2020年山东省济南市章丘区中考数学模拟试卷(一)

合集下载

2020年山东省济南市章丘区中考数学模拟试卷(一) 解析版

2020年山东省济南市章丘区中考数学模拟试卷(一)  解析版

2020年山东省济南市章丘区中考数学模拟试卷(一)一.选择题(共12小题)1.数2020的相反数是()A.B.﹣C.2020D.﹣20202.下列几何体中,主视图与俯视图不相同的是()A.B.C.D.3.2020年我国爆发“新冠肺炎”疫情,在党中央的坚强领导下,全国上下,众志成城,抗击疫情,截止2020年2月20号,累计确诊70637例,把数70637用科学记数法表示为()A.7.0637×104B.7.0637×105C.7.0637×103D.0.70637×1054.如图,直线a,b被直线c所截,若a∥b,∠1=40°,∠2=70°,则∠3=()A.70°B.100°C.110°D.120°5.下表是某校乐团的年龄分布,其中一个数据被遮盖了,下面说法正确的是()年龄13141516频数5713■A.中位数可能是14B.中位数可能是14.5C.平均数可能是14D.众数可能是166.下列图形中,是中心对称图形的是()A.B.C.D.7.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是()A.B.C.﹣D.8.抛物线y=ax2+bx+c的图象如图所示,那么一次函数y=bx+b2﹣4ac与反比例函数y=在同一坐标系内的图象大致是()A.B.C.D.9.如图所示,在桥外一点A测得大桥主架与水面的交汇点C的俯角为α,大桥主架的顶端D的仰角为β,已知大桥主架顶端离水面的高CD=a,则此时测量点与大桥主架的水平距离AB为()A.a sinα+a sinβB.a tanα+a tanβC.D.10.如图,已知点A(﹣6,0),B(2,0),点C在直线上,则使△ABC是直角三角形的点C的个数为()A.1B.2C.3D.411.如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H 在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.2B.3C.5D.612.已知函数y=,当a≤x≤b时,﹣≤y≤,则b﹣a的最大值为()A.1B.+1C.D.二.填空题(共6小题)13.分解因式:2x3﹣8x=.14.x等于数时,代数式的值比的值的2倍小1.15.如图,一个可以自由转动的转盘,任意转动转盘一次,当转盘停止时,指针落在红色区域的概率为.16.如图,正五边形ABCDE内接于⊙O,F是CD弧的中点,则∠CBF的度数为.17.甲、乙两人分别从两地同时出发登山,甲、乙两人距山脚的竖直高度y(米)与登山时间x(分)之间的图象如图所示,若甲的速度一直保持不变,乙出发2分钟后加速登山,且速度是甲速度的4倍,那么他们出发分钟时,乙追上了甲.18.如图,在矩形ABCD中,AB=4,BC=6,点E为对角线BD的中点,点F在CB的延长线上,且BF=1,连接EF,过点E作EG⊥EF交BA的延长线于点G,连接GF并延长交DB的延长线于点H,则=.三.解答题(共9小题)19.计算:﹣20180﹣|﹣5|+()﹣2﹣2cos60°20.解不等式组:,把它的解集在数轴上表示出来,并写出其整数解.21.如图,矩形ABCD中,对角线AC、BD交于点O,以AD、OD为邻边作平行四边形ADOE,连接BE.求证:四边形AOBE为菱形.22.某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.(1)求每行驶1千米纯用电的费用;(2)若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少用电行驶多少千米?23.如图,△ABC内接于⊙O,AB为⊙O的直径,过点A作⊙O的切线交BC的延长线于点E,在弦BC上取一点F,使AF=AE,连接AF并延长交⊙O于点D.(1)求证:∠B=∠CAD;(2)若CE=2,∠B=30°,求AD的长.24.为了提高中学生身体素质,学校开设了A:篮球、B:足球、C:跳绳、D:羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图(未画完整).(1)这次调查中,一共调查了名学生;(2)请补全两幅统计图;(3)若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率.25.在如图平面直角坐标系中,矩形OABC的顶点B的坐标为(4,2),OA、OC分别落在x轴和y轴上,OB是矩形的对角线.将△OAB绕点O逆时针旋转,使点B落在y轴上,得到△ODE,OD与CB相交于点F,反比例函数y=(x>0)的图象经过点F,交AB 于点G.(1)求k的值和点G的坐标;(2)连接FG,则图中是否存在与△BFG相似的三角形?若存在,请把它们一一找出来,并选其中一种进行证明;若不存在,请说明理由;(3)在线段OA上存在这样的点P,使得△PFG是等腰三角形.请直接写出点P的坐标.26.如图,在正方形ABCD中,M、N分别是射线CB和射线DC上的动点,且始终∠MAN =45°.(1)如图1,当点M、N分别在线段BC、DC上时,请直接写出线段BM、MN、DN之间的数量关系;(2)如图2,当点M、N分别在CB、DC的延长线上时,(1)中的结论是否仍然成立,若成立,给予证明,若不成立,写出正确的结论,并证明;(3)如图3,当点M、N分别在CB、DC的延长线上时,若CN=CD=6,设BD与AM 的延长线交于点P,交AN于Q,直接写出AQ、AP的长.27.如图1,在平面直角坐标系中,抛物线y=﹣x2+x+与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D.(1)求直线BC的解析式;(2)如图2,点P为直线BC上方抛物线上一点,连接PB、PC.当△PBC的面积最大时,在线段BC上找一点E(不与B、C重合),使PE+BE的值最小,求点P的坐标和PE+BE的最小值;(3)如图3,点G是线段CB的中点,将抛物线y=﹣x2+x+沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为F.在抛物线y′的对称轴上,是否存在一点Q,使得△FGQ为直角三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共12小题)1.数2020的相反数是()A.B.﹣C.2020D.﹣2020【分析】直接利用相反数的定义得出答案.【解答】解:2020的相反数是:﹣2020.故选:D.2.下列几何体中,主视图与俯视图不相同的是()A.B.C.D.【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.【解答】解:四棱锥的主视图与俯视图不相同.故选:C.3.2020年我国爆发“新冠肺炎”疫情,在党中央的坚强领导下,全国上下,众志成城,抗击疫情,截止2020年2月20号,累计确诊70637例,把数70637用科学记数法表示为()A.7.0637×104B.7.0637×105C.7.0637×103D.0.70637×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将70637用科学记数法表示为:7.0637×104.故选:A.4.如图,直线a,b被直线c所截,若a∥b,∠1=40°,∠2=70°,则∠3=()A.70°B.100°C.110°D.120°【分析】根据两直线平行,内错角相等求出∠4,再根据对顶角相等解答.【解答】解:∵a∥b,∠1=40°,∴∠4=∠1=40°,∴∠3=∠2+∠4=70°+40°=110°.故选:C.5.下表是某校乐团的年龄分布,其中一个数据被遮盖了,下面说法正确的是()年龄13141516频数5713■A.中位数可能是14B.中位数可能是14.5C.平均数可能是14D.众数可能是16【分析】分别求得该组数据的中位数、平均数及众数即可确定正确的选项.【解答】解:5+7+13=25,由列表可知,人数大于25人,则中位数是15或(15+16)÷2=15.5或16.平均数应该大于14,综上,D选项正确;故选:D.6.下列图形中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:B.7.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是()A.B.C.﹣D.【分析】先根据勾股定理得到AB=,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD.【解答】解:∵∠ACB=90°,AC=BC=1,∴AB=,∴S扇形ABD==.又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD=.故选:A.8.抛物线y=ax2+bx+c的图象如图所示,那么一次函数y=bx+b2﹣4ac与反比例函数y=在同一坐标系内的图象大致是()A.B.C.D.【分析】根据二次函数图象的开口向上可得a>0,再根据对称轴确定出b<0,然后根据x=﹣1,x=1时函数图象的位置求出a﹣b+c和a+b+c的符号,最后确定出b2﹣4ac与c ﹣2b的正负情况,从而确定出一次函数图象与反比例函数图象即可得解.【解答】解:∵二次函数图象开口向上,∴a>0,∵对称轴为直线x=﹣>0,∴b<0,当x=﹣1时,a﹣b+c>0,当x=1时,a﹣b+c<0,∴(a+b+c)(a﹣b+c)<0,∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴一次函数图象经过第一、二、四象限,反比例函数图象经过第二四象限.故选:D.9.如图所示,在桥外一点A测得大桥主架与水面的交汇点C的俯角为α,大桥主架的顶端D的仰角为β,已知大桥主架顶端离水面的高CD=a,则此时测量点与大桥主架的水平距离AB为()A.a sinα+a sinβB.a tanα+a tanβC.D.【分析】根据直角三角形锐角三角函数即可求解.【解答】解:∵在Rt△ABC中,tan,∴BC=AB•tanα,在Rt△ABD中,tanβ=,∴BD=AB•tanβ,∴CD=a=BC+BD=AB•tanα+AB•tanβ.∴AB=.故选:C.10.如图,已知点A(﹣6,0),B(2,0),点C在直线上,则使△ABC是直角三角形的点C的个数为()A.1B.2C.3D.4【分析】根据∠A为直角,∠B为直角与∠C为直角三种情况进行分析.【解答】解:如图,①当∠A为直角时,过点A作垂线与直线的交点W(﹣6,4),②当∠B为直角时,过点B作垂线与直线的交点S(2,),③若∠C为直角,则点C在以线段AB为直径、AB中点E(﹣2,0)为圆心、4为半径的圆与直线的交点上.在直线中,当x=0时y=2,即Q(0,2),当y=0时x=6,即点P(6,0),则PQ==4,过AB中点E(﹣2,0),作EF⊥直线l于点F,则∠EFP=∠QOP=90°,∵∠EPF=∠QPO,∴△EFP∽△QOP,∴=,即=,解得:EF=4,∴以线段AB为直径、E(﹣2,0)为圆心的圆与直线恰好有一个交点.所以直线上有一点C满足∠C=90°.综上所述,使△ABC是直角三角形的点C的个数为3,故选:C.11.如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H 在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.2B.3C.5D.6【分析】方法一:连接EF交AC于O,由四边形EGFH是菱形,得到EF⊥AC,OE=OF,由于四边形ABCD是矩形,得到∠B=∠D=90°,AB∥CD,通过△CFO≌△AOE,得到AO=CO,求出AO=AC=2,根据△AOE∽△ABC,即可得到结果.方法二:利用勾股定理构建方程解决问题即可.【解答】解;连接EF交AC于O,∵四边形EGFH是菱形,∴EF⊥AC,OE=OF,∵四边形ABCD是矩形,∴∠B=∠D=90°,AB∥CD,∴∠ACD=∠CAB,在△CFO与△AOE中,,∴△CFO≌△AOE,∴AO=CO,∵AC==4,∴AO=AC=2,∵∠CAB=∠CAB,∠AOE=∠B=90°,∴△AOE∽△ABC,∴,∴,∴AE=5.方法二:应连接EF得EF⊥AC易证EF垂直平分AC连接CE,得CE=AE,设CE=AE=x,EB=8﹣x,BC=4,利用勾股定理求得x=5即可.故选:C.12.已知函数y=,当a≤x≤b时,﹣≤y≤,则b﹣a的最大值为()A.1B.+1C.D.【分析】函数的图象如下图所示,当x≥0时,当y=﹣时,x=,当y=时,x=,故:顶点A的坐标为(,﹣),点B(,),当x<0时,同理点C(,﹣),即可求解.【解答】解:函数的图象如下图所示,当x≥0时,当y=﹣时,x=,当y=时,x=,故:顶点A的坐标为(,﹣),点B(,),同理点C(,﹣)则b﹣a的最大值为﹣=1+,故选:B.二.填空题(共6小题)13.分解因式:2x3﹣8x=2x(x﹣2)(x+2).【分析】先提取公因式2x,再对余下的项利用平方差公式分解因式.【解答】解:2x3﹣8x,=2x(x2﹣4),=2x(x+2)(x﹣2).14.x等于数时,代数式的值比的值的2倍小1.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:=2×﹣1,即=﹣1,去分母得:2(3x﹣2)=3(4x﹣1)﹣6,去括号得:6x﹣4=12x﹣3﹣6,移项合并得:﹣6x=﹣5,解得:x=,故答案为:15.如图,一个可以自由转动的转盘,任意转动转盘一次,当转盘停止时,指针落在红色区域的概率为.【分析】红色所占的比例是蓝色的2倍,因此将红色部分再平均分成2分,转化为3等分,即可求出答案.【解答】解:将红色部分平均分成两份,将圆平均分成3个均等的区域,2红1蓝,因此任意转动转盘一次,当转盘停止时,指针落在红色区域的概率为,故答案为:.16.如图,正五边形ABCDE内接于⊙O,F是CD弧的中点,则∠CBF的度数为18°.【分析】设圆心为O,连接OC,OD,BD,根据已知条件得到∠O==72°,根据圆周角定理即可得到结论.【解答】解:设圆心为O,连接OC,OD,BD,∵五边形ABCDE为正五边形,∴∠O==72°,∴∠CBD=O=36°,∵F是的中点,∴∠CBF=∠DBF=CBD=18°,故答案为:18°.17.甲、乙两人分别从两地同时出发登山,甲、乙两人距山脚的竖直高度y(米)与登山时间x(分)之间的图象如图所示,若甲的速度一直保持不变,乙出发2分钟后加速登山,且速度是甲速度的4倍,那么他们出发分钟时,乙追上了甲.【分析】求出直线CD、AB的解析式,利用方程组确定交点坐标即可.【解答】解:如图,∵C(0,50),D(10,150),∴直线CD的解析式为y=10x+50,由题意A(2,30),甲的速度为10米/分,∴乙加速后的速度为40米/分,∴乙从A到B的时间==3,∴B(5,150),∴直线AB的解析式为y=40x﹣50,由,解得,∴那么他们出发分钟时,乙追上了甲.故答案为.18.如图,在矩形ABCD中,AB=4,BC=6,点E为对角线BD的中点,点F在CB的延长线上,且BF=1,连接EF,过点E作EG⊥EF交BA的延长线于点G,连接GF并延长交DB的延长线于点H,则=.【分析】过点E作EM⊥BC于点M,过点E作EN⊥AB于点N,则EM=2,EN=BM=3,求出EF的长和GN的长,则GB的长可求出,证明△FEH∽△BGH,可得得出结论.【解答】解:过点E作EM⊥BC于点M,过点E作EN⊥AB于点N,∴四边形ENBM是矩形,∵E是BD的中点,∴EM==2,EN=BM==3,∴MF=BF+BM=1+3=4,∴==2,∵EG⊥EF,∴∠GEF=90°,∴∠EGB=∠BFE,∴tan∠EGB=tan∠BFE,∴,∴GN=6,∴GB=GN+BN=6+2=8∵∠GEF=∠GBF=90°∴G,E,B,F四点共圆,∴∠BGF=∠BEF,∵∠EHF=∠GHB,∴△FEH∽△BGH,∴,∴.故答案为:.三.解答题(共9小题)19.计算:﹣20180﹣|﹣5|+()﹣2﹣2cos60°【分析】直接利用绝对值的性质以及零指数幂的性质和特殊角的三角函数值以及负指数幂的性质分别化简得出答案.【解答】解:原式=9﹣1﹣5+4﹣2×=9﹣1﹣5+4﹣1=6.20.解不等式组:,把它的解集在数轴上表示出来,并写出其整数解.【分析】一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.【解答】解:解不等式①,x>﹣3,解不等式②,x≤2,∴﹣3<x≤2,解集在数轴上表示如下:∴x的整数解为﹣2,﹣1,0,1,2.21.如图,矩形ABCD中,对角线AC、BD交于点O,以AD、OD为邻边作平行四边形ADOE,连接BE.求证:四边形AOBE为菱形.【分析】先证明四边形AOBE是平行四边形,再证明AB⊥OE即可;【解答】解:∵四边形ABCD是矩形,∴DO=BO.∵四边形ADOE是平行四边形,∴AE∥DO,AE=DO,AD∥OE.∴AE∥BO,AE=BO,∴四边形AOBE是平行四边形.∵AD⊥AB,AD∥OE,∴AB⊥OE.∴四边形AOBE是菱形;22.某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.(1)求每行驶1千米纯用电的费用;(2)若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少用电行驶多少千米?【分析】(1)根据某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元,可以列出相应的分式方程,然后解分式方程即可解答本题;(2)根据(1)中用电每千米的费用和本问中的信息可以列出相应的不等式,解不等式即可解答本题.【解答】解:(1)设每行驶1千米纯用电的费用为x元,=解得,x=0.26经检验,x=0.26是原分式方程的解,即每行驶1千米纯用电的费用为0.26元;(2)从A地到B地油电混合行驶,用电行驶y千米,0.26y+(﹣y)×(0.26+0.50)≤39解得,y≥74,即至少用电行驶74千米.23.如图,△ABC内接于⊙O,AB为⊙O的直径,过点A作⊙O的切线交BC的延长线于点E,在弦BC上取一点F,使AF=AE,连接AF并延长交⊙O于点D.(1)求证:∠B=∠CAD;(2)若CE=2,∠B=30°,求AD的长.【分析】(1)根据切线的性质和圆周角的定理∠BAE=∠ACB=90°,进而求得∠B=∠CAE,根据等腰三角形三线合一的性质得出∠CAD=∠CAE,即可证得结论;(2)连接BD,易证得∠BAD=30°,解直角三角形求得AE,进而求得AB,然后即可求得AD.【解答】(1)证明:∵AE是⊙O的切线,∴∠BAE=90°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠BAC+∠CAE=90°,∠BAC+∠B=90°,∴∠B=∠CAE,∵AF=AE,∠ACB=90°,∴∠CAD=∠CAE.∴∠B=∠CAD;(2)解:连接BD.∵∠ABC=∠CAD=∠CAE=30°,∴∠DAE=60°,∵∠BAE=90°,∴∠BAD=30°,∵AB是直径,∴∠ADB=90°,∴cos∠BAD=,∴=,∵∠ACE=90°,∠CAE=30°,CE=2,∴AE=2CE=4,∵∠BAE=90°,∠ABC=30°,∴cot∠ABC=,即=,∴AB=4,∴=,∴AD=6.24.为了提高中学生身体素质,学校开设了A:篮球、B:足球、C:跳绳、D:羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图(未画完整).(1)这次调查中,一共调查了200名学生;(2)请补全两幅统计图;(3)若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率.【分析】(1)由题意得:这次调查中,一共调查的学生数为:40÷20%=200(名);(2)根据题意可求得B占的百分比为:1﹣20%﹣30%﹣15%=35%,C的人数为:200×30%=60(名);则可补全统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与一人是喜欢跳绳、一人是喜欢足球的学生的情况,再利用概率公式即可求得答案.【解答】解:(1)根据题意得:这次调查中,一共调查的学生数为:40÷20%=200(名);故答案为:200;(2)B占的百分比为:1﹣20%﹣30%﹣15%=35%,C的人数为:200×30%=60(名);如图:(3)分别用A,B,C表示3名喜欢跳绳的学生,D表示1名喜欢足球的学生;画树状图得:∵共有12种等可能的结果,一人是喜欢跳绳、一人是喜欢足球的学生的有6种情况,∴一人是喜欢跳绳、一人是喜欢足球的学生的概率为:=.25.在如图平面直角坐标系中,矩形OABC的顶点B的坐标为(4,2),OA、OC分别落在x轴和y轴上,OB是矩形的对角线.将△OAB绕点O逆时针旋转,使点B落在y轴上,得到△ODE,OD与CB相交于点F,反比例函数y=(x>0)的图象经过点F,交AB 于点G.(1)求k的值和点G的坐标;(2)连接FG,则图中是否存在与△BFG相似的三角形?若存在,请把它们一一找出来,并选其中一种进行证明;若不存在,请说明理由;(3)在线段OA上存在这样的点P,使得△PFG是等腰三角形.请直接写出点P的坐标.【分析】(1)证明△COF∽△AOB,则=,求得:点F的坐标为(1,2),即可求解;(2)△COF∽△BFG;△AOB∽△BFG;△ODE∽△BFG;△CBO∽△BFG.证△OAB ∽△BFG:,=,即可求解.(3)分GF=PF、PF=PG、GF=PG三种情况,分别求解即可.【解答】解:(1)∵四边形OABC为矩形,点B的坐标为(4,2),∴∠OCB=∠OAB=∠ABC=90°,OC=AB=2,OA=BC=4,∵△ODE是△OAB旋转得到的,即:△ODE≌△OAB,∴∠COF=∠AOB,∴△COF∽△AOB,∴=,∴=,∴CF=1,∴点F的坐标为(1,2),∵y=(x>0)的图象经过点F,∴2=,得k=2,∵点G在AB上,∴点G的横坐标为4,对于y=,当x=4,得y=,∴点G的坐标为(4,);(2)△COF∽△BFG;△AOB∽△BFG;△ODE∽△BFG;△CBO∽△BFG.下面对△OAB∽△BFG进行证明:∵点G的坐标为(4,),∴AG=,∵BC=OA=4,CF=1,AB=2,∴BF=BC﹣CF=3,BG=AB﹣AG=.∴,=.∴,∵∠OAB=∠FBG=90°,∴△OAB∽△FBG.(3)设点P(m,0),而点F(1,2)、点G(4,),则FG2=9+=,PF2=(m﹣1)2+4,PG2=(m﹣4)2+,当GF=PF时,即=(m﹣1)2+4,解得:m=(舍去负值);当PF=PG时,同理可得:m=;当GF=PG时,同理可得:m=4﹣;综上,点P的坐标为(4﹣,0)或(,0)或(,0).26.如图,在正方形ABCD中,M、N分别是射线CB和射线DC上的动点,且始终∠MAN =45°.(1)如图1,当点M、N分别在线段BC、DC上时,请直接写出线段BM、MN、DN之间的数量关系;(2)如图2,当点M、N分别在CB、DC的延长线上时,(1)中的结论是否仍然成立,若成立,给予证明,若不成立,写出正确的结论,并证明;(3)如图3,当点M、N分别在CB、DC的延长线上时,若CN=CD=6,设BD与AM 的延长线交于点P,交AN于Q,直接写出AQ、AP的长.【分析】(1)在MB的延长线上,截取BE=DN,连接AE,则可证明△ABE≌△ADN,得到AE=AN,进一步证明△AEM≌△ANM,得出ME=MN,得出BM+DN=MN;(2)在DC上截取DF=BM,连接AF,可先证明△ABM≌△ADF,得出AM=AF,进一步证明△MAN≌△F AN,可得到MN=NF,从而可得到DN﹣BM=MN;(3)由已知得出DN=12,由勾股定理得出AN==6,由平行线得出△ABQ∽△NDQ,得出===,=,求出AQ=2;由(2)得出DN﹣BM=MN.设BM=x,则MN=12﹣x,CM=6+x,在Rt△CMN中,由勾股定理得出方程,解方程得出BM=2,由勾股定理得出AM==2,由平行线得出△PBM∽△PDA,得出==,求出PM=AM=,得出AP=AM+PM=3.【解答】解:(1)BM+DN=MN,理由如下:如图1,在MB的延长线上,截取BE=DN,连接AE,∵四边形ABCD是正方形,∴AB=AD,∠BAD=∠ABC=∠D=90°,∴∠ABE=90°=∠D,在△ABE和△ADN中,,∴△ABE≌△ADN(SAS),∴AE=AN,∠EAB=∠NAD,∴∠EAN=∠BAD=90°,∵∠MAN=45°,∴∠EAM=45°=∠NAM,在△AEM和△ANM中,,∴△AEM≌△ANM(SAS),∴ME=MN,又∵ME=BE+BM=BM+DN,∴BM+DN=MN;故答案为:BM+DN=MN;(2)(1)中的结论不成立,DN﹣BM=MN.理由如下:如图2,在DC上截取DF=BM,连接AF,则∠ABM=90°=∠D,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AM=AF,∠BAM=∠DAF,∴∠BAM+∠BAF=∠BAF+∠DAF=∠BAD=90°,即∠MAF=∠BAD=90°,∵∠MAN=45°,∴∠MAN=∠F AN=45°,在△MAN和△F AN中,,∴△MAN≌△F AN(SAS),∴MN=NF,∴MN=DN﹣DF=DN﹣BM,∴DN﹣BM=MN.(3)∵四边形ABCD是正方形,∴AB=BC=AD=CD=6,AD∥BC,AB∥CD,∠ABC=∠ADC=∠BCD=90°,∴∠ABM=∠MCN=90°,∵CN=CD=6,∴DN=12,∴AN===6,∵AB∥CD,∴△ABQ∽△NDQ,∴====,∴=,∴AQ=AN=2;由(2)得:DN﹣BM=MN.设BM=x,则MN=12﹣x,CM=6+x,在Rt△CMN中,由勾股定理得:62+(6+x)2=(12﹣x)2,解得:x=2,∴BM=2,∴AM===2,∵BC∥AD,∴△PBM∽△PDA,∴===,∴PM=AM=,∴AP=AM+PM=3.27.如图1,在平面直角坐标系中,抛物线y=﹣x2+x+与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D.(1)求直线BC的解析式;(2)如图2,点P为直线BC上方抛物线上一点,连接PB、PC.当△PBC的面积最大时,在线段BC上找一点E(不与B、C重合),使PE+BE的值最小,求点P的坐标和PE+BE的最小值;(3)如图3,点G是线段CB的中点,将抛物线y=﹣x2+x+沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为F.在抛物线y′的对称轴上,是否存在一点Q,使得△FGQ为直角三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.【分析】(1)先求出B,C坐标,再用待定系数法求直线解析式(2)作PM⊥x轴于点M,交直线BC于F,设P(a,﹣a2+a+),则F(a,﹣a+),则可求PF的长,可用a表示△PBC的面积,根据二次函数最值问题可求最大面积,由直线BC与x轴所成锐角为30°,可求EN=BE,则PE+BE=PE+EN,即P,E,N三点共线且垂直x轴时,PE+EN值最小,即求PN的值.(3)先求出点G坐标,平移后抛物线的对称轴x=3,再分类讨论可求Q点坐标【解答】解:(1)当x=0时,y=﹣x2+x+=,∴点C的坐标为(0,);当y=0时,有﹣x2+x+=0,解得:x1=﹣1,x2=3,∴点B的坐标为(3,0).设直线BC的解析式为y=kx+b(k≠0),将B(3,0)、C(0,)代入y=kx+b,得:,解得:,∴直线BC的解析式为y=﹣x+.(2)如图2中,过点P作PM⊥x轴于点M,交直线BC于点F.EN⊥x轴设P(a,﹣a2+a+),则F(a,﹣a+)∴PF=﹣a2+a∴S△PBC=×PF×3=﹣a2+a∴当,a=时,S△PBC最大∴P(,)∵直线BC的解析式为y=﹣x+.∴∠CBO=30°,EN⊥x轴∴EN=BE∴PE+BE=PE+EN∴根据两点之间线段最短和垂线段最短,则当P,E,N三点共线且垂直于x轴时,PE+BE 值最小.∴PE+BE=PE+EN=PN=(3)∵D是对称轴直线x=1与x轴的交点,G是BC的中点∴D(1,0),G(,)∴直线DG解析式y=x﹣∵抛物线y=﹣x2+x+=﹣(x﹣1)2+沿x轴正方向平移得到新抛物线y′,y′经过点D∴y'═﹣(x﹣3)2+∴F(3,)∴对称轴为x=3∵△FGQ为直角三角形∴∠FGQ=90°或∠FQG=90°,∠GFQ=90°(不合题意,舍去)当∠FQG=90°,则QG∥x轴∴Q(3,)当∠FGQ=90°,设点Q坐标(3,y)∵FQ2=FG2+GQ2.∴(﹣y)2=(3﹣)2+(﹣)2+(3﹣)2+(﹣y)2.∴y=﹣∴Q(3,﹣)综上所述:Q(3,),(3,﹣)。

