插值与拟合剖析
数值计算方法插值与拟合

数值计算方法插值与拟合数值计算方法在科学计算和工程应用中起着重要的作用,其中插值和拟合是其中两个常用的技术。
插值是指通过已知的离散数据点来构造出连续函数或曲线的过程,拟合则是找到逼近已知数据的函数或曲线。
本文将介绍插值和拟合的基本概念和常见的方法。
一、插值和拟合的基本概念插值和拟合都是通过已知数据点来近似表达未知数据的方法,主要区别在于插值要求通过已知数据点的函数必须经过这些数据点,而拟合则只要求逼近这些数据点。
插值更加精确,但是可能会导致过度拟合;拟合则更加灵活,能够通过调整参数来平衡拟合精度和模型复杂度。
二、插值方法1. 线性插值线性插值是一种简单的插值方法,通过已知数据点构造出线段,然后根据插值点在线段上进行线性插值得到插值结果。
2. 拉格朗日插值拉格朗日插值是一种基于多项式插值的方法,通过已知数据点构造出一个多项式,并根据插值点求解插值多项式来得到插值结果。
3. 分段线性插值分段线性插值是一种更加灵活的插值方法,通过将插值区间分成若干小段,然后在每个小段上进行线性插值。
三、拟合方法1. 最小二乘法拟合最小二乘法是一种常用的拟合方法,通过最小化实际观测点和拟合函数之间的残差平方和来确定拟合函数的参数。
2. 多项式拟合多项式拟合是一种基于多项式函数的拟合方法,通过选择合适的多项式次数来逼近已知数据点。
3. 曲线拟合曲线拟合是一种更加灵活的方法,通过选择合适的曲线函数来逼近已知数据点,常见的曲线包括指数曲线、对数曲线和正弦曲线等。
四、插值与拟合的应用场景插值和拟合在实际应用中具有广泛的应用场景,比如图像处理中的图像重建、信号处理中的滤波器设计、金融中的风险评估等。
五、插值与拟合的性能评价插值和拟合的性能可以通过多种指标进行评价,常见的评价指标包括均方根误差、相关系数和拟合优度等。
六、总结插值和拟合是数值计算方法中常用的技术,通过已知数据点来近似表达未知数据。
插值通过已知数据点构造出连续函数或曲线,拟合则找到逼近已知数据的函数或曲线。
数学建模插值及拟合详解

插值和拟合【1 】试验目标:懂得数值剖析建模的办法,控制用Matlab进行曲线拟合的办法,懂得用插值法建模的思惟,应用Matlab一些敕令及编程实现插值建模.试验请求:懂得曲线拟合和插值办法的思惟,熟习Matlab相干的敕令,完成响应的演习,并将操纵进程.程序及成果记载下来.试验内容:一.插值1.插值的根本思惟·已知有n +1个节点(xj,yj),j = 0,1,…, n,个中xj互不雷同,节点(xj, yj)可算作由某个函数 y= f(x)产生;·结构一个相对简略的函数y=P(x);·使P经由过程全体节点,即 P (xk) = yk,k=0,1,…, n ;·用P (x)作为函数f ( x )的近似.2.用MA TLAB作一维插值盘算yi=interp1(x,y,xi,'method')注:yi—xi处的插值成果;x,y—插值节点;xi—被插值点;method—插值办法(‘nearest’:最临近插值;‘linear’:线性插值;‘spline’:三次样条插值;‘cubic’:立方插值;缺省时:线性插值).留意:所有的插值办法都请求x是单调的,并且xi不克不及够超出x的规模.演习1:机床加工问题机翼断面下的轮廓线上的数据如下表:x 0 3 5 7 9 11 12 13 14 15y 0用程控铣床加工机翼断面的下轮廓线时每一刀只能沿x偏向和y偏向走异常小的一步.表3-1给出了下轮廓线上的部分数据但工艺请求铣床沿x偏向每次只能移动单位.这时需求出当x 坐标每转变单位时的y 坐标. 试完成加工所需的数据,画出曲线. 