e x x x x x 2222
例15 求bxdx e I x cos 1⎰-=和⎰=.sin 2bxdx e I ax 解 ()()bxdx e b bx e a
e bxd a I ax ax ax sin cos 1cos 11⎰⎰+== ()
2cos 1bI bx e a ax +=,
()()
12sin 1sin 1bI bx e a e bxd a I ax ax -==
⎰. 由此得到 解此方程组,求得
作业:1(2)(5)(7)(10)(16)(20)(27)2(1)(2)(8)(9)。