山东省济南市章丘区2024年中考数学第一次模拟考试数学模拟试题

山东省济南市章丘区2024年中考数学第一次模拟考试数学模拟试题

山东省济南市章丘区2024年中考数学第一次模拟考试数学模拟试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图所示,水平放置的几何体的左视图是( )A .B .C .D .2.2023年10月,“中国空间站”入选了2023年全球十大工程成就.空间站离地球的距离约为400000米,数据400000用科学记数法可表示为( ) A .40.410⨯B .50.410⨯C .4410⨯D .5410⨯3.如图,现将一块含有60°角的三角板的顶点放在直尺的一边上,若∠2=50°,那么∠1的度数为( )A .50°B .60°C .70°D .80°4.2022年2月第24届冬季奥林匹克运动会在我国北京成功举办,以下是参选的冬奥会会徽设计的部分图形,其中既是轴对称图形又是中心对称图形的是( )A .B .C .D .5.下列运算正确的是( ) A .a 2+a 3=a 5B .(a 3)2=a 6C .(a ﹣b )2=a 2﹣b 2D .x 6÷x 3=x 26.实数a ,b 在数轴上对应点的位置如图所示,则下列结论正确的是( )A .0ab >B .0a b +>C .33a b +<+D .33a b -<-7.点(),3A a -,(),2B b -,(),1C c 在反比例函数21k y x+=的图像上,则a ,b ,c 的大小关系是( ) A .c a b <<B .c b a <<C .a b c <<D .b a c <<8.小冰和小雪自愿参加学校组织的课后托管服务活动,随机选择自主阅读、体育活动、科普活动三项中的某一项,那么小冰和小雪同时选择“体育活动”的概率为( ) A .13B .23C .19D .299.如图,在平行四边形 ABCD 中,BC =2AB =8,连接 BD ,分别以点B ,D 为圆心,大于12BD 长为半径作弧,两弧交于点E 和点F ,作直线EF 交AD 于点I ,交BC 于点H ,点H 恰为BC 的中点,连接AH ,则AH 的长为( )A .B .6C .7D .10.在平面直角坐标系中,若点P 的横坐标和纵坐标相等,则称点P 为完美点.已知二次函数y =ax 2+6x -254(a ≠0)的图象上有且只有一个完美点,且当0≤x ≤m 时,二次函数y =ax 2+6x -5(a ≠0)的最小值为-5,最大值为4,则m 的取值范围是( )A .1≤m ≤3B .3≤m ≤5C .3≤m ≤6D .m ≥3二、填空题11.分解因式:229x y -=.12.“二十四节气”是中华上古农耕文明的智慧结晶,小文购买了“二十四节气”主题邮票中的4张:“立春”“立夏”“秋分”“大寒”,他想把“立夏”送给好朋友小乐,小文将它们背面朝上放在桌面上(邮票背面完全相同),让小乐从中随机抽取一张,小乐抽到一张邮票恰好是“立夏”的概率是.13.关于x 的一元二次方程260x x m ++=有两个实数根,则m 的取值范围是. 14.如图,扇形AOB 的圆心角是直角,半径为C 为OB 边上一点,将△AOC 沿AC 边折叠,圆心O 恰好落在弧AB 上的点D ,则阴影部分面积为15.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地.如图,线段OA 表示货车离甲地距离y (千米)与时间x (小时)之间的函数关系式;折线B ﹣C ﹣D ﹣表示轿车离甲地距离y (千米)与x (小时)之间的函数关系,则货车出发小时与轿车相遇.16.如图,在矩形ABCD 中,2AB =,4=AD ,点E 、F 分别为AD 、CD 边上的点,且EF 的长为2,点G 为EF 的中点,点P 为BC 上一动点,则PA PG +的最小值为.三、解答题17.计算:()112024π3tan 3012-⎛⎫-+-++ ⎪︒⎝⎭18.解不等式组12(23)5133x x x x -<+⎧⎪+⎨≥+⎪⎩,并写出满足条件的正整数解.19.如图,矩形ABCD 中,E 、F 是BC 上的点,∠DAE =∠ADF .求证:BF =CE .20.脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB 所在的直线,为了测量房屋的高度,在地面上C 点测得屋顶A 的仰角为35︒,此时地面上C 点、屋檐上E 点、屋顶上A 点三点恰好共线,继续向房屋方向走8m 到达点D 时,又测得屋檐E 点的仰角为63.4︒,房屋的顶层横梁12m EF =,EF CB ∥,AB 交EF 于点G (点C ,D ,B 在同一水平线上).(参考数据:sin350.6︒≈,cos350.8︒≈,tan350.7︒≈,sin 63.40.89︒≈,cos63.40.45︒≈,tan 63.4 2.00︒≈)(1)求屋顶到横梁的距离AG ; (2)求房屋的高AB (结果精确到1m ).21.为了解八年级学生的体育运动水平,某校对全体八年级同学进行了体能测试,老师随机抽取20名男生和20名女生的测试成绩(满分100)作为样本进行整理和分析(成绩共分成五组:A .5060x ≤<,B .6070x ≤<,C .7080x ≤<,D .8090x ≤<,E .90100x ≤≤),并绘制了不完整的统计图表.收集、整理数据:20名男生的体能测试成绩分别为:50,57,65,76,77,78,79,87,87,88,88,88,89,89,92,93,95,97,98,99女生体能测试成绩在C 组和D 组的分别为:73,74,74,74,74,78,84,88,89. 分析数据:两组样本数据的平均数、中位数和众数如表所示:请根据以上信息,回答下列问题: (1)补全频数分布直方图.(2)填空:=a ______,b =______.(3)女生体能测试扇形统计图中,表示90100x ≤≤这组数据的扇形圆心角的度数是______.(4)如果我校八年级有男生480名,女生460名,请估计八年级体能测试成绩不低于80分的学生人数.22.如图,AB 为O e 的直径,C 为O e 上的一点,连接AC ,作OD 垂直于AB 交AC 于点E ,交过点C 的切线于点D .(1)求证:DE DC =;(2)若4OA =,1tan 2BAC ∠=,求CD 的长.23.某校组织“大手拉小手,义卖献爱心”活动,购买了黑白两种颜色的文化衫共140件,进行手绘设计后出售,所获利润全部捐给山区困难孩子.每件文化衫的批发价和零售价如表:(1)若学校恰好用完预计进货款1240元,则应购进黑白两种文化衫各多少件? (2)若学校规定黑色文化衫的进货量不超过白色文化衫进货量的3倍,应怎样进货才能使学校在销售完这两种文化衫时获得的利润最多?利润最多为多少元?24.如图,点A 、B 是反比例函数(0)ky x x=>的图象上的点,过点A 作AC x ⊥轴,垂足为C ,过点B 作BD x ⊥轴,垂足为D ,OD DC =,连接AO 、BO 、AB ,线段AO 交BD于点E ,OA 1tan 2AOC ∠=.(1)求反比例函数的解析式; (2)求ABE V 的面积;(3)若将AB 所在的直线向下平移(0)m m >个单位长度后与反比例函数的图象(0)k y x x=>有且只有一个公共点,求m 的值.25.如图,在平面直角坐标系xOy 中,抛物线y =﹣x 2+bx +c 与x 轴交于A (1,0)和B (3,0),点D 为线段BC 上一点,过点D 作y 轴的平行线交抛物线于点E ,连结BE .(1)求抛物线的解析式;(2)当V BDE 为直角三角形时,求线段DE 的长度;(3)在抛物线上是否存在这样的点P ,使得∠ACP =45°,若存在,求出点P 的坐标;若不存在,请说明理由. 26.(1)问题呈现:如图1,ABC V 和ADE V 都是等边三角形,连接BD ,CE .易知BDCE=.(2)类比探究如图2,ABC V 和ADE V 都是Rt △,90ABC ADE ∠=∠=︒,且34A B A D B C D E ==.连接BD ,CE ,求BDCE的值;(3)拓展提升:如图3,ABC V 是等腰直角三角形,90ACB ∠=︒,将ABC V 绕点A 逆时针旋转60°得到ADE V ,连接BD ,EC ,延长EC 交BD 于点F ,设6AB =,求EF 的长.。