步调1:用x0,y0两向量暗示插值节点;步调2:被插值点x=0:0.1:15; y=y=interp1(x0,y0,x,'spline'); 步调3:plot(x0,y0,'k+',x,y,'r')grid on答:x0=[0 3 5 7 9 11 12 13 14 15 ]; y0=[0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6 ]; x=0:0.1:15;y=interp1(x0,y0,x,'spline'); plot(x0,y0,'k+',x,y,'r') grid on0510150.511.522.53.用MA TLAB 作网格节点数据的插值(二维)z=interp2(x0,y0,z0,x,y,’method’)注:z—被插点值的函数值;x0,y0,z0—插值节点;x,y—被插值点;method—插值办法(‘nearest’:最临近插值;‘linear’:双线性插值; ‘cubic’:双三次插值;缺省时:双线性插值).留意:请求x0,y0单调;x,y可取为矩阵,或x取行向量,y取为列向量,x,y的值分离不克不及超出x0,y0的规模.4.用MA TLAB作散点数据的插值盘算cz =griddata(x,y,z,cx,cy,‘method’)注:cz—被插点值的函数值;x,y,z—插值节点;cx,cy—被插值点;method—插值办法(‘nearest’:最临近插值;‘linear’:双线性插值; ‘cubic’:双三次插值;'v4‘:Matlab供给的插值办法;缺省时:双线性插值).演习2:航行区域的警示线某海域上频仍地有各类吨位的船只经由.为包管船只的航行安然,有关机构在低潮时对水深进行了测量,下表是他们供给的测量数据:水道水深的测量数据x 129.0140.0 103.5 88.0 185.5 195.0 105.5y 7.5 141.5 23.0 147.0 22.5 137.5 85.5z 4 8 6 8 6 8 8x157.5 107.5 77.0 81.0 162.0 162.0 117.5y -6.5 -81.0 3.0 56.5 -66.5 84.0 -33.5z 9 9 8 8 9 4 9个中(x, y)为测量点,z为(x, y)处的水深(英尺),水深z是区域坐标(x, y)的函数z= z (x, y),船的吨位可以用其吃水深度来反应,分为4英尺.英尺.5英尺和英尺 4 档.航运部分要在矩形海域(75,200)×(-50,150)上为不合吨位的航船设置警示标识表记标帜.请依据测量的数据描写该海域的地貌,并绘制不合吨位的警示线,供航运部分应用. x=[129 140 103.5 88 185.5 195 105.5 157.5 107.5 77 81 162 162 117.5];y=[7.5 141.5 23 147 22.5 137.5 85.5 -6.5 -81 3 56.5 -66.5 84 -33.5];z=[-4 -8 -6 -8 -6 -8 -8 -9 -9 -8 -8 -9 -4 -9];cx=75:0.5:200;cy=-70:0.5:150;cz=griddata(x,y,z,cx,cy','cubic');meshz(cx,cy,cz),rotate3dxlabel('X'),ylabel('Y'),zlabel('Z')%pausefigure(2),contour(cx,cy,cz,[-5 -5]);grid on,hold onplot(x,y,'+')xlabel('X'),ylabel('Y')200XYZXY80100120140160180200-60-40-20020406080100120140演习3:估量水塔的水流量—93,请绘出三次样条插值曲线,并盘算一天的总的用水量. 