2020年山东省济南市章丘区中考数学一模试卷

2020年山东省济南市章丘区中考数学一模试卷

2020年山东省济南市章丘区中考数学一模试卷一.选择题(本大题共12小题,每小题3分,共48分.在每个小题给出四个选项中,只有一项符合题目要求)1.﹣2020的绝对值是()A.﹣2020B.2020C.﹣D.2.华为Mate 30 5G系列是近期相当火爆的5G国产手机,它采用的麒麟990 5G芯片在指甲盖大小的尺寸上集成了103亿个晶体管,将103亿用科学记数法表示为()A.1.03×109B.10.3×109C.1.03×1010D.1.03×10113.下列各式中,计算正确的是()A.a3•a2=a6B.a3+a2=a5C.(a3)2=a6D.a6÷a3=a24.下列轴对称图形中,对称轴的数量小于3的是()A.B.C.D.5.如图是某兴趣社制作的模型,则它的俯视图是()A.B.C.D.6.若一次函数y=(k﹣2)x+1的函数值y随x的增大而增大,则k的值可以是()A.3B.2C.1D.07.在平面直角坐标系中,将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为()A.(3,﹣1)B.(3,3)C.(1,1)D.(5,1)8.如图,ABCD为一长条形纸带,AB∥CD,将ABCD沿EF折叠,A、D两点分别与A′、D′对应,若∠1=2∠2,则∠AEF的度数为()A.60°B.65°C.72°D.75°9.某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,他们投中的次数统计如表:投中次数35679人数13222则这些队员投中次数的众数、中位数和平均数分别为()A.5,6,6.2B.2,6,6C.5,5,6D.5,6,510.如图,在平面直角坐标系中,Rt△ABC的顶点A,B分别在y轴、x轴上,OA=2,OB=1,斜边AC∥x轴.若反比例函数y=(k>0,x>0)的图象经过AC的中点D,则k的值为()A.4B.5C.6D.811.如图,菱形ABCD边长为2,∠C=60°.当点A在x轴上运动时,点D随之在y轴上运动,在运动过程中,点B到原点O的最大距离为()A.B.C.2D.1+12.如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是()A.﹣2<m<B.﹣3<m<﹣C.﹣3<m<﹣2D.﹣3<m<﹣二.填空题(本大题共6小题,每小题3分,共24分)13.因式分解:x3﹣4x=.14.下表是我市某一天在不同时段测得的气温情况0:004:008:0012:0016:0020:0011℃14℃16℃23℃20℃17℃则这一天气温的极差是℃.15.如图,⊙O与正五边形ABCDE的边AB、DE分别相切于点B、D,则劣弧所对的圆心角∠BOD的大小为度.16.若关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,则k的取值范围.17.某人预计步行从家去火车站,从家步行走到6分钟时,以同样的速度回家取忘带的物品,然后从家乘出租赶往火车站,结果到火车站的时间比预计步行的时间提前了3分钟,该人离家的路程s(米)与时间t(分钟)之间的函数图象如图所示,那么从家到火车站的路程是.18.在正方形ABCD中,AB=6,连接AC,BD,P是正方形边上或对角线上一点,若PD=2AP,则AP的长为.三.解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤)19.计算:﹣2﹣2+cos45°﹣|1﹣|+(3.14﹣π)0.20.解不等式组,并求出它的所有整数解的和.21.在▱ABCD中,∠BCD的平分线与BA的延长线相交于点E,BH⊥EC于点H,求证:CH=EH.22.某服装店老板到厂家选购A、B两种品牌的羽绒服,B品牌羽绒服每件进价比A品牌羽绒服每件进价多200元,若用10000元购进A种羽绒服的数量是用7000元购进B种羽绒服数量的2倍.(1)求A、B两种品牌羽绒服每件进价分别为多少元?(2)若A品牌羽绒服每件售价为800元,B品牌羽绒服每件售价为1200元,服装店老板决定一次性购进A、B 两种品牌羽绒服共80件,在这批羽绒服全部出售后所获利润不低于30000元,则最少购进B品牌羽绒服多少件?23.如图,在△ABC中,∠C=90°,点D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,与边BC交于点F,过点E作EH⊥AB于点H,连接BE.(1)求证:BC=BH;(2)若AB=5,AC=4,求CE的长.24.钟南山院士谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,但也不必恐慌,尽量少去人员密集的场所,出门戴口罩,在室内注意通风,勤洗手,多运动,少熬夜.”某社区为了加强社区居民对新型冠状病毒肺炎防护知识的了解,通过微信群宣传新型冠状病毒肺炎的防护知识,并鼓励社区居民在线参与作答《2020年新型冠状病毒防治全国统一考试(全国卷)》试卷,社区管理员随机从甲、乙两个小区各抽取20名人员的答卷成绩,并对他们的成绩(单位:分)进行统计、分析,过程如下:收集数据:甲小区:85 80 95 100 90 95 85 65 75 85 90 90 70 90 100 80 80 90 95 75乙小区:80 60 80 95 65 100 90 85 85 80 95 75 80 90 70 80 95 75 100 90整理数据:成绩x(分)60≤x≤7070<x≤8080<x≤9090<x≤100甲小区25a b乙小区3755分析数据:统计量平均数中位数众数甲小区85.7587.5c乙小区83.5d80应用数据:(1)填空:a=,b=,c=,d=;(2)若甲小区共有800人参与答卷,请估计甲小区成绩大于90分的人数;(3)社区管理员看完统计数据,准备从成绩在60到70分之间的两个小区中随机抽取2人进行再测试,请求出抽取的两人恰好一个是甲小区、一个是乙小区的概率.25.如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,点C的坐标为(0,3),点A在x轴的正半轴上,直线y=x﹣1.交边AB、OA于点D、M,反比例函数y=(x>0)的图象经过点D,与BC的交点为N.(1)求BN的长.(2)点P是直线DM上的动点(点P不与点D、点M重合),连接PB、PC、MN,当△BCP的面积等于四边形ABNM的面积时,求点P的坐标.(3)在(2)的条件下,连接CP,以CP为边作矩形CPEF,使矩形的对角线的交点G落在直线DM上,请直接写出点G的坐标.26.已知:如图①,在矩形ABCD中,AB=5,AD=,AE⊥BD,垂足是E.点F是点E关于AB的对称点,连接AF、BF.(1)求AE和BE的长;(2)若将△ABF沿着射线BD方向平移,设平移的距离为m(平移距离指点B沿BD方向所经过的线段长度).当点F分别平移到线段AB、AD上时,直接写出相应的m的值.(3)如图②,将△ABF绕点B顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF为△A′BF′,在旋转过程中,设A′F′所在的直线与直线AD交于点P,与直线BD交于点Q.是否存在这样的P、Q两点,使△DPQ为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由.27.如图,在平面直角坐标系中,直线y=2x+6与x轴交于点A,与y轴交点C,抛物线y=﹣2x2+bx+c过A,C两点,与x轴交于另一点B.(1)求抛物线的解析式.(2)在直线AC上方的抛物线上有一动点E,连接BE,与直线AC相交于点F,当EF=BF时,求sin∠EBA 的值.(3)点N是抛物线对称轴上一点,在(2)的条件下,若点E位于对称轴左侧,在抛物线上是否存在一点M,使以M,N,E,B为顶点的四边形是平行四边形?若存在,直接写出点M的坐标;若不存在,请说明理由.2020年山东省济南市章丘区中考数学一模试卷参考答案与试题解析一.选择题(本大题共12小题,每小题3分,共48分.在每个小题给出四个选项中,只有一项符合题目要求)1.【解答】解:根据绝对值的概念可知:|﹣2020|=2020,故选:B.2.【解答】解:103亿=103 0000 0000=1.03×1010,故选:C.3.【解答】解:A、a3•a2=a5,故此选项错误;B、a3+a2,无法计算,故此选项错误;C、(a3)2=a6,正确;D、a6÷a3=a3,故此选项错误;故选:C.4.【解答】解:A、有4条对称轴,故本选项不符合题意;B、有6条对称轴,故本选项不符合题意;C、有4条对称轴,故本选项不符合题意;D、有2条对称轴,故本选项符合题意.故选:D.5.【解答】解:该几何体的俯视图是:由两个长方形组成的矩形,且矩形的之间有纵向的线段隔开.故选:B.6.【解答】解:由题意,得k﹣2>0,解得k>2,观察选项,只有选项A符合题意.故选:A.7.【解答】解:将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为(3,1﹣2),即(3,﹣1),故选:A.8.【解答】解:由翻折的性质可知:∠AEF=∠FEA′,∵AB∥CD,∴∠AEF=∠1,∵∠1=2∠2,设∠2=x,则∠AEF=∠1=∠FEA′=2x,∴5x=180°,∴x=36°,∴∠AEF=2x=72°,故选:C.9.【解答】解:在这一组数据中5是出现次数最多的,故众数是5次;处于中间位置的两个数的平均数是(6+6)÷2=6,那么由中位数的定义可知,这组数据的中位数是6次.平均数是:(3+15+12+14+18)÷10=6.2(次),所以答案为:5、6、6.2,故选:A.10.【解答】解:∵AC∥x轴,OA=2,OB=1,∴A(0,2),∴C、A两点纵坐标相同,都为2,∴可设C(x,2).∵D为AC中点.∴D(x,2).∵∠ABC=90°,∴AB2+BC2=AC2,∴12+22+(x﹣1)2+22=x2,解得x=5,∴D(,2).∵反比例函数y=(k>0,x>0)的图象经过点D,∴k=×2=5.故选:B.11.【解答】解:取AD的中点E,连接BD、EB、EO.如图所示:∵四边形ABCD是菱形,∴AD=AB=2,∠BAD=∠C=60°,∴△ABD是等边三角形,∵E是AD的中点,∴BE⊥AD,AE=AD=1,∴BE=AE=,在Rt△AOD中,OE为斜边AD上的中线,∴OE=AD=1,可知OE为定值,当O、E、B共线时OB最大,其值为OE+BE=+1;故选:D.12.【解答】解:令y=﹣2x2+8x﹣6=0,即x2﹣4x+3=0,解得x=1或3,则点A(1,0),B(3,0),由于将C1向右平移2个长度单位得C2,则C2解析式为y=﹣2(x﹣4)2+2(3≤x≤5),当y=x+m1与C2相切时,令y=x+m1=y=﹣2(x﹣4)2+2,即2x2﹣15x+30+m1=0,△=﹣8m1﹣15=0,解得m1=﹣,当y=x+m2过点B时,即0=3+m2,m2=﹣3,当﹣3<m<﹣时直线y=x+m与C1、C2共有3个不同的交点,故选:D.二.填空题(本大题共6小题,每小题3分,共24分)13.【解答】解:x3﹣4x=x(x2﹣4)=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).14.【解答】解:这一天气温的极差是:23﹣11=12(℃).故答案为:12.15.【解答】解:∵五边形ABCDE是正五边形,∴∠E=∠A==108°.∵AB、DE与⊙O相切,∴∠OBA=∠ODE=90°,∴∠BOD=(5﹣2)×180°﹣90°﹣108°﹣108°﹣90°=144°,故答案为:144.16.【解答】解:∵关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,∴k≠0,且△=b2﹣4ac=36﹣36k>0,解得k<1且k≠0.故答案为k<1且k≠0.17.【解答】解:步行的速度为:480÷6=80米/分钟,∵t=16时,s=80×16=1280,∴相遇时的点的坐标为(16,1280),设s=kt+b,则,解得,所以s=320t﹣3840;设步行到达的时间为t,则实际到达是时间为t﹣3,由题意得,80t=320(t﹣3)﹣3840,解得t=20.所以家到火车站的距离为80×20=1600m.故答案为:1600m.18.【解答】解:∵四边形ABCD是正方形,AB=6,∴AC⊥BD,AC=BD,OB=OA=OC=OD,AB=BC=AD=CD=6,∠ABC=∠DAB=90°,在Rt△ABC中,由勾股定理得:AC===6,∴OA=OB=OC=OD=3,有6种情况:①点P在AD上时,∵AD=6,PD=2AP,∴AP=2;②点P在AC上时,设AP=x,则DP=2x,在Rt△DPO中,由勾股定理得:DP2=DO2+OP2,(2x)2=(3)2+(3﹣x)2,解得:x=﹣(负数舍去),即AP=﹣;③点P在AB上时,设AP=y,则DP=2y,在Rt△APD中,由勾股定理得:AP2+AD2=DP2,y2+62=(2y)2,解得:y=2(负数舍去),即AP=2;④当P在BC上,设BP=x,∵DP=2AP,∴2=,即x2+4x+24=0,△=42﹣4×1×24<0,此方程无解,即当点P在BC上时,不能使DP=2AP;⑤P在DC上,∵∠ADC=90°,∴AP>DP,不能DP=2AP,即当P在DC上时,不能具备DP=2AP;⑥P在BD上时,过P作PN⊥AD于N,过P作PM⊥AB于M,∵四边形ABCD是正方形,∴∠DAB=∠ANP=∠AMP=90°,∴四边形ANPM是矩形,∴AM=PN,AN=PM,∵四边形ABCD是正方形,∴∠ABD=45°,∵∠PMB=90°,∴∠MBP=∠MPB=45°,∴BM=PM=AN,同理DN=PN=AM,设PM=BM=AN=x,则PN=DN=AM=6﹣x,都不能DP=2AP,∵DP=2AP,∴由勾股定理得:2=,即x2﹣4x+12=0,△=(﹣4)2﹣4×1×12<0,此方程无解,即当P在BD上时,不能DP=2AP,故答案为:2或2或﹣.三.解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤)19.【解答】解:原式=﹣+2×﹣(﹣1)+1=﹣+2﹣+2=﹣.20.【解答】解:解①得:x≥﹣2,解②得:x<4,则不等式组的解集是:﹣2≤x<4,则整数解是:﹣2,﹣1,0,1,2,3.它们的和为3.21.【解答】证明:∵在▱ABCD中,BE∥CD,∴∠E=∠2,∵CE平分∠BCD,∴∠1=∠2,∴∠1=∠E,∴BE=BC,又∵BH⊥BC,∴CH=EH(三线合一).22.【解答】解:(1)设A种羽绒服每件的进价为x元,根据题意的解得x=500经检验x=500是原方程的解x+200=700(元)答:A种羽绒服每件的进价为500元,B种羽绒服每件的进价为700元.(2)设购进B品牌的羽绒服m件,根据题意的(800﹣500)(80﹣m)+(1200﹣700)m≥30000解得m≥30∵m为整数∴m的最小值为30.答:最少购进B品牌的羽绒服30件.23.【解答】(1)证明:连接OE,如图,∵AC为切线,∴OE⊥AC,∴∠AEO=90°,∵∠C=90°,∴OE∥BC,∴∠1=∠3,∵OB=OE,∴∠2=∠3,∴∠1=∠2,∵EH=EC,在Rt△BEH和Rt△BEC中∴Rt△BEH≌Rt△BEC(HL),∴BC=BH;(2)在Rt△ABC中,BC==3,设OE=r,则OA=5﹣r,∵OE∥BC,∴△AOE∽△ABC,∴=,即=,解得r=,∴AO=5﹣r=,在Rt△AOE中,AE==,∴CE=AC﹣AE=4﹣=.24.【解答】解:(1)由样本数据知80<x≤90的数据有8个,即a=8,90<x≤100的数据有5个,即b=5,甲小区的数据中90出现次数最多,因此众数是90,即c=90;将乙小区数据重新排列为:60,65,70,75,75,80,80,80,80,80,85,85,90,90,90,95,95,95,100,100.则中位数d==82.5,故答案为:8、5、90、82.5;(2)估计甲小区成绩大于90分的人数为800×=200(人);(3)列表如下:甲1甲2乙1乙2乙3甲1(甲2,甲1)(乙1,甲1)(乙2,甲1)(乙3,甲1)甲2(甲1,甲2)(乙1,甲2)(乙2,甲2)(乙3,甲2)乙1(甲1,乙1)(甲2,乙1)(乙2,乙1)(乙3,乙1)乙2(甲1,乙2)(甲2,乙2)(乙1,乙2)(乙3,乙2)乙3(甲1,乙3)(甲2,乙3)(乙1,乙3)(乙2,乙3)由表格可知,共有20种等可能结果,其中抽取的两人恰好一个是甲小区、一个是乙小区的有12种情况,∴抽取的两人恰好一个是甲小区、一个是乙小区的概率为=.25.【解答】解:(1)依题意,得:点A的坐标为(3,0),点B的坐标为(3,3).当x=3时,y=x﹣1=2,∴点D的坐标为(3,2).将D(3,2)代入y=,得:2=,解得:m=6,∴反比例函数解析式为y=.当y=3时,=3,解得:x=2,∴点N的坐标为(2,3),∴BN=3﹣2=1.(2)当y=0时,x﹣1=0,解得:x=1,∴点M的坐标为(1,0),∴AM=2,∴S梯形ABNM=(BD+AM)•AB=.设点P的坐标为(x,x﹣1)(x≠1,x≠3),∴S△BCP=BC•|3﹣y P|=|4﹣x|=,解得:x1=1(舍去),x2=7,∴点P的坐标为(7,6).(3)过点C作CF⊥CP,交DM于点F,如图2所示.设点F的坐标为(n,n﹣1).∵点C的坐标为(0,3),点P的坐标为(7,6),∴PC2=(0﹣7)2+(3﹣6)2=58,CF2=(n﹣0)2+(n﹣1﹣3)2=2n2﹣8n+16,PF2=(n﹣7)2+(n﹣1﹣6)2=2n2﹣28n+98.∵∠PCF=90°,∴PF2=PC2+CF2,即2n2﹣28n+98=58+2n2﹣8n+16,解得:n=,∴点F的坐标为(,).又∵点G为线段PF的中点,∴点G的坐标为(,).26.【解答】解:(1)在Rt△ABD中,AB=5,AD=,由勾股定理得:BD===.∵S△ABD=BD•AE=AB•AD,∴AE===4.在Rt△ABE中,AB=5,AE=4,由勾股定理得:BE=3.(2)设平移中的三角形为△A′B′F′,如答图2所示:由对称点性质可知,∠1=∠2.由平移性质可知,AB∥A′B′,∠4=∠1,BF=B′F′=3.①当点F′落在AB上时,∵AB∥A′B′,∴∠3=∠4,∴∠3=∠2,∴BB′=B′F′=3,即m=3;②当点F′落在AD上时,∵AB∥A′B′,∴∠6=∠2,∵∠1=∠2,∠5=∠1,∴∠5=∠6,又易知A′B′⊥AD,∴△B′F′D为等腰三角形,∴B′D=B′F′=3,∴BB′=BD﹣B′D=﹣3=,即m=.(3)存在.理由如下:假设存在,在旋转过程中,等腰△DPQ依次有以下4种情形:①如答图3﹣1所示,点Q落在BD延长线上,且PD=DQ,易知∠2=2∠Q,∵∠1=∠3+∠Q,∠1=∠2,∴∠3=∠Q,∴A′Q=A′B=5,∴F′Q=F′A′+A′Q=4+5=9.在Rt△BF′Q中,由勾股定理得:BQ===.∴DQ=BQ﹣BD=﹣;②如答图3﹣2所示,点Q落在BD上,且PQ=DQ,∴∠2=∠P,∵∠1=∠2,∴∠1=∠P,∴BA′∥PD,∵PD∥BC,∴此时点A′落在BC边上.∵∠3=∠2,∴∠3=∠1,∴BQ=A′Q,∴F′Q=F′A′﹣A′Q=4﹣BQ.在Rt△BQF′中,由勾股定理得:BF′2+F′Q2=BQ2,即:32+(4﹣BQ)2=BQ2,解得:BQ=,∴DQ=BD﹣BQ=﹣=;③如答图3﹣3所示,点Q落在BD上,且PD=DQ,易知∠3=∠4.∵∠2+∠3+∠4=180°,∠3=∠4,∴∠4=90°﹣∠2.∵∠1=∠2,∴∠4=90°﹣∠1.∴∠A′QB=∠4=90°﹣∠1,∴∠A′BQ=180°﹣∠A′QB﹣∠1=90°﹣∠1,∴∠A′QB=∠A′BQ,∴A′Q=A′B=5,∴F′Q=A′Q﹣A′F′=5﹣4=1.在Rt△BF′Q中,由勾股定理得:BQ===,∴DQ=BD﹣BQ=﹣;④如答图3﹣4所示,点Q落在BD上,且PQ=PD,易知∠2=∠3.∵∠1=∠2,∠3=∠4,∠2=∠3,∴∠1=∠4,∴BQ=BA′=5,∴DQ=BD﹣BQ=﹣5=.综上所述,存在4组符合条件的点P、点Q,使△DPQ为等腰三角形;DQ的长度分别为﹣、、﹣或.27.【解答】解:(1)在y=2x+6中,当x=0时y=6,当y=0时x=﹣3,∴C(0,6)、A(﹣3,0),∵抛物线y=﹣2x2+bx+c的图象经过A、C两点,∴,解得,∴抛物线的解析式为y=﹣2x2﹣4x+6;(2)令﹣2x2﹣4x+6=0,解得x1=﹣3,x2=1,∴B(1,0),∵点E的横坐标为t,∴E(t,﹣2t2﹣4t+6),如图,过点E作EH⊥x轴于点H,过点F作FG⊥x轴于点G,则EH∥FG,∵EF=BF,∴===,∵BH=1﹣t,∴BG=BH=﹣t,∴点F的横坐标为+t,∴F(+t,+t),∴﹣2t2﹣4t+6=(+t),∴t2+3t+2=0,解得t1=﹣2,t2=﹣1,当t=﹣2时,﹣2t2﹣4t+6=6,当t=﹣1时,﹣2t2﹣4t+6=8,∴E1(﹣2,6),E2(﹣1,8),当点E的坐标为(﹣2,6)时,在Rt△EBH中,EH=6,BH=3,∴BE===3,∴sin∠EBA===;同理,当点E的坐标为(﹣1,8)时,sin∠EBA==,∴sin∠EBA的值为或;(3)∵点N在对称轴上,∴x N==﹣1,①当EB为平行四边形的边时,分两种情况:(Ⅰ)点M在对称轴右侧时,BN为对角线,∵E(﹣2,6),x N=﹣1,﹣1﹣(﹣2)=1,B(1,0),∴x M=1+1=2,当x=2时,y=﹣2×22﹣4×2+6=﹣10,∴M(2,﹣10);(Ⅱ)点M在对称轴左侧时,BM为对角线,∵x N=﹣1,B(1,0),1﹣(﹣1)=2,E(﹣2,6),∴x M=﹣2﹣2=﹣4,当x=﹣4时,y=﹣2×(﹣4)2﹣4×(﹣4)+6=﹣10,∴M(﹣4,﹣10);②当EB为平行四边形的对角线时,∵B(1,0),E(﹣2,6),x N=﹣1,∴1+(﹣2)=﹣1+x M,∴x M=0,当x=0时,y=6,∴M(0,6);综上所述,M的坐标为(2,﹣10)或(﹣4,﹣10)或(0,6).。

2020年山东省中考数学模拟测试卷一含答案

2020年山东省中考数学模拟测试卷一含答案

中考模拟测试卷一(120分钟,150分)一、选择题(本大题共12小题,满分48分.在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1.计算|√2-1|+(√2)0的结果是()A.1B.√2C.2-√2D.2√2-12.下列运算正确的是()A.a3+a3=2a6B.a6÷a-3=a3C.a3·a2=a6D.(-2a2)3=-8a63.一周有604800秒,604800用科学记数法表示为()A.6048×102B.6.048×105C.6.048×106D.0.6048×1064.下列倡导节约的图案中,是轴对称图形的是()A B C D5.如图,直线a∥b,∠1=50°,∠2=40°,则∠3的度数为()A.40°B.90°C.50°D.100°6.某校对部分参加研学旅行社会实践活动的中学生的年龄(单位:岁)进行统计,结果如表:年龄 12 13 14 15 16 人数12231则这些学生年龄的众数和中位数分别是( ) A.15,14 B.15,13 C.14,14 D.13,147.在一个不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是( ) A.13B.14C.15D.168.若关于x 的不等式组{x -a ≤0,5-2x <1的整数解只有1个,则a 的取值范围是( )A.2<a<3B.3≤a<4C.2<a ≤3D.3<a ≤49.如图,AB 是垂直于水平面的建筑物.为测量AB 的高度,小红从建筑物底端B 点出发,沿水平方向行走了52米到达点C,然后沿斜坡CD 前进,到达坡顶D 点处,DC=BC.在点D 处放置测角仪,测角仪支架DE 高度为0.8米,在E 点处测得建筑物顶端A 点的仰角∠AEF 为27°(点A,B,C,D,E 在同一平面内).斜坡CD 的坡度(或坡比)i=1∶2.4,那么建筑物AB 的高度约为( )(参考数据sin 27°≈0.45,cos 27°≈0.89,tan 27°≈0.51)A.65.8米B.71.8米C.73.8米D.119.8米10.二次函数y=ax 2+bx+c 的图象如图所示,则一次函数y=ax+c 和反比例函数y=bx 在同一平面直角坐标系中的图象大致是( )A B C D11.如图,正方形ABCD 内接于☉O,AB=2√2,则AB ⏜的长是( ) A.π B.32π C.2π D.π2第11题图第12题图12.将直尺、有60°角的直角三角板和光盘如图摆放,A 为60°角与直尺的交点,B 为光盘与直尺的交点,AB=3,则光盘表示的圆的直径是( ) A.3 B . 3√3 C.6 D.6√3二、填空题(本大题共6小题,满分24分,只要求填写最后结果,每小题填对得4分)13.已知一元二次方程3x 2+4x-k=0有两个不相等的实数根,则k 的取值范围是 .14.下面3个天平左盘中的“△”“□”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为.15.如图,在扇形OAB中,∠AOB=90°.D,E分别是半径OA,OB上的点,⏜上.若OD=8,OE=6,则阴影以OD,OE为邻边的▱ODCE的顶点C在AB部分图形的面积是(结果保留π).第15题图第16题图16.如图,在直角坐标系中放入一个矩形纸片ABCO,OC=9.将纸片翻折.则点B'后,点B恰好落在x轴上,记为B',折痕为CE,已知tan∠OB'C=34的坐标为.17.观察下面“品”字图形中各数字之间的规律,根据观察到的规律得出a的值为.18.如图,在△ABC 和△ACD 中,∠B=∠D,tanB=12,BC=5,CD=3,∠BCA=90°-12∠BCD,则AD= .三、解答题(本大题共7小题,满分78分,解答应写出必要的文字说明、证明过程或推演步骤) 19.(8分)先化简,再求值:(a -1+2a+1)÷(a 2+1),其中a=√20.(8分)为响应市政府关于“垃圾不落地·市区更美丽”的主题宣传活动,某校随机调查了部分学生对垃圾分类知识的掌握情况.调查选项分为“A:非常了解,B:比较了解,C:了解较少,D:不了解”四种,并将调查结果绘制成两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)把两幅统计图补充完整;(2)若该校学生有1 000名,根据调查结果,估计该校“非常了解”与“比较了解”的学生共有 名;(3)已知“非常了解”的同学有3名男生和1名女生,从中随机抽取2名进行垃圾分类的知识交流,请用画树状图或列表的方法,求恰好抽到一男一女的概率.21.(11分)某商店以固定进价一次性购进一种商品,3月份按一定售价销售,销售额为2400元,为扩大销量,减少库存,4月份在3月份售价基础上打9折销售,结果销售量增加30件,销售额增加840元.(1)求该商店3月份这种商品的售价是多少元;(2)如果该商店3月份销售这种商品的利润为900元,那么该商店4月份销售这种商品的利润是多少元?22.(12分)如图,在△ABC和△DCB中,AB=DC,AC=DB,AC,DB交于点M.(1)求证:△ABC≌△DCB;(2)作CN∥BD,BN∥AC,CN交BN于点N,四边形BNCM是什么四边形?请证明你的结论.23.(12分)如图,已知A(3,m),B(-2,-3)是直线AB和某反比例函数图象的两个交点.(1)求直线AB和反比例函数的表达式;(2)观察图象,直接写出当x在什么范围时,直线AB在双曲线的下方;(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB 的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.24.(13分)如图1,在平面直角坐标系xOy中,直线l:y=3x+m与x轴、y4x2+bx+c经过点B,且与直线l 轴分别交于点A和点B(0,-1),抛物线y=12的另一个交点为C(4,n).(1)求n的值和抛物线的表达式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M逆时针方向旋转90°后,得到△A1O1B1,点A,O,B的对应点分别是点A1,O1,B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.25.(14分)如图1,在△ABC中,∠BAC=90°,AB=AC,点E在AC上(且不与点A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)请直接写出线段AF,AE的数量关系;(2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图2,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;(3)在图2的基础上,将△CED绕点C继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图3写出证明过程;若变化,请说明理由.图1图2图3中考模拟测试卷一一、选择题1.B2.D3.B4.C5.B6.A7.A8.B9.B 10.D 11.A 12.D 二、填空题 13.答案 k>-4314.答案 10解析 设“△”的质量为x,“□”的质量为y,由题意得{x +y =6,x +2y =8,解得{x =4,y =2.∴第三个天平右盘中砝码的质量为2x+y=2×4+2=10.15.答案 25π-48解析 连接OC,∵∠AOB=90°,四边形ODCE 是平行四边形,∴▱ODCE 是矩形,∴∠ODC=90°.∵OD=8,OE=6,∴OC=10,∴阴影部分图形的面积=90°·π×102360°-8×6=25π-48.16.答案 (12,0)解析 在Rt △OB'C 中,tan ∠OB'C=34,则OC OB'=34,即9OB'=34,解得OB'=12,则点B'的坐标为(12,0). 17.答案 75解析 观察每个图形最上边正方形中数字的规律为1,3,5,7,9,11.左下角数字变化规律为2,22,23,24,25,26,所以b=26.观察数字关系可以发现,右下角数字等于同图形中最上边数字与左下角数字之和,所以a=26+11=75.18.答案 2√5解析 如图,延长DC 至点Q,使CQ=BC=5,连接AQ,过点A 作AH ⊥DQ 于点H,则DQ=DC+CQ=CD+BC=3+5=8,∵∠BCA+∠ACQ+∠BCD=180°,∠BCA=90°-12∠BCD,设∠BCD=x°,则∠BCA=90°-12x°,∴∠ACQ=180°-x°-(90°-12x °)=90°-12x°=∠BCA,又∵AC=AC,∴△BCA ≌△QCA(SAS),∴∠B=∠Q=∠D,∴AD=AQ, ∵AH ⊥DQ,∴DH=QH=12DQ=4,tan ∠B=tan ∠Q=AH QH=AH 4=12,∴AH=2,∴AQ=AD=2√5. 三、解答题 19.解析 原式=(a+1)(a -1)+2a+1·1a 2+1=a 2+1a+1·1a 2+1=1a+1,当a=√2-1时,原式=√22.20.解析 (1)由题意得,被调查的学生人数为4÷8%=50,则C 选项的人数为50×30%=15,D 选项的人数为50-(4+21+15)=10,则B 选项所占百分比为2150×100%=42%,D 选项所占百分比为1050×100%=20%.补全统计图如下:(2)500.(3)画树状图如下:共有12种等可能的结果,其中满足条件的结果有6种,∴P(抽到一男一女)=12.21.解析 (1)设该商店3月份这种商品的售价为x 元.根据题意,得2 400x=2 400+8400.9x-30,解得x=40.经检验,x=40是所列方程的解,且符合题意.答:该商店3月份这种商品的售价为40元. (2)设该商品的进价为a 元.根据题意,得(40-a)×2 40040=900,解得a=25.4月份的售价为40×0.9=36(元),4月份的销售数量为2 400+84036=90(件).4月份的利润为(36-25)×90=990(元).答:该商店4月份销售这种商品的利润是990元. 22.解析 (1)证明:在△ABC 和△DCB 中,∵{AB =DC,AC =DB,BC =CB,∴△ABC ≌△DCB(SSS).(2)四边形BNCM 是菱形.证明如下:∵BN ∥AC,CN ∥BD,∴四边形BNCM 为平行四边形,∵△ABC ≌△DCB,∴∠DBC=∠ACB, ∴MB=MC,∴平行四边形BNCM 为菱形.23.解析 (1)设反比例函数表达式为y=kx (k ≠0),把B(-2,-3)代入,可得k=-2×(-3)=6,∴反比例函数表达式为y=6x.把A(3,m)代入y=6x,可得m=2,∴A(3,2),设直线AB 的表达式为y=ax+b(a ≠0),把A(3,2),B(-2,-3)代入,可得{2=3a +b,-3=-2a +b,解得{a =1,b =-1,∴直线AB 的表达式为y=x-1.(2)当x<-2或0<x<3时,直线AB 在双曲线的下方.(3)存在点C,使得△OBC 的面积等于△OAB 的面积.①延长AO 交双曲线于点C 1,∵点A 与点C 1关于原点对称,∴AO=C 1O,∴△OBC 1的面积等于△OAB 的面积,此时,点C 1的坐标为(-3,-2);②过点C 1作BO 的平行线,交双曲线于点C 2,则△OBC 2的面积等于△OBC 1的面积,∴△OBC 2的面积等于△OAB 的面积,由B(-2,-3)可得OB 的表达式为y=32x,可设直线C 1C 2的表达式为y=32x+b',把C 1(-3,-2)代入,可得-2=32×(-3)+b',解得b'=52,∴直线C 1C 2的表达式为y=32x+52,解方程组{y =6x,y =32x +52,可得C 2(43,92);③过点A 作OB 的平行线,交反比例函数图象于点C 3,则△OBC 3的面积等于△OAB 的面积,设直线AC 3的表达式为y=32x+b″,把A(3,2)代入,可得2=32×3+b″,解得b″=-52,∴直线AC 3的表达式为y=32x-52,解方程组{y =6x,y =32x -52,可得C 3(-43,-92),综上所述,点C 的坐标为(-3,-2)或(43,92)或(-43,-92) . 24.解析 (1)∵直线l:y=34x+m 经过点B(0,-1),∴m=-1,∴直线l 的表达式为y=34x-1.∵直线l:y=34x-1经过点C(4,n),∴n=34×4-1=2,∵抛物线y=12x 2+bx+c 经过点C(4,2)和点B(0,-1),∴{12×42+4b +c =2,c =-1,解得{b =-54,c =-1,∴抛物线的表达式为y=12x 2-54x-1.(2)令y=0,则34x-1=0,解得x=43,∴点A 的坐标为(43,0),∴OA=43.在Rt △OAB中,OB=1,OA=43,∴AB=√OA 2+OB 2=√(43)+12=53,∵DE ∥y 轴,∴∠ABO=∠DEF,在矩形DFEG 中, EF=DE ·cos ∠DEF=DE ·OB AB =35DE,DF=DE ·sin∠DEF=DE ·OA AB =45DE,∴p=2(DF+EF)=2×(45+35)DE=145DE,∵点D 的横坐标为t(0<t<4), ∴D (t,12t 2-54t -1),E (t,34t -1),∴DE=(34t -1)-(12t 2-54t -1)=-12t 2+2t,∴p=145×(-12t 2+2t)=-75t 2+285t,∵p=-75(t-2)2+285,且-75<0,∴当t=2时,p 有最大值285.(3)点A 1的横坐标为34或-712.∵△AOB 绕点M 沿逆时针方向旋转90°,∴A 1O 1∥y 轴时,B 1O 1∥x 轴,设点A 1的横坐标为x,①如图1,点O 1,B 1在抛物线上时,点O 1的横坐标为x,点B 1的横坐标为x+1,∴12x 2-54x-1=12(x+1)2-54(x+1)-1,解得x=34;②如图2,点A 1,B 1在抛物线上时,点B 1的横坐标为x+1,点A 1的纵坐标比点B 1的纵坐标大43,∴12x 2-54x-1=12(x+1)2-54(x+1)-1+43,解得x=-712,综上所述,点A 1的横坐标为34或-712.图1 图225.解析 (1)AF=√2AE.理由:∵四边形ABFD 是平行四边形, ∴AB=DF,∵AB=AC,∴AC=DF,∵DE=EC,∴AE=EF,∵∠DEC=∠AEF=90°,∴△AEF 是等腰直角三角形,∴AF=√2AE.故答案为AF=√2AE.(2)结论:AF=√2AE.理由:如图2中,连接EF,DF 交BC 于点K.∵四边形ABFD 是平行四边形,∴AB ∥DF,∴∠DKE=∠ABC=45°, ∴∠EKF=180°-∠DKE=135°,EK=ED, ∵∠ADE=180°-∠EDC=180°-45°=135°,∴∠EKF=∠ADE,∵∠DKC=∠C,∴DK=DC,∵DF=AB=AC,∴KF=AD,在△EKF 和△EDA 中,{EK =ED,∠EKF =∠ADE,KF =AD,∴△EKF ≌△EDA,∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°, ∴△AEF 是等腰直角三角形,∴AF=√2AE.图2图3(3)结论不变,AF=√2AE.理由:如图3中,连接EF,延长FD 交AC 于点K.∵四边形ABFD 是平行四边形,∴AB ∥DF,∴∠CKF=∠CAB=90°.∵∠EDF=180°-∠KDC-∠EDC=135°-∠KDC,∠ACE=(90°-∠KDC)+∠D CE=135°-∠KDC,∴∠EDF=∠ECA,∵DF=AB,AB=AC,∴DF=AC.在△EDF 和△ECA 中,{DF =AC,∠EDF =∠ECA,DE =CE,∴△EDF ≌△ECA,∴EF=EA,∠FED=∠AEC,∴∠FEA=∠DEC=90°,∴△AEF 是等腰直角三角形,∴AF=√2AE.。