解:t0=[0.46,1.38,2.4,3.41,4.43,5.44,6.45,7.47,8.45,11.49,12.49,13.42,14.43,15.44,16.37,17.38,18.49,19.50,20.40,24.43,25.32];v0=[11.2,9.7,8.6,8.1,9.3,7.2,7.9,7.4,8.4,15.6,16.4,15.5,13.4,13.8,12.9,12.2,12.2,12.9,12.6,11.2,3.5]; t=0:0.1:26; y=interp1(t0,v0,t,'spline'); plot(t0,v0,'k+',t,y,'r') grid on0510********-10-55101520二.曲线拟合已知一组(二维)数据,即平面上 n 个点(xi,yi) i=1,…n, 追求一个函数(曲线)y=f(x), 使 f(x) 在某种准则下与所稀有据点最为接近,即曲线拟合得最好.最经常应用的办法是线性最小二乘拟合 1.多项式拟合⏹对给定的数据(xj,yj),j = 0,1,…, n;⏹拔取恰当阶数的多项式,如二次多项式g(x)=ax^2+bx+c;⏹使g(x)尽可能逼近(拟合)这些数据,但是不请求经由给定的数据(xj,yj); 2.多项式拟合指令1)多项式f(x)=a1xm+ …+amx+am+1拟合指令:a=polyfit(x,y,m)a:输出多项式拟合系数a[a1,a2,…,am];x,y:输出长度雷同的数组;m:多项式的次数. 2)多项式在x处的值y的盘算敕令:y=polyval(a,x)演习4:对下面一组数据作二次多项式拟合写出拟合敕令:plot(x,y,'k+',x,z,'r')作出数据点和拟合曲线:0.10.20.30.40.50.60.70.80.91写出拟合的二次多项式:0317.01293.208108.9)(2-+-=x x x f3.可化为多项式的非线性拟和曲线改直是工程中又一经常应用的断定曲线情势的办法,很多罕有的函数都可以经由过程恰当的变换转化为线性函数.(1)幂函数 by ax c =+ln ln ln y c a b x -=+(2)指数函数 xy ab c =+ln ln ln y c a x b -==(3)抛物函数 2,(0)y ax bx c x =++≠b ax xcy +=- 演习5:完成教材P93页的习题5的第一小题. x0=[0,300,600,1000,1500,2000];x=0:100:2000;y0=[0.9689,0.9322,0.8969,0.8519,0.7989,0.7491];y=interp1(x0,y0,x,'spline');plot(x0,y0,'k+',x,y,'r')grid on0200400600800100012001400160018002000。
数学建模_插值与拟合总结

y0 y1
⎪⎩a0 + a1xn + a2 xn2 + L + an xnn = yn
记此方程组的系数矩阵为 A ,则
(3)
1 x0 x02 L x0n det( A) = 1 x1 x12 L x1n
LLLLLLL
1 xn xn2 L xnn 是范德蒙特(Vandermonde)行列式。当 x0 , x1,L, xn 互不相同时,此行列式值不为零。因 此方程组(3)有唯一解。这表明,只要 n + 1 个节点互不相同,满足插值要求(2)的
z=x(i); s=0.0; for k=1:n
p=1.0; for j=1:n
if j~=k p=p*(z-x0(j))/(x0(k)-x0(j));
end end s=p*y0(k)+s; end y(i)=s; end
-176-
1.2 牛顿(Newton)插值 在导出 Newton 公式前,先介绍公式表示中所需要用到的差商、差分的概念及性质。 1.2.1 差商
=
f0
+
Δf 0 h
(x − x0 ) + L +
Δn f0 n! h n
( x − x0 )( x − x1)L( x − xn−1)
若令 x = x0 + th ,则上式又可变形为
Nn (x0
+ th)
=
f0
+ tΔf0
+L +
t(t
− 1)L(t n!