山东省济南章丘区五校联考2020届数学中考模拟试卷

山东省济南章丘区五校联考2020届数学中考模拟试卷

山东省济南章丘区五校联考2020届数学中考模拟试卷一、选择题1.如图,在菱形ABCD 中,点E 是BC 的中点,DE 与AC 交于点F ,若AB =6,∠B =60°,则AF 的长为( )A .3B .3.5C .D .42.下列说法:①平方等于其本身的数有0,±1;②32xy 3是4次单项式;③将方程12 1.20.30.5x x -+-=中的分母化为整数,得1010102035x x -+-=12;④平面内有4个点,过每两点画直线,可画6条、4条或1条.其中正确的有( ) A .1个B .2个C .3个D .4个 3.如图,是由4个大小相同的正方体组合而成的几何体,其主视图是( )A. B. C. D.4.下列选项中,可以用来证明命题“若a 2>b 2,则a >b“是假命题的反例是( )A .a =﹣2,b =1B .a =3,b =﹣2C .a =0,b =1D .a =2,b =1 5.用半径为8的半圆围成一个圆锥的侧面,则圆锥的底面半径等于( )A .16πB .4C .6D .8 6.在“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的( )A .中位数B .众数C .平均数D .方差7.如图,AB 是⊙O 的直径,点C 是圆上任意一点,点D 是AC 中点,OD 交AC 于点E ,BD 交AC 于点F ,若BF =1.25DF ,则tan ∠ABD 的值为( )A .23BC .35D .8.如图,矩形ABCD 中,AB=2, AD=1, 分别以AB 、CD 为直径做半圆,两弧交于点E 、F,则线段EF 的长为( )A B C .32 D 9.《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十.问甲乙持钱各几何?”其大意是:今有甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱;如果乙得到甲所有钱的三分之二,那么乙也共有.问甲、乙两人各带了多少钱?设甲带钱为,乙带钱为,根据题意,可列方程组为( )A. B. C. D.10.如图,在矩形ABCD 中,,点M 在边AD 上,连接BM ,BD 平分∠MBC ,则AM MD的值为( )A.12B.2C.53D.3511.给出下列函数:①y =2x ﹣3;②y =1x;③y =2x 2;④y =﹣3x+1.上述函数中符合条件“当x >0时,函数值y 随自变量x 增大而减小”的是( ) A .①③ B .③④ C .②④ D .②③12.下列运算结果正确的是( ) A .()322x x x x x x -+÷=-B .()236a a a -⋅=C .236(2x )8x -=-D .2224a (2a)2a -= 二、填空题13.若,则a 2-2b=______.14.若()2m 2y m 2x mx 1-=+++是关于自变量x 的二次函数,则m =______.15.如图,定点A (﹣2,0),动点B 在直线y x =上运动,当线段AB 最短时,点B 的坐标为 .16.36的算术平方根是 .17.解分式方程:212111x x x -=--,则方程的根是___________.18.抛物线y=3(x ﹣2)2+5的顶点坐标是_____.三、解答题19.如图,某轮船在点B 处,测得小岛A 在B 的北偏东60°方向,然后向正东方向航行60海里到点C 处,测得小岛A 在C 的北偏东30°方向.(1)求小岛A 到这艘轮船航行在点B 时AB 的长度.(2)若轮船继续往正东方向行驶40海里到点D 处,求AD 的距离(精确到1海里).≈2.65)20.如图1,一副直角三角板满足AB =BC ,AC =DE ,∠ABC =∠DEF =90°,∠EDF =30°将三角板DEF 的直角顶点E 放置于三角板ABC 的斜边AC 上,再将三角板DEF 绕点E 旋转,并使边DE 与边AB 交于点P ,边EF 与边BC 于点Q(1)如图2,当1CE EA = 时,EP 与EQ 满足怎样的数量关系?并给出证明. (2)如图3,当2CE FA=时 ①EP 与EQ 满足怎样的数量关系?,并说明理由.②在旋转过程中,连接PQ ,若AC =30cm ,设EQ 的长为xcm ,△EPQ 的面积为S (cm 2),求 S 关于x 的函数关系,并求出x 的取值范围.21.如图,在Rt △OAB 中,∠AOB =90°,OA =OB =4,以点O 为圆心、2为半径画圆,点C 是⊙O 上任意一点,连接BC ,OC .将OC 绕点O 按顺时针方向旋转90°,交⊙O 于点D ,连接AD .(1)当AD 与⊙O 相切时,①求证:BC 是⊙O 的切线;②求点C 到OB 的距离.(2)连接BD ,CD ,当△BCD 的面积最大时,点B 到CD 的距离为 .22.化简分式:2222334424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭,并从1,2,3,4这四个数中取一个合适的数作为x 的值代入求值.23.今年“五一”假期,某数学活动小组组织一次登山活动.他们从山脚下A 点出发沿斜坡AB 到达B点,再从B点沿斜坡BC到达山顶C点,路线如图所示.斜坡AB的长为1000米,斜坡BC的长为米,在C点测得B点的俯角为45°,已知A点海拔21米,C点海拔721米.(1)求B点的海拔;(2)求斜坡AB的坡角.24.如图,网格中每个小正方形的边长均为1,线段AB、线段CD的端点均在小正方形的顶点上.∆,且点E在小正方形的顶点上;(1)在图中画出以线段AB为斜边的等腰Rt ABE(2)在图中画出以线段CD为边的矩形CDMN,矩形CDMN的面积为16,连接NE,并直接写出∠的值.tan ENM25.如图,在四边形ABCD中,AC、BD相交于点O,且AO=CO,AB∥CD.(1)求证:AB=CD;(2)若∠OAB=∠OBA,求证:四边形ABCD是矩形.【参考答案】***一、选择题13.-214.215.(﹣1,﹣1).16.x=-17.218.(2,5).三、解答题19.(1)小岛A到这艘轮船航行在点B时AB的长度是(2)若轮船继续往正东方向行驶40海里到点D处,AD的距离约是530海里.【解析】【分析】(1)如图,直角△ACE和直角△ABE有公共边AE,在两个直角三角形中,利用三角函数即可用AE表示出CE 与BE ,根据CB=BE-CE 即可列方程,从而求得AE 的长,然后根据直角三角形的性质即可得到结论;(2)由(1)求得BE=90海里,则DE=10海里,在直角△AED 中,利用勾股定理求得AD 的长度即可.【详解】(1)如图所示,过点A 作AE ⊥BD 于点E ,则有∠ABE =30°,∠ACE =60°.∴∠CAB =∠ABE ,∴BC =AC =60海里.在Rt △ACE 中,设CE =x 海里,则AC =2x ,AE ,在Rt △ABE 中,AB =2AE =x ,BE =3x ,又∵BE =BC+CE ,∴3x =60+x ,∴x =30.∴AE =(海里),∴AB =2AD =60海里),答:小岛A 到这艘轮船航行在点B 时AB 的长度是海里.(2)由(1)知,AE =海里,BE =90海里,则ED =(40+60)﹣90=10(海里).∴在直角△AED 中,利用勾股定理得:AD ≈200×2.65=530(海里).答:若轮船继续往正东方向行驶40海里到点D 处,AD 的距离约是530海里.【点睛】本题主要考查了勾股定理的应用、直角三角形的计算,一般的三角形可以通过作高线转化为解直角三角形的计算,计算时首先计算直角三角形的公共边是常用的思路.20.(1)EP =EQ ,理由见解析;(2)①EQ =2EP ,理由见解析;②214S x x =. 【解析】【分析】(1)连接BE ,根据已知条件得到E 是AC 的中点,根据等腰直角三角形的性质可以证明BE=CE ,∠PBE=∠C ,根据等角的余角相等可以证明∠BEP=∠CEQ ,即可得到全等三角形,从而证明结论;(2)①作EM ⊥AB 于点M ,EN ⊥BC 于点N ,证明△MEP ∽△NEQ ,发现EP :EQ=ME-NE=AE :CE ,继而得出结果;②设EQ=x ,根据上述结论,可用x 表示出S ,确定EQ 的最大值,及最小值后,可得出x 的取值范围.【详解】(1)连接BE ,如图2:证明:∵点E 是AC 的中点,△ABC 是等腰直角三角形,∴BE =EC =AE ,∠PBE =∠C =45°,∵∠PEB+∠BEQ =∠QEC+∠BEQ =90°,∴∠PEB =∠QEC ,在△BEP 和△CEQ 中,BEP CEQ BE CEPBE C ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△BEP ≌△CEQ (ASA ),∴EP =EQ .(2)①作EM ⊥AB 于点M ,EN ⊥BC 于点N ,如图3:∵∠A =∠C =45°,∴EM =AM ,EN =CN ,∵∠MEP+∠PEN =∠NEQ+∠PEN =90°,∴∠MEP =∠NEQ ,又∵∠EMP =∠ENQ =90°,∴△MEP ∽△NEQ ,∴EP :EQ =ME :NE =ME :CN =AE :CE =1:2,故EQ =2EP ;②设EQ =x ,由①得,EP =12x , ∴S △EPQ =12EP×EQ=14x 2, 当EQ =EF 时,EQ 取得最大,此时EQ当EQ ⊥BC 时,EQ 取得最小,此时EQ=EC×sin45°=20×2=,即x ≤综上可得:S =14x 2(【点睛】 本题考查了几何变换综合题,涉及了等腰直角三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质,综合考察的知识点较多,对于此类综合性较强的题目,关键还是需要同学们有扎实的基本功,注意培养自己的融会贯通能力.21.(1)①证明见解析;②点C到OB.(2)【解析】【分析】(1)①先证明△BOC≌△AOD,则∠BCO=∠ADO=90°,BC是⊙O的切线;②过点C作CE⊥OB,根据勾股定理得BCO的面积公式可得OB•CE=BC•OC,求得;(2)当点C在⊙O上运动到△BCD是等腰三角形,且BO的延长线与CD垂直位置时,△BCD的面积最大(如图2),由等腰直角三角形的性质可求得,则点B到CD的距离为【详解】(1)①证明:∵AD与⊙O相切,∴∠ADO=90°,∵∠AOB=∠COD=90°,∴∠AOB﹣∠AOC=∠COD﹣∠AOC,即∠COB=∠AOD,∵OB=OA,OC=OD,∴△BOC≌△AOD(SAS).∴∠BCO=∠ADO=90°.∴BC是⊙O的切线;②如图:过点C作CE⊥OB,垂足为E,则CE即为点C到OB的距离,在Rt△BOC中,∵OB=4,OC=2,∴==∴OB▪CE=BC▪OC,即4CE CE∴点C到OB(2)当点C在⊙O上运动到△BCD是等腰三角形,且BO的延长线与CD垂直位置时,△BCD的面积最大(如图2),此时OB=4,OC=OD=2,∵△COD 是等腰直角三角形,∴0sin 452OF OC =⋅==∴4BF =.故答案为:.【点睛】此题主要考查了圆的综合以及等腰直角三角形的性质、旋转的性质、切线的判定与性质、全等三角形的判定与性质等知识,解题的关键是灵活运用所学知识解决问题.22.x+2,3.【解析】【分析】利用分式的运算,先对分式化简单,再选择使分式有意义的数代入求值即可.【详解】 2222334424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭=22(2)33(224x x x x x x ⎡⎤---÷⎢⎥---⎣⎦) =233()224x x x x x --÷--- =(-2)(2)323x x x x x -⋅--+ =x+2, ∵x 2﹣4≠0,x ﹣3≠0,∴x≠2且x≠﹣2且x≠3,∴可取x =1代入,原式=3.【点睛】本题主要考查分式的化简求值,熟悉掌握分式的运算法则是解题的关键,注意分式有意义的条件.23.(1)B 点的海拔为521米;(2)斜坡AB 的坡角为30°【解析】【分析】(1)过C 作CF ⊥AM,F 为垂足,过B 点作BE ⊥AM ,BD ⊥CF,E 、D 为垂足,构造直角三角形ABE 和直角三角形CBD,然后解直角三角形(2)求出BE 的长,根据坡度的概念解答.【详解】(1)如图所示,过点C 作CF ⊥AM ,F 为垂足,过点B 作BE ⊥AM ,BD ⊥CF ,E 、D 为垂足.∵在C 点测得B 点的俯角为45°,∴∠CBD=45°,又∵米, ∴CD=400×sin30°=400×12=200(米). ∴B 点的海拔为721-200=521(米).(2)∵BE=521-21=500(米),AB=1000米,所以斜坡AB 的坡角为30°【点睛】此题考查解直角三角形的应用-仰角俯角问题和解直角三角形的应用-坡度坡角问题,掌握运算法则是解题关键24.(1)见解析;(2)见解析,tan 1ENM ∠=.【解析】【分析】(1)利用数形结合的思想解决问题即可;(2)利用矩形的性质画出正确的图形。

2020年济南市中考数学模拟试卷(1)(含答案解析)

2020年济南市中考数学模拟试卷(1)(含答案解析)

2020年济南市中考数学模拟试卷(1)一、选择题(本大题共12小题,共48.0分)1.下列各式的计算中一定正确的是()A. (2x−3)0=1B. π0=0C. (a2−1)0=1D. (m2+1)0=12.下列图形是中心对称图形而不是轴对称图形的是()A. 等边三角形B. 平行四边形C. 圆D. 矩形3.下列运算正确的是()A. a2⋅a3=a6B. m6÷m2=m3C. (x2)3=x6D. 6a−4a=24.如图由四个相同的小立方体组成的立体图形,它的主视图是()A.B.C.D.5.抛物线y=−x2+3x−52的对称轴是直线()A. x=3B. x=32C. x=−32D. x=−526.下列四边形一定是正方形的是()A. 有一个角是直角的菱形B. 有一个角是直角的平行四边形C. 对角线相等的平行四边形D. 对角线互相垂直的平行四边形7.某超市四月份的营业额为30万元,第二季度的营业额为120万元,如果设平均每月的增长率为x,下列方程正确的是()A. 30(1+x)2=120B. 30+30×2x=120C. 30(1+x%)2=120D. 30+30(1+x)+30(1+x)2=1208.如图,已知:线段a,b,c.要用尺规作一条线段AD,使得AD=2a+b−c.以下作图步骤:①以B为圆心,c的长为半径画弧,与线段DB交于点A;②以D为端点画一条射线;③以C为圆心,b的长为半径画弧,与线段DC的延长线交于点B;④以D为圆心,a的长为半径画弧,在以前面的弧与射线的交点为圆心,a的长为半径画弧,与射线交与点C,得到线段DC;线段AD即为所求作的线段.排序正确的是()A. ②①③④B. ②④③①C. ①②④③D. ④②①③9.一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图象大致是()A. B.C. D.10.如图,将正方形ABCD折叠,使顶点A与CD边上的一点H重合(H不与端点C,D重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC交于点G,设正方形ABCD的周长为m,△CHG 的值为()的周长为n,则nmA. 12B. √22C. √5−12D. 随H点位置的变化而变化11.如图,AB是圆O的直径,点C在BA的延长线上,直线CD与圆O相切于点D,弦DF⊥AB于点E,连接BD,CD=BD=4√3,则OE的长度为()A. √3B. 2C. 2√3D. 412.一元一次不等式组{2x+1>0,x−5≤0的解集中,整数解的个数是()A. 4个B. 5个C. 6个D. 7个二、填空题(本大题共6小题,共24.0分)13.分解因式:9x2−6x+1=______ .14.方程3x−5x−2=4的解是x=______.15.在△ABC中,∠C=90°,∠BAC=60°.AD平分∠BAC,交BC于点D,DE⊥AB,垂足为点E;DF平分∠BDE,交AB于点F,FG⊥BC,垂足为点G,若AC=9,则FG=______.16.如图,一次函数y=12x+2的图象与反比例函数y=6x的图象交于A,B两点.点P是y轴上的一个动点,当∠APB为直角时,P点坐标为________.17.△OA1B1,△B1A2B2,△B2A3B3…均为等腰直角三角形,依次如图方式放置,点A1、A2、A3和B1、B2、B3分别在直线y=x+2和x轴上,则A n的坐标为______ .18.设11, 12, 21,13, 22, 31, (1)k, 2k−1, 3k−2,……k1,……,在这列数中,第50个数是______.三、解答题(本大题共9小题,共72.0分)19.计算:|−3|−√9+(−2)−1×2.20.解不等式组:{x+1≤2(x+1)1−2x4<1−x,并求出它的整数解.21.图1是一种淋浴喷头,图2是图1的示意图,若用支架把喷头固定在点A处,手柄长AB=25cm,AB与墙壁DD′的夹角∠D′AB=37°,喷出的水流BC与AB形成的夹角∠ABC=72°,现在住户要求:当人站在E处淋浴时,水流正好喷洒在人体的C处,且使DE=50cm,CE=130cm.问:安装师傅应将支架固定在离地面多高的位置?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70).22.《九章算术》中有一道这样的问题,译文如下:“今有上等谷7束,下等谷2束,则得谷11斗.下等谷8束,上等谷2束,则得谷9斗.问上等谷、下等谷1束各得谷多少斗?”如果设上等谷1束得谷x斗,下等谷1束得谷y斗,请你解答上面的问题.23.某校初二年级数学考试,(满分为100分,该班学生成绩均不低于50分)作了统计分析,绘制成如图频数分布直方图和频数、频率分布表,请你根据图表提供的信息,解答下列问题:分组49.5~59.559.5~69.569.5~79.579.5~89.589.5~100.5合计频数2a2016450频率0.040.160.400.32b1(1)频数、频率分布表中a=___,b=____;(2)补全频数分布直方图;(3)若该校八年级共有600名学生,且各个班级学生成绩分布基本相同,请估计该校八年级上学期期末考试成绩低于70分的学生人数.24.如图,四边形ABCD是正方形,以边AB为直径作⊙O,点E在BC边上,连结AE交⊙O于点F,连结BF并延长交CD于点G.(1)求证:△ABE≌△BCG;(2)若∠AEB=55°,OA=3,求BF⏜的长.(结果保留π)25.如图,在平面直角坐标系中,一次函数y1=ax+b(a≠0)的图象与y轴相交于点A,与反比例(k≠0)的图象相交于点B(3,2)、C(−1,n).函数y2=kx(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出y1>y2时x的取值范围;(3)在y轴上是否存在点P,使△PAB为直角三角形,如果存在,请求点P的坐标,若不存在,请说明理由.26.如图1,在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP翻折得到△AD′P,PD′的延长线交边AB于点M,过点B作BN//MP交DC于点N.(1)求证:AD2=DP⋅PC;(2)请判断四边形PMBN的形状,并说明理由;(3)如图2,连接AC,分别交PM,PB于点E,F.若DPAD =12,求EFAE的值.27.如图,已知二次函数y=ax2+bx+2的图像与x轴相交于A(4,0)、B(2,0)两点,与y轴相交于点C,点Q为抛物线上的一动点.(1)求a,b的值;(2)当点Q坐标为(8,6)时,在直线CQ下方抛物线上取一点M,连接MC、MQ,求△MCQ面积的最大值;(3)在直线CQ上是否存在一点P,使得AP=4,且∠APC=30°.若存在,请求出点Q的坐标;若不存在,请说明理由.【答案与解析】1.答案:D解析:本题考查的是零指数幂,熟知任何不等于0的数的0次幂都等于1是解答此题的关键.根据零指数幂的运算法则进行计算即可.,故A选项错误;解:A.当(2x−3)0=1时,x≠32B.π0=1,故B选项错误;C. 当(a2−1)0=1时,a≠±1,故C选项错误;D.(m2+1)0=1,故D选项正确;故选D.2.答案:B解析:解:A、不是中心对称图形,是轴对称图形;故A错误;B、是中心对称图形,不是轴对称图形;故B正确;C、是中心对称图形,也是轴对称图形;故C错误;D、是中心对称图形,也是轴对称图形;故D错误;故选:B.根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.答案:C解析:解:A、原式=a5,错误;B、原式=m4,错误;C、原式=x6,正确;D、原式=2a,错误.故选C.原式各项计算得到结果,即可作出判断.此题考查了同底数幂的除法,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.4.答案:D解析:解:从正面看,共2列,左边是1个正方形,右边是2个正方形,且下齐.故选:D.找到从正面看所得到的图形即可,注意所有的看到的正方形的排列.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.答案:B解析:【试题解析】本题主要考查了求抛物线的顶点坐标与对称轴的方法.已知抛物线解析式为一般式,可化为顶点式写出顶点坐标及对称轴.解:∵抛物线y=−x2+3x−52=−(x−32)2−14的顶点坐标为(32,−14),∴对称轴是直线x=32,故选B.6.答案:A解析:本题考查了正方形的判定,菱形的判定,矩形的判定等知识点,熟练掌握其判定定理是解题关键.A.有一个角是直角的菱形为正方形,符合题意;B.有一个角是直角的平行四边形为矩形,不合题意;C.对角线相等的平行四边形为矩形,不合题意;D.对角线互相垂直的平行四边形为菱形,不合题意.故选A.7.答案:D解析:本题主要考查了求平均变化率的方法,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b;根据增长率问题,一般增长后的量=增长前的量×(1+增长率),关系式为:四月份月营业额+五月份月营业额+六月份月营业额=120,把相关数值代入即可求解.解:设平均每月的增长率为x,根据题意:五月份的月营业额为30×(1+x),六月份的月销售额在五月份月销售额的基础上增加x,为30×(1+x)×(1+x),则列出的方程是:30+30(1+x)+30(1+x)2=120.故选D.8.答案:B解析:[分析]根据尺规作线段的方法可得.本题考查了复杂作图.掌握尺规作线段的方法是关键.[详解]解:作图步骤:以D为端点画一条射线,以D为圆心,a的长为半径画弧,在以前面的弧与射线的交点为圆心,a 的长为半径画弧,与射线交于点C,得到线段DC;以C为圆心,b的长为半径画弧,与线段DC的延长线交于点B;以B为圆心,c的长为半径画弧,与线段DB交于点A;则线段AD就是所求作的线段2a+b−c.则排序正确的是②④③①.故选B.9.答案:C解析:解:A、由一次函数y=ax+b的图象可得:a>0,此时二次函数y=ax2+bx+c的图象应该开口向上,错误;B、由一次函数y=ax+b的图象可得:a>0,b>0,此时二次函数y=ax2+bx+c的图象应该<0,错误;开口向上,对称轴x=−b2aC、由一次函数y=ax+b的图象可得:a<0,b<0,此时二次函数y=ax2+bx+c的图象应该<0,正确.开口向下,对称轴x=−b2aD、由一次函数y=ax+b的图象可得:a<0,b<0,此时二次函数y=ax2+bx+c的图象应该开口向下,错误;故选:C.可先根据一次函数的图象判断a、b的符号,再判断二次函数图象与实际是否相符,判断正误.应该熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.10.答案:A解析:本题考查翻折变换及正方形的性质,关键是熟练掌握折叠的性质和正方形的性质.先利用正方形的性质和对称性质得出边角关系,从而可得△AHD≌△AHM,然后得到Rt△AGM≌Rt△AGB,可得GM=GB,最后根据三角形的周长计算可得结果.解:连接AH、AG,作AM⊥HG于M.∵EA=EH,∴∠1=∠2,∵∠EAB=∠EHG=90°,∴∠HAB=∠AHG,∵DH//AB,∴∠DHA=∠HAB=∠AHM,∵AH=AH,∠D=∠AMH=90°,∴△AHD≌△AHM,∴DH=HM,AD=AM,∵AM=AB,AG=AG,∴Rt△AGM≌Rt△AGB,∴GM=GB,∴△GCH的周长=n=CH+HM+MG+CG=CH+DH+CG+GB=2BC,∵四边形ABCD的周长=m=4BC,∴nm=12故选:A.11.答案:B解析:解:连结OD,如图,∵直线CD与⊙O相切于点D,∴OD⊥CD,∴∠ODC=90°,∵CD=BD=4√3,∴∠C=∠B,∵OD=OB,∴∠B=∠ODB,∴∠DOE=∠B+∠ODB=2∠B,∴∠DOE=2∠C,在Rt△OCD中,∠DOE=2∠C,则∠DOE=60°,∠C=30°,∴OD=cot∠EOD⋅CD=√33×4√3=4,∵DF⊥AB,∴∠DEO=90°,在Rt△ODE中,OE=cos∠EOD⋅OD=12×4=2,故选:B.连结OD ,根据切线的性质得∠ODC =90°,根据等腰三角形的性质得出∠B =∠C =∠ODB ,于是可根据三角形外角性质得∠DOE =2∠B =2∠C ,进而求得∠DOE =60°,解直角三角形即可求得OE . 本题考查了切线的性质,等腰三角形的性质,三角形外角的性质,解直角三角形等,作出辅助线构建等腰三角形和直角三角形是解题的关键.12.答案:C解析:本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是能根据不等式的解集求出不等式组的解集.先求出每个不等式的解集,再求出不等式组的解集,求出不等式组的整数解,即可得出答案.解:{2x +1>0,x −5≤0①②∵解不等式①得:x >−0.5,解不等式②得:x ≤5,∴不等式组的解集为−0.5<x ≤5,∴不等式组的整数解为0,1,2,3,4,5,共6个,故选:C .13.答案:(3x −1)2解析:解:原式=(3x −1)2,故答案为:(3x −1)2原式利用完全平方公式分解即可.此题考查了因式分解−运用公式法,熟练掌握完全平方公式是解本题的关键.14.答案:3解析:解:去分母得:3x −5=4x −8,解得:x =3,经检验x =3是分式方程的解,故答案为:3分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.15.答案:3解析:本题主要考查了角平分线的性质,以及含30°角的直角三角形的性质,解题时注意,在直角三角形中,30°角所对的直角边等于斜边的一半.先根据∠C =90°,∠BAC =60°,AD 平分∠BAC ,DE ⊥AB ,求得∠DAE =30°=∠B ,∠ADC =∠ADE =60°,再根据DF 平分∠BDE ,FG ⊥BC ,求得FG =FE ,∠EDF =30°,设FG =x ,根据AB =18,列出方程求解即可.解:∵∠C =90°,∠BAC =60°,AD 平分∠BAC ,DE ⊥AB ,∴∠DAE =30°=∠B ,∠ADC =∠ADE =60°,又∵DF 平分∠BDE ,FG ⊥BC ,∴FG =FE ,∠EDF =30°,设FG =x ,则BF =2x ,DE =√3x ,AE =√3DE =3x ,∵Rt △ABC 中AC =9,∴AB =18,即2x +x +3x =18,解得x =3,即FG =3.故答案为3.16.答案: (0,5)或(0,−3)解析:本题考查了一次函数和反比例函数的交点问题,熟练掌握勾股定理是解题的关键.联立求得B 的坐标,在由勾股定理求解即可.解:{y =12x +2y =6x 得{x =2y =3或{x =−6y =−1 ∴B(−6,−1),设点P(0,a).根据勾股定理可得(0+6)2+(a +1)2+(0−2)2+(a −3)2=(−6−2)2+(−1−3)2, 解得a 1=−3,a 2=5,∴点P 的坐标为(0,5)或(0,−3),故答案为(0,5)或(0,−3).17.答案:(2n −2,2n )解析:本题考查一次函数图象上的点的特征、规律型题目,解题的关键是学会从特殊到一般的探究方法,学会利用规律解决问题.先求出A 1、A 2、A 3、…,找出坐标规律后求出A n 的坐标即可. 解:由题意A 1(0,2),A 2(2,4),A 3(6,8),A 4(14,16),A 5(30,32),…∴A n (2n −2,2n ),故答案为(2n −2,2n ).18.答案:56解析:解:当k =1时,有一个数,这个数是11,当k =2时,有两个数,这两个数是12,21,当k =3时,有三个数,这三个数是13,22,31,∵50=(1+2+3+4+5+6+7+8+9)+5,∴第50个数是:510−4=56,故答案为:56.根据题意,可以发现题目中数字的变化规律,从而可以求得第50个数,本题得以解决. 本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律. 19.答案:解:原式=3−3+(−12)×2=−1.解析:直接利用算术平方根的性质以及负指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键. 20.答案:解:由(1)式得,x ≥−1,由(2)式得,x <1.5.∴不等式组解为−1≤x <1.5.∴它的正整数解为:−1,0,1.解析:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,再求出整数解.21.答案:解:过点B作BG⊥D′D于点G,延长EC、GB交于点F,∵AB=25,DE=50,∴sin37°=GBAB ,cos37°=GAAB,∴GB≈25×0.60=15,GA≈25×0.80=20,∴BF=50−15=35,∵∠ABC=72°,∠D′AB=37°,∴∠GBA=53°,∠CBF=55°,∴∠BCF=35°,∵tan35°=BFCF,∴CF≈350.70=50,∴FE=50+130=180,∴GD=FE=180,∴AD=180−20=160,∴安装师傅应将支架固定在离地面160cm的位置.解析:本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.过B 作BG ⊥D′D 于点G ,延长EC 、GB 交于点F ,根据锐角三角函数的定义即可求出答案. 22.答案:解:根据题意得{7x +2y =11,8y +2x =9,解得{x =3526,y =4152.答:上等谷1束得谷3526斗,下等谷1束得谷4152斗.解析:本题考查了二元一次方程组的应用,根据题意列出二元一次方程组,解方程组即可. 23.答案:解:(1)8;0.08;(2)如图所示,;(3)根据题意得:600×(0.04+0.16)=600×0.2=120(人),则该校八年级上学期期末考试成绩低于70分的学生人数约为120人.解析:此题考查了频数(率)分布直方图,用样本估计总体,以及条形统计图,弄清题中的数据是解本题的关键.(1)根据表格确定出a 与b 的值即可;(2)由a 的值,补全条形统计图,如图所示;(3)根据49.5~59.5与59.5~69.5的频率之和乘以600即可得到结果.解:(1)根据题意得:a =2÷0.04×0.16=8,b =4÷(2÷0.04)=0.08;故答案为8;0.08;(2)见答案;(3)见答案.24.答案:(1)证明:∵四边形ABCD是正方形,AB为⊙O的直径,∴∠ABE=∠BCG=∠AFB=90°,∴∠BAF+∠ABF=90°,∠ABF+∠EBF=90°,∴∠EBF=∠BAF,在△ABE与△BCG中,{∠EBF=∠BAF AB=BC∠ABE=∠BCG,∴△ABE≌△BCG(ASA);(2)解:连接OF,∵∠ABE=∠AFB=90°,∠AEB=55°,∴∠BAE=90°−55°=35°,∴∠BOF=2∠BAE=70°,∵OA=3,∴BF⏜的长=70⋅π×3180=7π6.解析:【试题解析】(1)根据四边形ABCD是正方形,AB为⊙O的直径,得到∠ABE=∠BCG=∠AFB=90°,根据余角的性质得到∠EBF=∠BAF,根据全等三角形的判定定理即可得到结论;(2)连接OF,根据三角形的内角和得到∠BAE=90°−55°=35°,根据圆周角定理得到∠BOF=2∠BAE=70°,根据弧长公式即可得到结论.本题考查了弧长的计算,全等三角形的判定和性质,正方形的性质,圆周角定理,熟练掌握弧长的计算公式是解题的关键.25.答案:解:(1)把B(3,2)代入y2=kx得:k=6,∴反比例函数解析式为:y2=6x,把C(−1,n)代入y 2=6x ,得:n =−6,∴C(−1,−6),把B(3,2)、C(−1,−6)分别代入y 1=ax +b ,得:{3a +b =2−a +b =−6, 解得{a =2b =−4, ∴一次函数解析式为y 1=2x −4;(2)由图可知,当写出y 1>y 2时,x 的取值范围是−1<x <0或者x >3;(3)y 轴上存在点P ,使△PAB 为直角三角形,如图,过B 作BP 1⊥y 轴于P 1,∠BP 1A =90°,△P 1AB 为直角三角形,此时P 1(0,2),过B 作BP 2⊥AB 交y 轴于P 2,∠P 2BA =90°,△P 2AB 为直角三角形,在Rt △P 1AB 中,AB =√P 1B 2+P 1A 2=√32+(2+4)2=3√5,设P 2(0,a),在Rt △P 1BP 2中,BP 22=32+(a −2)2,AP 22=(a +4)2,∵AP 22=AB 2+BP 22,解得a=72,∴P2(0,72),综上所述,P1(0,2)、P2(0,72).解析:此题考查了待定系数法求一次函数解析式,求反比例函数解析式,反比例函数的应用,一次函数的应用,勾股定理,分类讨论及数形结合的思想.(1)利用待定系数法求出反比例函数解析式,进而求出点C坐标,最后用再用待定系数法求出一次函数解析式;(2)利用图像直接得出结论;(3)分情况进行分析,利用勾股定理或面积法建立方程求解即可得出结果.26.答案:解:(1)解法一:过点P作PG⊥AB于点G,∴易知四边形DPGA,四边形PCBG是矩形,∴AD=PG,DP=AG,GB=PC∵∠APB=90°,∴∠APG+∠GPB=∠GPB+∠PBG=90°,∴∠APG=∠PBG,∴△APG∽△PBG,∴PGAG =GBPG,∴PG2=AG⋅GB,即AD2=DP⋅PC;解法二:易证:△ADP∽△PCB,∴ADDP =PCCB,由于AD=CB,∴AD2=DP⋅PC;(2)∵DP//AB,∴∠DPA=∠PAM,由题意可知:∠DPA=∠APM,∴∠PAM=∠APM,∵∠ABP+∠PAM=∠MPB+∠APM=90°,即∠ABP=∠MPB∴PM=MB,又易证四边形PMBN是平行四边形,∴四边形PMBN是菱形;(3)由于DPAD =12,可设DP=1,AD=2,由(1)可知:AG=DP=1,PG=AD=2,∵PG2=AG⋅GB,∴4=1⋅GB,∴GB=PC=4,AB=AG+GB=5,∵CP//AB,∴△PCF∽△BAF,∴CFAF =PCAB=45,∴AFAC =59,又易证:△PCE∽△MAE,AM=12AB=52∴CEAE=PCAM=452=85∴AEAC =513,∴EF=AF−AE=59AC−513AC=20117AC,∴EFAE=20117AC513AC=49解析:本题考查相似三角形的综合问题,涉及相似三角形的性质与判定,菱形的判定,直角三角形斜边上的中线的性质等知识,综合程度较高,需要学生灵活运用所学知识.(1)法一:过点P作PG⊥AB于点G,易知四边形DPGA,四边形PCBG是矩形,所以AD=PG,DP=AG,GB=PC,易证△APG∽△PBG,所以PG2=AG⋅GB,即AD2=DP⋅PC;法二:易证:△ADP∽△PCB ,结合相似比以及AD =CB 可得证.(2)DP//AB ,所以∠DPA =∠PAM ,由题意可知:∠DPA =∠APM ,所以∠PAM =∠APM ,由于∠ABP +∠PAM =∠MPB +∠APM =90°,即∠ABP =∠MPB ,从而可知PM =MB =AM ,又易证四边形PMBN 是平行四边形,所以四边形PMBN 是菱形;(3)可设DP =1,AD =2,由(1)可知:AG =DP =1,PG =AD =2,从而求出GB =PC =4,AB =AG +GB =5,由于CP//AB ,从而可证△PCF∽△BAF ,△PCE∽△MAE ,从而可得∴AF AC =59,AE AC=513,可求出EF 与AC 的等量关系,从而可得EFAE 的值.27.答案:解:(1)∵二次函数y =ax 2+bx +2的图像与x 轴相交于A(4,0)、B(2,0)两点, ∴抛物线表达式为y =a(x −2)(x −4)=a(x 2−6x +8)=ax 2−6ax +8a , ∴8a =2,解得:a =14则b =−6a =−32;(2)过点M 作MH//y 轴交CQ 于点H ,将点C 、Q 坐标代入一次函数表达式y =kx +b 得:{6=8k +b b =2解得:{k =12b =2,则直线CQ 的表达式为:y =12x +2,设点M(x,14x 2−32x +2),点H(x,12x +2),则S △MCQ =12MH ×x Q =4(12x +2−14x 2+32x −2)=−x 2+8x ,∵−1<0,故S△MCQ有最大值,当x=−82×(−1)=4时,S△MCQ有最大值为16;(3)存在,理由:过点C作CP//x轴交抛物线与点Q,过点A作AM⊥CP,∴四边形OAMC为矩形,则AM=OC=2,而AP=4,故∠APC=30°,则点Q坐标为(6,2).解析:本题主要考查的是二次函数的图象,性质和应用,矩形的判定和性质,待定系数法求一次函数的解析式,一次函数的应用,待定系数法求二次函数的解析式,三角形的面积,点的坐标的确定等有关知识.(1)用交点式抛物线表达式,即可求解;(2)利用S△MCQ=12MH×xQ,即可求解;(3)存在,四边形OAMC为矩形,则AM=OC=2,而AP=4,故∠APC=30°,即可求解.。