−n
+ 1) Δn
f0
上式称为 Newton 向前插值公式。
f [x, x0 , x1] = f [x0 , x1, x2 ] + ( x − x2 ) f [x, x0 , x1, x2 ] LL
插值法和曲线拟合的主要差异

插值法和曲线拟合的主要差异
插值法和曲线拟合是数据处理和分析中常用的方法,它们的主要差异如下:
1. 目标不同:
- 插值法的主要目标是通过已知数据点的函数值推断未知数据点的函数值,以填充数据的空缺部分或者进行数据的重构。
- 曲线拟合的主要目标是通过已知数据点拟合出一条函数曲线,以描述数据点之间的趋势或模式。
2. 数据使用方式不同:
- 插值法使用已知数据点的函数值作为输入,通过构造插值函数来推断未知数据点的函数值。
- 曲线拟合使用已知数据点的函数值作为输入,并通过选择合适的拟合函数参数,使得拟合函数与数据点尽可能接近。
3. 数据点要求不同:
- 插值法要求已知数据点间的函数值比较准确,以保证插值函数的质量,并要求数据点间的间距不会过大,避免出现过度插值或者不稳定的现象。
- 曲线拟合对于数据点的要求相对较松,可以容忍噪声、异常值等因素,因为它不需要将函数曲线完全通过所有数据点。
4. 应用场景不同:
- 插值法常见应用于信号处理、图像处理等领域,可以用于填充缺失数据、图像重构等任务。
- 曲线拟合常见应用于数据分析、模型建立等领域,可以用
于描述数据间的趋势、拟合科学模型等。
综上所述,插值法和曲线拟合在目标、数据使用方式、数据点要求和应用场景等方面存在明显的差异。
第九讲 数据插值与拟合

插值则要求函数在每个观测点处一定要满足 y i f ( xi )
插值函数一般是已知函数的线性组合或者称为加权平 均.插值在工程实践和科学实验中有着非常广泛而又十 分重要的应用,例如,信息技术中的图像重建、图像放 大中为避免图像的扭曲失真的插值补点、建筑工程的外 观设计。化学工程实验数据与模型的分析、天文观测数 据、地理信息数据的处理如(天气预报)以及社会经济 现象的统计分析等等.
zi int erhod' )
其中 x,y,z为插值节点,zi为被插值点(xi,yi)处的插值结果 且, xi, yi为被插值节点构成的新的网格数据 ‘methods’代表的意思和可选择的插值方法和前面一样 注意:所有的插值方法都要求x和y是单调的网格,x和 y可以 是等距的也可以是不等距的
:最近点等值方式
缺省时表示线性插值
例1 在一 天24小时内,从零点开始每间隔2小时测得的环 境温度数据分别为
12,9,9,1,0,18 ,24,28,27,25,20,18,15,13,
推测中午(即13点)时的温度.
x=0:2:24; y=[12 9 9 10 18 24 28 27 25 20 18 15 13]; x1=13 ; y1=interp1(x,y,x1,‘spline’)
(2)一般函数线性组合的曲线拟合
假设已知函数原型为 f ( x) c0 0 ( x) c11 ( x) cm m ( x) 通过求解线性方程可得待定系数,一般方法: X=[…] %已知数据x的列向量 Y=[…] %已知数据y的列向量 A=[f1(X),f2(X),…,fm(X)] %系数矩阵,fm()为基函数 c=A\y
线性最小二乘法
拟合函数可由一些简单的“基函数”(例如幂函数,三 角 0 ( x), 1 ( x), , n ( x) 来线性表示 函数等等)
插值法和曲线拟合的主要差异

插值法和曲线拟合的主要差异引言在数学和统计学中,插值法和曲线拟合是两种常用的数据处理方法。
它们在数据分析、模型构建和预测等领域发挥着重要作用。
本文将详细介绍插值法和曲线拟合的定义、原理、应用以及它们之间的主要差异。
插值法定义插值法是一种通过已知数据点之间的函数关系来推断未知数据点的方法。
它基于一个假设,即已知数据点之间存在一个连续且光滑的函数,并且通过这个函数可以准确地估计其他位置上的数值。
原理插值法通过对已知数据点进行插值操作,得到一个近似函数,然后使用这个函数来估计未知数据点的数值。