2020年山东省济南市中考数学模拟试卷及答案解析

2020年山东省济南市中考数学模拟试卷及答案解析
(1)这项工程的规定时间是多少天?
(2)为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合作完成.则甲乙两队合作完成该工程需要多少天?
23.(8分)在⊙O中,直径AB⊥弦CD于点F,点E是弧AD上一点,连BE交CD于点N,点P在CD的延长线上,PN=PE.
(1)求证:PE是⊙O的切线;
A.1.09×10﹣7B.0.109×10﹣7C.0.109×10﹣6D.1.09×10﹣6
4.下列图形中,是轴对称图形但不是中心对称图形的是( )
A. B.
C. D.
5.下列运算正确的是( )
A.a6÷a3=a2B.3a2﹣2a2=2a
C.(a3)2=a6D.(a﹣b)2=a2﹣b2
6.如图,已知AB∥CD,直线AB,CD被BC所截,E点在BC上,若∠1=45°,∠2=35°,则∠3=( )
25.(10分)如图,在直角坐标系中,点B的坐标为(2,1),过点B分别作x轴、y轴的垂线,垂足分别是C,A,反比例函数y= (x>0)的图象交AB,BC分别于点E,F.
(1)求直线EF的解析式;
(2)求四边形BEOF的面积;
(3)若点P在y轴上,且△POE是等腰三角形,请直接写出点P的坐标.
26.(12分)已知,如图1,在△ABC中,AB⊥BC,AB=2 ,AC=10,若D为AC的中点,DG⊥AC交BC与点G.
(1)如图1,点P为抛物线上位于x轴下方一点,连接PB,PD,当S△PBD最大时,连接AP,以PB为边向上作正△BPQ,连接AQ,点M与点N为直线AQ上的两点,MN=2且点N位于M点下方,连接DN,求DN+MN+ AM的最小值
(2)如图2,在第(1)问的条件下,点C关于x轴的对称点为E,将△BOE绕着点A逆时针旋转60°得到△B′O′E′,将抛物线y= 沿着射线PA方向平移,使得平移后的抛物线C′经过点E,此时抛物线C′与x轴的右交点记为点F,连接E′F,B′F,R为线段E’F上的一点,连接B′R,将△B′E′R沿着B′R翻折后与△B′E′F重合部分记为△B′RT,在平面内找一个点S,使得以B′、R、T、S为顶点的四边形为矩形,求点S的坐标.

山东省济南章丘区五校联考2019-2020学年中考数学模拟试卷

山东省济南章丘区五校联考2019-2020学年中考数学模拟试卷

山东省济南章丘区五校联考2019-2020学年中考数学模拟试卷一、选择题1.某游客为爬上3千米高的山顶看日出,先用1小时爬了1千米,休息0.5小时后,再用1.5小时爬上山顶.游客爬山所用时间l 与山高h 间的函数关系用图形表示是( )A. B.C. D.2.如图,在△ABC 中,以边BC 为直径做半圆,交AB 于点D ,交AC 于点E ,连接DE ,若=2=2,则下外说法正确的是( )A.AB =AEB.AB =2AEC.3∠A =2∠CD.5∠A =3∠C3.如图,在▱ABCD 中,AB =6,AD =9,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,BG =4,则△CEF 的周长为( )A.8B.9.5C.10D.11.5 4.已知关于x 的一元二次方程(k-2)x 2+2x-1=0有两个不相等的实数根,则k 的取值范围为( )A .1k >B .1k >-且0k ≠C .1k >且2k ≠D .1k <5.如图,在⊙O 中,已知弦AB 长为16cm ,C 为AB 的中点,OC 交AB 于点M ,且OM ∶MC =3∶2,则CM 长为 ( )A .2cmB .4cmC .6cmD .8cm6.如图,在平面直角坐标系中,一个含有45〫角的三角板的其中一个锐角顶点置于点A (﹣3,﹣3)处,将其绕点A 旋转,这个45〫角的两边所在的直线分别交x 轴,y 轴的正半轴于点B ,C ,连结BC ,函数y =kx(x >0)的图象经过BC 的中点D ,则( )A.9942k ≤≤ B.94k =C.994k ≤≤ D.92k =7.已知AB 是圆O 的直径,AC 是弦,若AB =4,AC =,则sin ∠C 等于( )A .2B .12C .3D .38.抛掷一枚质地均匀的硬币,若抛掷99次都是正面朝上,则抛掷第100次正面朝上的概率是( ) A .小于12B .等于12C .大于12D .无法确定9.如图,抛物线y =ax 2+bx+c 的对称轴是x =13,小亮通过观察得出了下面四个结论:①c <0,②a ﹣b+c >0,③2a ﹣3b =0,④5b ﹣2c <0.其中正确的有( )A .1个B .2个C .3个D .4个 10.下列计算正确的是( )A .3362a a a +=B .236()a a -=C .623a a a ÷=D .538a a a ⋅=11.如图,正方形ABCD 的边长为3厘米,正方形AEFG 的边长为1厘米.如果正方形AEFG 绕点A 旋转,那么C ,F 两点之间的距离的最大值为( )A .cmB .3cmC .D .4cm12.三棱柱的三视图如图所示,已知△EFG 中,EF =8cm ,EG =12cm ,∠EFG =45°.则AB 的长为( )cm .A .8B .12C .D .二、填空题13.如图,在∆ABC 中,AB=AC=10,E ,D 分别是AB ,AC 上的点,BE=4,CD=2,且BD=CE ,则BD=________________.14.把多项式34x x -分解因式的结果是______.15.关于x 的方程x 2+5x –m=0的一个根是2,则m=__________.1630°,圆锥的侧面积为_____.17.如图所示,在菱形ABCD 中,AB=4,∠BAD=120°,△AEF 为正三角形,点E 、F 分别在菱形的边BC 、CD 上滑动,且E 、F 不与B 、C 、D 重合.当点E 、F 在BC 、CD 上滑动时,则△CEF 的面积最大值是____.18.计算73x x ÷的结果等于_____. 三、解答题19.青少年视力健康问题日趋严重,引起世界各国高度关注,某中学为了解学校2000名学生的视力情况,从各年级学生中随机抽取了40名学生进行检测,其右眼视力的检查结果 4,7,4.8,4.6,4.7,4.7,5.0,4.7,4.5,4.2,4.7 4,3,4.5,5.2,4.6,4.9,4.9,4.5,4.1,4.4,4.0 4,8,4.6,4.5,4.7,4.6,5.2,4.6,4.5,4.3,4.7 4,3,4.4,5.0,4.7,4.8,4.9,4.5,4.2,4.5,4.2 整理数据(1)表中a = ;(2)若视力不低于4.85属视力正常,低于4.85属视力不正常,则在所抽查的学生当中,右眼视力的正常率为多少?(3)根据抽样检测的数据估计该校2000名学生中,右眼视力不正常的学生大约有多少人?(4)通过以上数据及问题解答,你能给出什么合理化的建议.20.解不等式组()2432742x xxx⎧--⎪⎨->⎪⎩…,并将解集在数轴上表示出来.21.计算:220193tan30-+-⎝⎭︒.22.如图,在四边形ABCD中,BD为一条对角线,AD∥BC,AD=2BC,∠ABD=90°,E为AD的中点,连接BE.(1)求证:四边形BCDE为菱形;(2)连接AC,若AC平分∠BAD,BC=2,求AC的长.23.已知:如图,在平行四边形中,点E在BC边上,连接AE.O为AE中点,连接BO并延长交AD于F.(1)求证:△AOF≌△BOE,(2)判断当AE平分∠BAD时,四边形ABEF是什么特殊四边形,并证明你的结论.24.如图1,若抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上(点A与点B不重合)我们把这样的两抛物线L1、L2互称为“友好”抛物线,可见一条抛物线的“友好”抛物线可以有很多条.(1)如图2,已知抛物线L3:y=2x2-8x+4与y轴交于点C,试求出点C关于该抛物线对称轴对称的对称点D的坐标;(2)请求出以点D为顶点的L3的“友好”抛物线L4的解析式,并指出L3与L4中y同时随x增大而增大的自变量的取值范围;(3)若抛物y=a1(x-m)2+n的任意一条“友好”抛物线的解析式为y=a2(x-h)2+k,请写出a1与a2的关系式,并说明理由.25.随着科技的发展,油电混合动力汽车已经开始普及,某种型号油电混合动力汽车,从甲地到乙地燃油行驶纯燃油费用80元,从甲地到乙地用电行驶纯电费用30元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元(1)求每行驶1千米纯用电的费用;(2)若要使从甲地到乙地油电混合行驶所需的油、电费用合计不超过50元,则至多用纯燃油行驶多少千米?【参考答案】*** 一、选择题13.14.(2)(2)x x x +- 15.14 16.2π1718.4x 三、解答题19.(1)16(2)17.5%(3)1650(4)见解析 【解析】 【分析】(1)由所给数据即可得; (2)根据百分比的概念求解可得;(3)用总人数乘以样本中对应的百分比可得; (4)合理即可,答案不唯一. 【详解】(1)由所给数据知a =16, 故答案为:16;(2)在所抽查的学生当中,右眼视力的正常率为5240+×100%=17.5%; (3)右眼视力不正常的学生大约有2000×(1﹣17.5%)=1650(人);(4)建议中学生应少看电视,少玩游戏,少看手机,才能保护视力(合理即可,不唯一).本题主要考查样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.20.﹣1<x≤2【解析】【分析】首先求出两个不等式的解集,然后根据大大取大,小小取小,大小小大中间找,大大小小解不了的口诀求出不等式组的解集.【详解】解:解不等式2x﹣4≥3(x﹣2),得:x≤2,解不等式4x>72x-,得:x>﹣1,则不等式组的解集为﹣1<x≤2,将解集表示在数轴上如下:【点睛】考查了不等式组的解法,关键是求出不等式的解集,然后根据口诀求出不等式组的解集.21.12.【解析】【分析】直接利用特殊角的三角函数值和绝对值的性质和零指数幂的性质分别化简得出答案.【详解】原式=1 1332 -⨯+=1 12=12.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.22.(1)见解析.(2)【解析】【分析】(1)先证明四边形BCDE是平行四边形,再证明BE=DE,根据一组邻边相等的平行四边形为菱形即可判定四边形BCDE是菱形;(2)连接AC,根据平行线的性质及角平分线的定义证得∠BAC=∠DAC=∠BCA,即可得AB=BC=2,根据锐角三角函数的定义求得∠ADB=30°,所以∠DAC=30°,∠ADC=60°,在Rt△ACD中,即可求得AC=【详解】(1)证明:∵AD=2BC,E为AD的中点,∴DE=BC,∴四边形BCDE是平行四边形,∵∠ABD=90°,AE=DE,∴BE=DE,∴四边形BCDE是菱形.(2)连接AC.∵AD∥BC,AC平分∠BAD,∴∠BAC=∠DAC=∠BCA,∴AB=BC=2,∵AD=2BC=4,∴sin∠ADB=12,∴∠ADB=30°,∵四边形BCDE是菱形.∴∠DAC=30°,∠ADC=60°,在Rt△ACD中,∵AD=4,∴AC=【点睛】本题考查了菱形的判定及解直角三角形的知识,熟练运用菱形的判定方法及解直角三角形是解决问题的关键.23.(1)求证:见解析;(2)四边形ABEF是菱形,见解析.【解析】【分析】(1)先利用平行四边形的性质得AD∥BC,则∠AFB=∠CBF,然后根据“AAS”可判断△AOF≌△BOE;(2)利用△AOF≌△BOE得到FO=BO,则可根据对角线互相平分可判定四边形ABEF是平行四边形,根据AE平分∠BAD,得∠BAE=∠FAE,又∠FAE=∠AEB,得∠BAE=∠AEB,AB=BE,有一组对边相等的平行四边形是菱形,得四边形ABEF是菱形.【详解】(1)∵O为AE中点,∴AO=EO,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠AFB=∠CBF,在△AOF和△BOE中AFO EBO AOF EOB AO EO ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AOF ≌△BOE ;(2)四边形ABEF 是菱形,理由如下: ∵△AOF ≌△BOE , ∴FO =BO , 而AO =EO ,∴四边形ABEF 是平行四边形, ∵AE 平分∠BAD , ∴∠BAE =∠FAE , ∵∠FAE =∠AEB , ∴∠BAE =∠AEB , ∴AB =BE ,∴四边形ABEF 是菱形. 【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质,菱形的判定等,熟练掌握相关的性质与判定定理是解题的关键.24.(1)(4,4);(2)2≤x≤4;(3)a 1=-a 2,理由如下:见解析 【解析】 【分析】(1)设x =0,求出y 的值,即可得到C 的坐标,把抛物线L 3:y =2x 2−8x +4配方即可得到抛物线的对称轴,由此可求出点C 关于该抛物线对称轴对称的对称点D 的坐标;(2)由(1)可知点D 的坐标为(4,4),再由条件以点D 为顶点的L 3的“友好”抛物线L 4的解析式,可求出L 4的解析式,进而可求出L 3与L 4中y 同时随x 增大而增大的自变量的取值范围;(3)根据:抛物线L 1的顶点A 在抛物线L 2上,抛物线L 2的顶点B 也在抛物线L 1上,可以列出两个方程,相加可得:(a 1+a 2)(m −h )2=0,可得a 1=−a 2. 【详解】解:(1)∵抛物线L 3:y=2x 2-8x+4, ∴y=2(x-2)2-4,∴顶点为(2,4),对称轴为x=2, 设x=0,则y=4, ∴C (0,4),∴点C 关于该抛物线对称轴对称的对称点D 的坐标为:(4,4); (2)∵以点D (4,4)为顶点的抛物线L 4过点(2,-4), 设L 4的解析式2(4)4y a x =-+, 将点(2,-4)代入L 4可得,a=-2, ∴L 4的解析式为y=-2(x-4)2+4,L 3与L 4的两个交点分别为(4,4)和(2,-4)∴L 3与L 4中y 同时随x 增大而增大的自变量的取值范围是:2≤x≤4时; (3)a 1=-a 2, 理由如下:∵抛物线L 1的顶点A 在抛物线L 2上,抛物线L 2的顶点B 也在抛物线L 1上,∴可以列出两个方程2221()()n a m h kk a h m n⎧=-+⎨=-+⎩①②,①+②得:(a1+a2)(m-h)2=0,∴a1=-a2.【点睛】本题属于二次函数的综合题,涉及了抛物线的对称变换、抛物线与坐标轴的交点坐标以及新定义的问题,解答本题的关键是数形结合,特别是(3)问根据已知条件得出方程组求解,有一定难度.25.(1)每行驶1千米纯用电的费用为0.3元;(2)至多用纯燃油行驶40千米.【解析】【分析】(1)根据某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元,可以列出相应的分式方程,然后解分式方程即可解答本题;(2)根据从甲地到乙地油电混合行驶所需的油、电费用合计不超过50元,结合(1)中用电每千米的费用列出不等式,解不等式即可解答本题.【详解】解:(1)设每行驶1千米纯用电的费用为x元,根据题意,得8030x0.5x=+,解得,x=0.3,经检验,x=0.3是原分式方程的解,即每行驶1千米纯用电的费用为0.3元;(2)从甲地到乙地油电混合行驶,设用纯燃油行驶y千米.根据题意,得30(0.30.5)y y0.3500.3⎛⎫++-⨯≤⎪⎝⎭,解得,y≤40.即至多用纯燃油行驶40千米.【点睛】本题考查分式方程的应用、一元一次不等式的应用,解题的关键是明确题意,列出相应的分式方程与不等式,注意分式方程要检验.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年山东省济南市章丘区中考数学模拟试卷(一)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)数2020的相反数是()A.B.﹣C.2020D.﹣20202.(4分)下列几何体中,主视图与俯视图不相同的是()A.B.C.D.3.(4分)2020年我国爆发“新冠肺炎”疫情,在党中央的坚强领导下,全国上下,众志成城,抗击疫情,截止2020年2月20号,累计确诊70637例,把数70637用科学记数法表示为()A.7.0637×104B.7.0637×105C.7.0637×103D.0.70637×1054.(4分)如图,直线a,b被直线c所截,若a∥b,∠1=40°,∠2=70°,则∠3=()A.70°B.100°C.110°D.120°5.(4分)下表是某校乐团的年龄分布,其中一个数据被遮盖了,下面说法正确的是()年龄13141516频数5713■A.中位数可能是14B.中位数可能是14.5C.平均数可能是14D.众数可能是166.(4分)下列图形中,是中心对称图形的是()A.B.C.D.7.(4分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是()A.B.C.﹣D.8.(4分)抛物线y=ax2+bx+c的图象如图所示,那么一次函数y=bx+b2﹣4ac与反比例函数y=在同一坐标系内的图象大致是()A.B.C.D.9.(4分)如图所示,在桥外一点A测得大桥主架与水面的交汇点C的俯角为α,大桥主架的顶端D的仰角为β,已知大桥主架顶端离水面的高CD=a,则此时测量点与大桥主架的水平距离AB为()A.a sinα+a sinβB.a tanα+a tanβC.D.10.(4分)如图,已知点A(﹣6,0),B(2,0),点C在直线上,则使△ABC是直角三角形的点C的个数为()A.1B.2C.3D.411.(4分)如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.2B.3C.5D.612.(4分)已知函数y=,当a≤x≤b时,﹣≤y≤,则b﹣a的最大值为()A.1B.+1C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(4分)分解因式:2x3﹣8x=.14.(4分)x等于数时,代数式的值比的值的2倍小1.15.(4分)如图,一个可以自由转动的转盘,任意转动转盘一次,当转盘停止时,指针落在红色区域的概率为.16.(4分)如图,正五边形ABCDE内接于⊙O,F是CD弧的中点,则∠CBF的度数为.17.(4分)甲、乙两人分别从两地同时出发登山,甲、乙两人距山脚的竖直高度y(米)与登山时间x(分)之间的图象如图所示,若甲的速度一直保持不变,乙出发2分钟后加速登山,且速度是甲速度的4倍,那么他们出发分钟时,乙追上了甲.18.(4分)如图,在矩形ABCD中,AB=4,BC=6,点E为对角线BD的中点,点F在CB的延长线上,且BF =1,连接EF,过点E作EG⊥EF交BA的延长线于点G,连接GF并延长交DB的延长线于点H,则=.三、解答题:(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)计算:﹣20180﹣|﹣5|+()﹣2﹣2cos60°20.(6分)解不等式组:,把它的解集在数轴上表示出来,并写出其整数解.21.(6分)如图,矩形ABCD中,对角线AC、BD交于点O,以AD、OD为邻边作平行四边形ADOE,连接BE.求证:四边形AOBE为菱形.22.(8分)某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.(1)求每行驶1千米纯用电的费用;(2)若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少用电行驶多少千米?23.(8分)如图,△ABC内接于⊙O,AB为⊙O的直径,过点A作⊙O的切线交BC的延长线于点E,在弦BC上取一点F,使AF=AE,连接AF并延长交⊙O于点D.(1)求证:∠B=∠CAD;(2)若CE=2,∠B=30°,求AD的长.24.(10分)为了提高中学生身体素质,学校开设了A:篮球、B:足球、C:跳绳、D:羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图(未画完整).(1)这次调查中,一共调查了名学生;(2)请补全两幅统计图;(3)若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率.25.(10分)在如图平面直角坐标系中,矩形OABC的顶点B的坐标为(4,2),OA、OC分别落在x轴和y轴上,OB是矩形的对角线.将△OAB绕点O逆时针旋转,使点B落在y轴上,得到△ODE,OD与CB相交于点F,反比例函数y=(x>0)的图象经过点F,交AB于点G.(1)求k的值和点G的坐标;(2)连接FG,则图中是否存在与△BFG相似的三角形?若存在,请把它们一一找出来,并选其中一种进行证明;若不存在,请说明理由;(3)在线段OA上存在这样的点P,使得△PFG是等腰三角形.请直接写出点P的坐标.26.(12分)如图,在正方形ABCD中,M、N分别是射线CB和射线DC上的动点,且始终∠MAN=45°.(1)如图1,当点M、N分别在线段BC、DC上时,请直接写出线段BM、MN、DN之间的数量关系;(2)如图2,当点M、N分别在CB、DC的延长线上时,(1)中的结论是否仍然成立,若成立,给予证明,若不成立,写出正确的结论,并证明;(3)如图3,当点M、N分别在CB、DC的延长线上时,若CN=CD=6,设BD与AM的延长线交于点P,交AN于Q,直接写出AQ、AP的长.27.(12分)如图1,在平面直角坐标系中,抛物线y=﹣x2+x+与x轴交于A、B两点(点A在点B 的左侧),与y轴交于点C,对称轴与x轴交于点D.(1)求直线BC的解析式;(2)如图2,点P为直线BC上方抛物线上一点,连接PB、PC.当△PBC的面积最大时,在线段BC上找一点E(不与B、C重合),使PE+BE的值最小,求点P的坐标和PE+BE的最小值;(3)如图3,点G是线段CB的中点,将抛物线y=﹣x2+x+沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为F.在抛物线y′的对称轴上,是否存在一点Q,使得△FGQ为直角三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.2020年山东省济南市章丘区中考数学模拟试卷(一)参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.【解答】解:2020的相反数是:﹣2020.故选:D.2.【解答】解:四棱锥的主视图与俯视图不相同.故选:C.3.【解答】解:将70637用科学记数法表示为:7.0637×104.故选:A.4.【解答】解:∵a∥b,∠1=40°,∴∠4=∠1=40°,∴∠3=∠2+∠4=70°+40°=110°.故选:C.5.【解答】解:5+7+13=25,由列表可知,人数大于25人,则中位数是15或(15+16)÷2=15.5或16.平均数应该大于14,综上,D选项正确;故选:D.6.【解答】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:B.7.【解答】解:∵∠ACB=90°,AC=BC=1,∴AB=,∴S扇形ABD==.又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD=.故选:A.8.【解答】解:∵二次函数图象开口向上,∴a>0,∵对称轴为直线x=﹣>0,∴b<0,当x=﹣1时,a﹣b+c>0,当x=1时,a﹣b+c<0,∴(a+b+c)(a﹣b+c)<0,∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴一次函数图象经过第一、二、四象限,反比例函数图象经过第二四象限.故选:D.9.【解答】解:∵在Rt△ABC中,tan,∴BC=AB•tanα,在Rt△ABD中,tanβ=,∴BD=AB•tanβ,∴CD=a=BC+BD=AB•tanα+AB•tanβ.∴AB=.故选:C.10.【解答】解:如图,①当∠A为直角时,过点A作垂线与直线的交点W(﹣6,4),②当∠B为直角时,过点B作垂线与直线的交点S(2,),③若∠C为直角,则点C在以线段AB为直径、AB中点E(﹣2,0)为圆心、4为半径的圆与直线的交点上.在直线中,当x=0时y=2,即Q(0,2),当y=0时x=6,即点P(6,0),则PQ==4,过AB中点E(﹣2,0),作EF⊥直线l于点F,则∠EFP=∠QOP=90°,∵∠EPF=∠QPO,∴△EFP∽△QOP,∴=,即=,解得:EF=4,∴以线段AB为直径、E(﹣2,0)为圆心的圆与直线恰好有一个交点.所以直线上有一点C满足∠C=90°.综上所述,使△ABC是直角三角形的点C的个数为3,故选:C.11.【解答】解;连接EF交AC于O,∵四边形EGFH是菱形,∴EF⊥AC,OE=OF,∵四边形ABCD是矩形,∴∠B=∠D=90°,AB∥CD,∴∠ACD=∠CAB,在△CFO与△AOE中,,∴△CFO≌△AOE,∴AO=CO,∵AC==4,∴AO=AC=2,∵∠CAB=∠CAB,∠AOE=∠B=90°,∴△AOE∽△ABC,∴,∴,∴AE=5.方法二:应连接EF得EF⊥AC易证EF垂直平分AC连接CE,得CE=AE,设CE=AE=x,EB=8﹣x,BC=4,利用勾股定理求得x=5即可.故选:C.12.【解答】解:函数的图象如下图所示,当x≥0时,当y=﹣时,x=,当y=时,x=,故:顶点A的坐标为(,﹣),点B(,),同理点C(,﹣)则b﹣a的最大值为﹣=1+,故选:B.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.【解答】解:2x3﹣8x,=2x(x2﹣4),=2x(x+2)(x﹣2).14.【解答】解:根据题意得:=2×﹣1,即=﹣1,去分母得:2(3x﹣2)=3(4x﹣1)﹣6,去括号得:6x﹣4=12x﹣3﹣6,移项合并得:﹣6x=﹣5,解得:x=,故答案为:15.【解答】解:将红色部分平均分成两份,将圆平均分成3个均等的区域,2红1蓝,因此任意转动转盘一次,当转盘停止时,指针落在红色区域的概率为,故答案为:.16.【解答】解:设圆心为O,连接OC,OD,BD,∵五边形ABCDE为正五边形,∴∠O==72°,∴∠CBD=O=36°,∵F是的中点,∴∠CBF=∠DBF=CBD=18°,故答案为:18°.17.【解答】解:如图,∵C(0,50),D(10,150),∴直线CD的解析式为y=10x+50,由题意A(2,30),甲的速度为10米/分,∴乙加速后的速度为40米/分,∴乙从A到B的时间==3,∴B(5,150),∴直线AB的解析式为y=40x﹣50,由,解得,∴那么他们出发分钟时,乙追上了甲.故答案为.18.【解答】解:过点E作EM⊥BC于点M,过点E作EN⊥AB于点N,∴四边形ENBM是矩形,∵E是BD的中点,∴EM==2,EN=BM==3,∴MF=BF+BM=1+3=4,∴==2,∵EG⊥EF,∴∠GEF=90°,∴∠EGB=∠BFE,∴tan∠EGB=tan∠BFE,∴,∴GN=6,∴GB=GN+BN=6+2=8∵∠GEF=∠GBF=90°∴G,E,B,F四点共圆,∴∠BGF=∠BEF,∵∠EHF=∠GHB,∴△FEH∽△BGH,∴,∴.故答案为:.三、解答题:(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.【解答】解:原式=9﹣1﹣5+4﹣2×=9﹣1﹣5+4﹣1=6.20.【解答】解:解不等式①,x>﹣3,解不等式②,x≤2,∴﹣3<x≤2,解集在数轴上表示如下:∴x的整数解为﹣2,﹣1,0,1,2.21.【解答】解:∵四边形ABCD是矩形,∴DO=BO.∵四边形ADOE是平行四边形,∴AE∥DO,AE=DO,AD∥OE.∴AE∥BO,AE=BO,∴四边形AOBE是平行四边形.∵AD⊥AB,AD∥OE,∴AB⊥OE.∴四边形AOBE是菱形;22.【解答】解:(1)设每行驶1千米纯用电的费用为x元,=解得,x=0.26经检验,x=0.26是原分式方程的解,即每行驶1千米纯用电的费用为0.26元;(2)从A地到B地油电混合行驶,用电行驶y千米,0.26y+(﹣y)×(0.26+0.50)≤39解得,y≥74,即至少用电行驶74千米.23.【解答】(1)证明:∵AE是⊙O的切线,∴∠BAE=90°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠BAC+∠CAE=90°,∠BAC+∠B=90°,∴∠B=∠CAE,∵AF=AE,∠ACB=90°,∴∠CAD=∠CAE.∴∠B=∠CAD;(2)解:连接BD.∵∠ABC=∠CAD=∠CAE=30°,∴∠DAE=60°,∵∠BAE=90°,∴∠BAD=30°,∵AB是直径,∴∠ADB=90°,∴cos∠BAD=,∴=,∵∠ACE=90°,∠CAE=30°,CE=2,∴AE=2CE=4,∵∠BAE=90°,∠ABC=30°,∴cot∠ABC=,即=,∴AB=4,∴=,∴AD=6.24.【解答】解:(1)根据题意得:这次调查中,一共调查的学生数为:40÷20%=200(名);故答案为:200;(2)B占的百分比为:1﹣20%﹣30%﹣15%=35%,C的人数为:200×30%=60(名);如图:(3)分别用A,B,C表示3名喜欢跳绳的学生,D表示1名喜欢足球的学生;画树状图得:∵共有12种等可能的结果,一人是喜欢跳绳、一人是喜欢足球的学生的有6种情况,∴一人是喜欢跳绳、一人是喜欢足球的学生的概率为:=.25.【解答】解:(1)∵四边形OABC为矩形,点B的坐标为(4,2),∴∠OCB=∠OAB=∠ABC=90°,OC=AB=2,OA=BC=4,∵△ODE是△OAB旋转得到的,即:△ODE≌△OAB,∴∠COF=∠AOB,∴△COF∽△AOB,∴=,∴=,∴CF=1,∴点F的坐标为(1,2),∵y=(x>0)的图象经过点F,∴2=,得k=2,∵点G在AB上,∴点G的横坐标为4,对于y=,当x=4,得y=,∴点G的坐标为(4,);(2)△COF∽△BFG;△AOB∽△BFG;△ODE∽△BFG;△CBO∽△BFG.下面对△OAB∽△BFG进行证明:∵点G的坐标为(4,),∴AG=,∵BC=OA=4,CF=1,AB=2,∴BF=BC﹣CF=3,BG=AB﹣AG=.∴,=.∴,∵∠OAB=∠FBG=90°,∴△OAB∽△FBG.(3)设点P(m,0),而点F(1,2)、点G(4,),则FG2=9+=,PF2=(m﹣1)2+4,PG2=(m﹣4)2+,当GF=PF时,即=(m﹣1)2+4,解得:m=(舍去负值);当PF=PG时,同理可得:m=;当GF=PG时,同理可得:m=4﹣;综上,点P的坐标为(4﹣,0)或(,0)或(,0).26.【解答】解:(1)BM+DN=MN,理由如下:如图1,在MB的延长线上,截取BE=DN,连接AE,∵四边形ABCD是正方形,∴AB=AD,∠BAD=∠ABC=∠D=90°,∴∠ABE=90°=∠D,在△ABE和△ADN中,,∴△ABE≌△ADN(SAS),∴AE=AN,∠EAB=∠NAD,∴∠EAN=∠BAD=90°,∵∠MAN=45°,∴∠EAM=45°=∠NAM,在△AEM和△ANM中,,∴△AEM≌△ANM(SAS),∴ME=MN,又∵ME=BE+BM=BM+DN,∴BM+DN=MN;故答案为:BM+DN=MN;(2)(1)中的结论不成立,DN﹣BM=MN.理由如下:如图2,在DC上截取DF=BM,连接AF,则∠ABM=90°=∠D,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AM=AF,∠BAM=∠DAF,∴∠BAM+∠BAF=∠BAF+∠DAF=∠BAD=90°,即∠MAF=∠BAD=90°,∵∠MAN=45°,∴∠MAN=∠F AN=45°,在△MAN和△F AN中,,∴△MAN≌△F AN(SAS),∴MN=NF,∴MN=DN﹣DF=DN﹣BM,∴DN﹣BM=MN.(3)∵四边形ABCD是正方形,∴AB=BC=AD=CD=6,AD∥BC,AB∥CD,∠ABC=∠ADC=∠BCD=90°,∴∠ABM=∠MCN=90°,∵CN=CD=6,∴DN=12,∴AN===6,∵AB∥CD,∴△ABQ∽△NDQ,∴====,∴=,∴AQ=AN=2;由(2)得:DN﹣BM=MN.设BM=x,则MN=12﹣x,CM=6+x,在Rt△CMN中,由勾股定理得:62+(6+x)2=(12﹣x)2,解得:x=2,∴BM=2,∴AM===2,∵BC∥AD,∴△PBM∽△PDA,∴===,∴PM=AM=,∴AP=AM+PM=3.27.【解答】解:(1)当x=0时,y=﹣x2+x+=,∴点C的坐标为(0,);当y=0时,有﹣x2+x+=0,解得:x1=﹣1,x2=3,∴点B的坐标为(3,0).设直线BC的解析式为y=kx+b(k≠0),将B(3,0)、C(0,)代入y=kx+b,得:,解得:,∴直线BC的解析式为y=﹣x+.(2)如图2中,过点P作PM⊥x轴于点M,交直线BC于点F.EN⊥x轴设P(a,﹣a2+a+),则F(a,﹣a+)∴PF=﹣a2+a∴S△PBC=×PF×3=﹣a2+a∴当,a=时,S△PBC最大∴P(,)∵直线BC的解析式为y=﹣x+.∴∠CBO=30°,EN⊥x轴∴EN=BE∴PE+BE=PE+EN∴根据两点之间线段最短和垂线段最短,则当P,E,N三点共线且垂直于x轴时,PE+BE值最小.∴PE+BE=PE+EN=PN=(3)∵D是对称轴直线x=1与x轴的交点,G是BC的中点∴D(1,0),G(,)∴直线DG解析式y=x﹣∵抛物线y=﹣x2+x+=﹣(x﹣1)2+沿x轴正方向平移得到新抛物线y′,y′经过点D ∴y'═﹣(x﹣3)2+∴F(3,)∴对称轴为x=3∵△FGQ为直角三角形∴∠FGQ=90°或∠FQG=90°,∠GFQ=90°(不合题意,舍去)当∠FQG=90°,则QG∥x轴∴Q(3,)当∠FGQ=90°,设点Q坐标(3,y)∵FQ2=FG2+GQ2.∴(﹣y)2=(3﹣)2+(﹣)2+(3﹣)2+(﹣y)2.∴y=﹣∴Q(3,﹣)综上所述:Q(3,),(3,﹣)。

相关文档
最新文档