常见的插值方法有拉格朗日插值、牛顿插值和样条插值等。
应用插值法在各个领域都有广泛应用,如地图制作中根据少量已知地理坐标点推算其他位置上的坐标;传感器测量中根据离散采样点推断连续时间序列上未采样到的数据;图像处理中通过已知像素点推测其他位置上的像素值等。
主要特点•插值法可以精确地通过已知数据点估计未知数据点的数值,适用于需要高精度估计的场景。
•插值法对输入数据的要求较高,需要保证已知数据点之间存在连续且光滑的函数关系。
•插值法只能在已知数据点之间进行插值,无法对整个数据集进行全局拟合。
曲线拟合定义曲线拟合是一种通过选择合适的函数形式,并调整函数参数来使得函数与给定数据集最为接近的方法。
它不仅可以对已知数据进行拟合,还可以根据拟合结果进行预测和模型构建。
原理曲线拟合首先选择一个适当的函数形式,如多项式、指数函数、对数函数等。
然后使用最小二乘法或最大似然估计等方法来确定函数参数,使得函数与给定数据集之间的误差最小化。
应用曲线拟合广泛应用于各个领域,如经济学中根据历史数据构建经济模型进行预测;物理学中通过实验数据来验证理论模型;生物学中根据实验测量数据拟合生长曲线等。
主要特点•曲线拟合可以对整个数据集进行全局拟合,能够更好地描述数据的整体趋势。
•曲线拟合可以选择不同的函数形式和参数,灵活性较高。
•曲线拟合可能存在过拟合或欠拟合的问题,需要通过模型评估和调整来提高拟合效果。
数值分析中的插值和拟合

数值分析中的插值和拟合数值分析是一门运用数学方法和计算机技术来解决实际问题的学科,其中的插值和拟合是其中的两个重要概念。
一、插值在数值分析中,插值是指在已知数据点的情况下,利用一定的数学方法来估计在此数据范围之外任意一点的函数值。
常用的插值方法有拉格朗日插值、牛顿插值和分段线性插值等。
以拉格朗日插值为例,假设已知数据点(x0, y0), (x1, y1), …, (xn, yn) ,其中 xi 不相同,Lagrange 插值问题就是要找到一个函数p(x),使得:p(xi) = yi (0 <= i <= n)并且 p(x) 在区间 [x0, xn] 上为连续函数。
然后,根据拉格朗日插值多项式的定义,拉格朗日插值多项式Lk(x) 可以定义为:$$ L_k(x) = \prod_{i=0, i \neq k}^n \frac{x - x_i}{x_k - x_i}$$然后,定义插值多项式 p(x) 为:$$ p(x) = \sum_{k=0}^n y_k L_k(x) $$这样,我们就可以通过计算插值多项式来估计任意一点 x 的函数值了。
二、拟合拟合是在给定一组离散数据点的情况下,通过一定的数学方法来找到一个函数 f(x),使得该函数可以较好地描述这些数据点之间的关系。
拟合方法主要包括最小二乘法和非线性拟合等。
以最小二乘法为例,假设有 m 个数据点(x1, y1), (x2, y2), …, (xm, ym) ,要找到一个函数 f(x),使得该函数与这些数据点的误差平方和最小,即:$$ S = \sum_{i=1}^m (y_i - f(x_i))^2 $$最小二乘法就是要找到一个函数 f(x),使得 S 最小。
假设这个函数为:$$ f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n $$则 S 可以表示为:$$ S = \sum_{i=1}^m (y_i - a_0 - a_1 x_i - a_2 x_i^2 - ... - a_nx_i^n)^2 $$接下来,我们需要求解系数a0, a1, …, an,在满足式子 (2) 的情况下,使得 S 最小。
插值与拟合问题

插值与拟合问题插值与拟合是数学和计算机科学领域中常见的问题,涉及到通过已知数据点来估计未知点的值或者通过一组数据点来逼近一个函数的过程。
在现实生活中,这两个问题经常用于数据分析、图像处理、物理模拟等领域。
本文将介绍插值与拟合的基本概念、方法和应用。
一、插值问题插值是通过已知的数据点来推断出未知点的值。
在插值问题中,我们假设已知数据点是来自于一个未知函数的取值,在这个函数的定义域内,我们需要找到一个函数或者曲线,使得它经过已知的数据点,并且可以通过这个函数或者曲线来估计未知点的值。
常见的插值方法包括线性插值、拉格朗日插值和牛顿插值。
线性插值是通过已知的两个数据点之间的直线来估计未知点的值,它简单而直观。
拉格朗日插值则通过构造一个关于已知数据点的多项式来估计未知点的值,这个多项式经过每一个已知数据点。
牛顿插值和拉格朗日插值类似,也是通过构造一个多项式来估计未知点的值,但是它使用了差商的概念,能够更高效地处理数据点的添加和删除。
不仅仅局限于一维数据点的插值问题,对于二维或者更高维的数据点,我们也可以使用类似的插值方法。
例如,对于二维数据点,我们可以使用双线性插值来估计未知点的值,它利用了四个已知数据点之间的线性关系。
插值问题在实际应用中非常常见。
一个例子是天气预报中的气温插值问题,根据已知的气温观测站的数据点,我们可以估计出其他地点的气温。
另一个例子是图像处理中的像素插值问题,当我们对图像进行放大或者缩小操作时,需要通过已知像素点来估计未知像素点的值。
二、拟合问题拟合是通过一组数据点来逼近一个函数的过程。
在拟合问题中,我们假设已知的数据点是来自于一个未知函数的取值,我们需要找到一个函数或者曲线,使得它能够与已知的数据点尽可能地接近。
常见的拟合方法包括多项式拟合、最小二乘拟合和样条拟合。
多项式拟合是通过一个多项式函数来逼近已知的数据点,它的优点是简单易用,但是对于复杂的函数形态拟合效果可能不好。
最小二乘拟合则是寻找一个函数,使得它与已知数据点之间的误差最小,这个方法在实际应用中非常广泛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
L2 (x) l0 (x) y0 l1(x) y1 l2 (x) y2
其中
l0
(x)
(x ( x0
x1)(x x2 ) x1)(x0 x2 )
l1 ( x)
(x ( x1
x0 )(x x2 ) x0 )(x1 x2 )
l2
(x)
(x ( x2
x0 x0
)(x x1) )(x2 x1)
这就是本章要讨论的“插值问题”
函数插值的定义
粗略地说,函数插值是对函数的离散数据建立简
单的数学模型。
设 y = f(x) 是区间 [a,b] 上的连续函数,记作
f C[a,b] 。已知 f 在 [a,ห้องสมุดไป่ตู้] 上n+1个互异点
a≤x0,x1,…,xn-1,xn≤b, xi ≠ xj (i≠j)
处的值
yi = f(xi), i=0,1,2, …,n
(2.5)
推广到一般情形——拉格朗日插值公式
n
Ln (x) yklk(n) (x) y0l0(n) (x) y1l1(n) (x) ynln(n) (x)
k 0
(2-6) 拉格朗日
其中
插值公式
l ( n )
k
(x)
(x x0 (x k x0 )
)(x (xk
xk1)(x xk1) (x xk1)(xk xk1) (xk
第二章 数据处理技术 ——插值与拟合
§2.1 插值方法
引例
【例2-1】已经测得在某处海洋不同深度处的水温如下:
深度(m) 466 741 950 1422 1634 水温(oC) 7.04 4.28 3.40 2.54 2.13
根据这些数据,希望合理地估计出其它深度(如500米, 600米,1000米…)处的水温。
0.53625
l1(1708)
(1708 1673)(1708 (1773 1673)(1773
1873) 1873)
0.5775
l2
(1708)
(1708 (1873
1673)(1708 1673)(1873
1773) 1773)
0.11375
L(x) l0 (x) y0 l1(x) y1 l2 (x) y2
L(1708) 0.53625 2.3136 0.5775 2.3354 0.11375 2.3563 2.3213
C1708 CO2
2.3213
kJ/(Nm3
K)
【例 2-4】已知某液体的粘度-温度关系,E330=60 Pa·S, E350=30 Pa·S, E375=10 Pa·S, E410=5 Pa·S。 求T=340 K时的粘度值。
解:取n=2, 代入拉格朗日公式,得E340=48.5 Pa·S 取n=3, 代入拉格朗日公式,得E340=48.056 Pa·S
T
330
340
350
375
410
428
若有不超过n次的多项式
Ln x c0 c1x c2x2 cnxn 满足
Ln xi yi i 0,1, n
(2.1)
则称Ln(x) 为函数 f(x) 在区间 [a,b] 上通过点列
{xi
}n i=0
的插值多项式。
其中,[a,b] 称为插值区间,
{xi
}n i=0
称为插值节点,
求函数值f(x) 的点x (x≠xi) 称为插值点,
(2.2)
L1 ( x)
y
y0
x x1 x0 x1
y1
x x0 x1 x0
(2.3)
n = 2 抛物线插值
n = 2 时,构造通过三个点 (x0,y0), (x1,y1) 和 (x2,y2) 的多项式如下:
L2 (x)
y
y0
(x ( x0
x1)(x x2 ) x1)(x0 x2 )
y1
解:令
x0 = 1673 y0 = 2.3136
x1 = 1773 y1 = 2.3354
x2 = 1873 y2 = 2.3563
抛物线插值法
分别将值带入l0(x)、l1(x) 和 l2(x)。
l0 (1708)
(1708 1773)(1708 (1673 1773)(1673
1873) 1873)
用这种方法所得的近似公式叫插值公式,已知的数据点叫节点。
插值方法
Newton插值 Hermite插值 样条插值 Lagrange插值
拉格朗日插值法
怎样构造插值函数 Ln(x) ?
从 n = 1,n = 2 推广到一般情况。
n = 1 线性插值
y y0 y1 y0 x x0 x1 x0
(x (2
0)( x 0)(2
1) 1)
1 6
x(x
1)
代入式 (2-5)得
L2
(x)
1
l (2)
0
(x)
5 l1(2)
(x)
(1)
l2(2)
(x)
x2
3x
1
【例 2-3】已知CO2在1673K、1773K、1873K时的热容分 别为2.3136、2.3354、2.3563 kJ/(Nm3K)。求CO2在1708 K时的热容。
xn ) xn
)
n j0
x xj xk x j
jk
k = 0, 1, 2, …, n
(2-7)
拉格朗日 插值基函数
【例 2-2】已知函数 f(x)的三个点 (0,1), (-1,5) 和 (2,-1), 写出 拉格朗日插值基函数,并用公式(2-5)求2次插值多项式L2(x)。 解:
x0 = 0
f(x) 称为被插函数,
Ln(x) 称为插值函数,
式(2.1)称为插值条件。
简单地说,插值法就是根据一组数据点(x1, y1),(x2, y2),…, (xn, yn)建立一个便于计算的初等函数或 曲线 y = f(x),使它通 过这些给定的数据点:
f(x1) = y1, f(x2) = y2,…, f(xn) = yn
x1 = -1
x2 = 2
这里 ny0==21,由式 (2-5y)1 得= 5知三个拉格y朗2 =日-1插值基函数为
l (2)
0
(x)
(x (0
1)( x 1)(0
2) 2)
1 2
(x
1)( x
2)
l(2)
1
(
x)
(x (1
0)(x 2) 0)(1 2)
1 3
x(x
2)
l (2)
2
(x)
(x ( x1
x0 )(x x2 ) x0 )(x1 x2 )
y2
(x ( x2
x0 )(x x1) x0 )(x2 x1)
(2.4)
这样的L2(x) 满足插值条件L2(x0)= y0, L2(x1)= y1, L2(x2)= y2。 它的几何意义是通过三个插值点的抛物线。
式 2-4 也可写成: