Matlab神经网络工具箱介绍

合集下载

MATLAB神经网络工具箱详解

MATLAB神经网络工具箱详解

MATLAB 图形用户界面功能:——作者:强哥1573:2017-09-01 nnstart - 神经网络启动GUInctool - 神经网络分类工具nftool - 神经网络的拟合工具nntraintool - 神经网络的训练工具nprtool - 神经网络模式识别工具ntstool - NFTool神经网络时间序列的工具nntool - 神经网络工具箱的图形用户界面。

查看- 查看一个神经网络。

网络的建立功能。

cascadeforwardnet - 串级,前馈神经网络。

competlayer - 竞争神经层。

distdelaynet - 分布时滞的神经网络。

elmannet - Elman神经网络。

feedforwardnet - 前馈神经网络。

fitnet - 函数拟合神经网络。

layrecnet - 分层递归神经网络。

linearlayer - 线性神经层。

lvqnet - 学习矢量量化(LVQ)神经网络。

narnet - 非线性自结合的时间序列网络。

narxnet - 非线性自结合的时间序列与外部输入网络。

newgrnn - 设计一个广义回归神经网络。

newhop - 建立经常性的Hopfield网络。

newlind - 设计一个线性层。

newpnn - 设计概率神经网络。

newrb - 径向基网络设计。

newrbe - 设计一个确切的径向基网络。

patternnet - 神经网络模式识别。

感知- 感知。

selforgmap - 自组织特征映射。

timedelaynet - 时滞神经网络。

利用网络。

网络- 创建一个自定义神经网络。

SIM卡- 模拟一个神经网络。

初始化- 初始化一个神经网络。

适应- 允许一个神经网络来适应。

火车- 火车的神经网络。

DISP键- 显示一个神经网络的属性。

显示- 显示的名称和神经网络属性adddelay - 添加延迟神经网络的反应。

closeloop - 神经网络的开放反馈转换到关闭反馈回路。

Matlab各工具箱功能简介(部分)

Matlab各工具箱功能简介(部分)
对于分析多维数据,Statistics and Machine Learning Toolbox 可让您通过序列特征选择、逐步回归、主成份分析、规则化和其他降维方法确定影响您的模型的主要变量或特征。该工具箱提供了受监督和不受监督机器学习算法,包括支持向量机(SVM)、促进式 (boosted) 和袋装 (bagged) 决策树、k-最近邻、k-均值、k-中心点、分层聚类、高斯混合模型和隐马尔可夫模型。4 Curve Fitting Toolbox 曲线拟合工具箱Curve Fitting Toolbox™ 提供了用于拟合曲线和曲面数据的应用程序和函数。使用该工具箱可以执行探索性数据分析,预处理和后处理数据,比较候选模型,删除偏值。您可以使用随带的线性和非线性模型库进行回归分析,也可以指定您自行定义的方程式。该库提供了优化的解算参数和起始条件,以提高拟合质量。该工具箱还提供非参数建模方法,比如样条、插值和平滑。 在创建一个拟合之后,您可以运用多种后处理方法进行绘图、插值和外推,估计置信区间,计算积分和导数。5 Optimization Toolbox 优化工具箱Optimization Toolbox™ 提供了寻找最小化或最大化目标并同时满足限制条件的函数。工具箱中包括了线性规划、混合整型线性规划、二次规划、非线性优化、非线性最小二乘的求解器。您可以使用这些求解器寻找连续与离散优化问题的解决方案、执行折衷分析、
Toolbox工具箱序号工具箱备注一、数学、统计与优化1 Symbolic Math Toolbox符号数学工具箱Symbolic Math Toolbox™提供用于求解和推演符号运算表达式以及执行可变精度算术的函数。您可以通过分析执行微分、积分、化简、转换以及方程求解。另外,还可以利用符号运算表达式为MATLAB、Simulink和Simscape™生成代码。®®Symbolic Math Toolbox包含MuPAD语言,并已针对符号运算表达式的处理和执®行进行优化。该工具箱备有MuPAD函数库,其中包括普通数学领域的微积分和线性代数,以及专业领域的数论和组合论。此外,还可以使用MuPAD语言编写自定义的符号函数和符号库。MuPAD记事本支持使用嵌入式文本、图形和数学排版格式来记录符号运算推导。您可以采用HTML或PDF的格式分享带注释的推导。2 Partial Differential Euqation Toolbox偏微分方程工具箱偏微分方程工具箱™提供了用于在2D,3D求解偏微分方程(PDE)以及一次使用有限元分析。它可以让你指定和网格二维和三维几何形状和制定边界条件和公式。你能解决静态,时域,频域和特征值问题在几何领域。功能进行后处理和绘图效果使您能够直观地探索解决方案。你可以用偏微分方程工具箱,以解决从标准问题,如扩散,传热学,结构力学,静电,静磁学,和AC电源电磁学,以及自定义,偏微分方程的耦合系统偏微分方程。3 Statistics Toolbox统计学工具箱Statistics and Machine Learning Toolbox提供运用统计与机器学习来描述、分析数据和对数据建模的函数和应用程序。您可以使用用于探查数据分析的描述性统计和绘图,使用概率分布拟合数据,生成用于Monte Carlo仿真的随机数,以及执行假设检验。回归和分类算法用于依据数据执行推理并构建预测模型。

matlab神经网络工具箱简介和函数及示例

matlab神经网络工具箱简介和函数及示例

目前,神经网络工具箱中提供的神经网络模型主 要应用于:
函数逼近和模型拟合 信息处理和预测 神经网络控制 故障诊断
神经网络实现的具体操作过程:
• 确定信息表达方式; • 网络模型的确定; • 网络参数的选择; • 训练模式的确定; • 网络测试
• 确定信息表达方式:
将领域问题抽象为适合于网络求解所能接受的 某种数据形式。
函数类型 输入函数
其它
函数名 称
netsum netprcd concur dotprod
函数用途
输入求和函数 输入求积函数 使权值向量和阈值向量的结构一致 权值求积函数
BP网络的神经网络工具箱函数
函数类型
函数名称 函数用途
前向网络创建 函数
传递函数
学习函数
函数类型 性能函数 显示函数
函数名 函数用途 称
三、BP网络学习函数
learngd 该函数为梯度下降权值/阈值学习函数,通过神经 元的输入和误差,以及权值和阈值的学习速率, 来计算权值或阈值的变化率。
调用格式; [dW,ls]=learngd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
二、神经元上的传递函数
传递函数是BP网络的重要组成部分,必须是连续可 微的,BP网络常采用S型的对数或正切函数和线性函数。
• Logsig 传递函数为S型的对数函数。 调用格式为: • A=logsig(N)
N:Q个S维的输入列向量; A:函数返回值,位于区间(0,1) 中
② info=logsig(code)
问题形式的种类:
数据样本已知; 数据样本之间相互关系不明确; 输入/输出模式为连续的或者离散的; 输入数据按照模式进行分类,模式可能会 具有平移、旋转或者伸缩等变化形式; 数据样本的预处理; 将数据样本分为训练样本和测试样本

Matlab中的神经网络实现方法

Matlab中的神经网络实现方法

Matlab中的神经网络实现方法近年来,神经网络技术在各个领域中得到了广泛的应用。

通过对大量的数据进行学习和训练,神经网络可以用于解决诸如图像识别、语音识别、自然语言处理等复杂的问题。

而Matlab作为一种强大的科学计算工具,提供了丰富的神经网络实现方法,帮助研究人员和工程师更好地应用神经网络技术。

在Matlab中,实现神经网络有多种方法,包括使用神经网络工具箱、编写自定义的函数和使用深度学习工具箱等。

下面将分别介绍这些方法的特点和应用。

一、神经网络工具箱Matlab的神经网络工具箱是一个功能强大的工具,可以帮助用户在短时间内搭建和训练神经网络模型。

通过在Matlab中调用神经网络工具箱中的函数,用户可以实现包括前馈神经网络、递归神经网络、自动编码器等各种类型的神经网络模型。

使用神经网络工具箱,用户只需要简单地定义网络的拓扑结构、选择合适的激活函数和学习算法,然后通过输入训练数据进行网络的训练。

训练完成后,用户可以使用训练好的神经网络模型对新的数据进行预测和分类。

神经网络工具箱提供了丰富的函数和工具,帮助用户实现各种复杂的操作,例如特征选择、模型评估和可视化等。

此外,神经网络工具箱还支持并行计算和分布式计算,提高了神经网络模型的训练效率。

二、自定义函数除了使用神经网络工具箱,用户还可以编写自定义的函数来实现神经网络。

这种方式可以更加灵活地控制网络的结构和参数。

在Matlab中,用户可以通过编写自定义的函数来定义网络的拓扑结构、激活函数、学习算法等。

同时,用户还可以使用Matlab提供的矩阵运算和优化工具,对神经网络的参数进行更新和优化。

使用自定义函数实现神经网络需要较高的编程能力和数学知识,但是可以满足对网络结构和参数精细控制的需求。

此外,用户还可以在自定义函数中加入其他自己的算法和操作,提升神经网络的性能和应用效果。

三、深度学习工具箱随着深度学习技术的兴起,Matlab还引入了深度学习工具箱,帮助用户实现包括卷积神经网络、循环神经网络等深度学习模型。

MATLAB工具箱的使用

MATLAB工具箱的使用

MATLAB工具箱的使用MATLAB®是一种强大的科学计算软件,广泛应用于各个领域的数学建模、数据分析、仿真和算法开发等工作中。

为了满足不同领域的需求,MATLAB提供了许多不同的工具箱。

这些工具箱包含了各种不同领域的函数和工具,可以帮助用户更加高效地进行数据处理、模拟和算法开发等工作。

下面将介绍几个常用的MATLAB工具箱,以及它们的使用方法:1.信号处理工具箱(Signal Processing Toolbox):这个工具箱提供了一系列处理数字信号的函数和工具。

用户可以使用这些函数和工具进行信号滤波、功率谱估计、频谱分析、时间频率分析等操作。

该工具箱还提供了许多基本信号处理算法,如滤波器设计、卷积和相关等。

例如,用户可以使用`filtfilt(`函数对信号进行零相移滤波,以去除噪声。

2.图像处理工具箱(Image Processing Toolbox):图像处理工具箱提供了一系列处理数字图像的函数和工具。

用户可以使用这些函数和工具进行图像的读取、显示、修改、增强和分析等操作。

该工具箱包含了许多常用的图像处理算法,如图像滤波、边缘检测、形态学处理和图像分割等。

例如,用户可以使用`imread(`函数读取图像,然后使用`imshow(`函数显示图像。

3.控制系统工具箱(Control System Toolbox):这个工具箱提供了一系列用于分析和设计控制系统的函数和工具。

用户可以使用这些函数和工具进行控制系统的建模、稳定性分析、根轨迹设计和频域分析等操作。

该工具箱还提供了许多常用的控制系统设计方法,如PID控制器设计和状态空间控制器设计等。

例如,用户可以使用`tf(`函数创建传递函数模型,然后使用`step(`函数绘制系统的阶跃响应。

4.优化工具箱(Optimization Toolbox):优化工具箱提供了一系列用于求解优化问题的函数和工具。

用户可以使用这些函数和工具进行线性规划、非线性规划和整数规划等操作。

MATLAB常用工具箱与函数库介绍

MATLAB常用工具箱与函数库介绍

MATLAB常用工具箱与函数库介绍1. 统计与机器学习工具箱(Statistics and Machine Learning Toolbox):该工具箱提供了各种统计分析和机器学习算法的函数,包括描述统计、概率分布、假设检验、回归分析、分类与聚类等。

可以用于进行数据探索和建模分析。

2. 信号处理工具箱(Signal Processing Toolbox):该工具箱提供了一系列信号处理的函数和算法,包括滤波、谱分析、信号生成与重构、时频分析等。

可以用于音频处理、图像处理、通信系统设计等领域。

3. 控制系统工具箱(Control System Toolbox):该工具箱提供了控制系统设计与分析的函数和算法,包括系统建模、根轨迹设计、频域分析、状态空间分析等。

可以用于控制系统的设计和仿真。

4. 优化工具箱(Optimization Toolbox):该工具箱提供了各种数学优化算法,包括线性规划、非线性规划、整数规划、最优化等。

可以用于寻找最优解或最优化问题。

5. 图像处理工具箱(Image Processing Toolbox):该工具箱提供了图像处理和分析的函数和算法,包括图像滤波、边缘检测、图像分割、图像拼接等。

可以用于计算机视觉、医学影像处理等领域。

6. 神经网络工具箱(Neural Network Toolbox):该工具箱提供了神经网络的建模和训练工具,包括感知机、多层前馈神经网络、循环神经网络等。

可以用于模式识别、数据挖掘等领域。

7. 控制系统设计工具箱(Robust Control Toolbox):该工具箱提供了鲁棒控制系统设计与分析的函数和算法,可以处理不确定性和干扰的控制系统设计问题。

8. 信号系统工具箱(Signal Systems Toolbox):该工具箱提供了分析、设计和模拟线性时不变系统的函数和算法。

可以用于信号处理、通信系统设计等领域。

9. 符号计算工具箱(Symbolic Math Toolbox):该工具箱提供了符号计算的功能,可以进行符号表达式的运算、求解方程、求解微分方程等。

Matlab中的神经网络算法实现指南

Matlab中的神经网络算法实现指南

Matlab中的神经网络算法实现指南1. 引言神经网络是一种基于生物神经系统的模型,旨在模拟人脑的学习和决策过程。

在现代机器学习领域,神经网络被广泛应用于图像识别、语言处理、预测分析等各种任务中。

而Matlab作为一种功能强大的数值计算和可视化软件,提供了丰富的神经网络工具箱,可以帮助开发人员快速实现和调试各种神经网络算法。

本文将介绍Matlab中的神经网络工具箱,并提供一些实现神经网络算法的指南。

2. Matlab中的神经网络工具箱Matlab提供了一个名为"Neural Network Toolbox"的工具箱,包含了大量的函数和工具,用于构建、训练和评估神经网络模型。

该工具箱支持多种类型的神经网络结构,包括前馈神经网络、递归神经网络、卷积神经网络等。

此外,Matlab还提供了各种用于优化神经网络的算法,如反向传播算法、遗传算法等。

3. 构建神经网络模型在Matlab中,我们可以使用"feedforwardnet"函数来构建一个前馈神经网络模型。

该函数接受一个包含神经网络层结构的向量作为输入参数,并返回一个神经网络对象。

我们可以通过修改这个向量的元素来调整神经网络的结构和参数。

例如,下面的代码展示了如何构建一个包含两个隐藏层的前馈神经网络模型:```matlabnet = feedforwardnet([10, 5]);```4. 导入和预处理数据导入和预处理数据对于构建和训练神经网络模型至关重要。

Matlab提供了各种用于数据导入和预处理的函数和工具。

例如,可以使用"csvread"函数来导入CSV 格式的数据文件;可以使用"mapminmax"函数来对数据进行归一化处理;可以使用"splittingData"函数将数据划分为训练集、验证集和测试集等。

5. 为神经网络模型训练数据在Matlab中,我们可以通过调用"train"函数来训练神经网络模型。

【整理】Matlab神经网络工具箱介绍_2022年学习资料

【整理】Matlab神经网络工具箱介绍_2022年学习资料

Network/Data Manager-▣回X-Input Data:-零Network:-Output Data:-1输入向量X-3网络的输出向量-Target Data:-Error Data:-5神经网络模 -2目标输出向量Y-4网络的训练误差-Input Delay States:-Layer Delay St tes:-新建数据或网络-导入数据或网络-&Import.…-New...-□0pen…-◆Export. Delete-⑨Help-Close-图1图形用户界面-4/18/2019
·<step.3>建立网络-Network/Data-Create Network or Data-Man ger窗口中New.-Network Data-打开Create Network or-Name-netw rk1-Data,如右图。--Network Properties-Name:定义网络名为-Netwark Type:-Feed-forward backprop-networkl-Input data:-trai -Target data:-trainY-选择Input,/Target-Training functio :-TRAINLM-Data,设置训练函数等参-Adaption learning function:-L ARNGDM-Performance function:-MSE-数。-Number of layers: Properties for:Layer 1-·View:查看模型-Number of neurons:0-Transfer Function:-TANSIG-□View-Restore Defaults-4/ 8/2019-⑨Help-☆Create-☒Close
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020/5/16
10
• <step.3>建立网络
• Network/Data
Manager窗口中New… 打开Create Network or Data,如右图。
• Name:定义网络名为 network1
• 选择Input/Target Data,设置训练函数等参 数。
• View:查看模型
2020/5/16
15
以上过程完成后,单击该页面的Train Network 按钮,开始训练,其训练过程如图9所示。
Algorithms:相关参数 Progress:终止条件(只要 一个满足则停止) Plots:各种图形曲线
2020/5/16 图9 训练误差性能曲线
16
训练完成后,在Network/Data Manager窗口 可以看到,在Outputs区域显示出输出变量名 network1 _outputs,在Errors区域显示出误差 性能变量名network1 _ errors。选中变量名,单 击该窗口的Open按钮,则弹出数据(Data)窗口, 在该窗口可以查看到该所选中变量的具体数据。
f ( p)
Forecasting error xn1 t '
2020/5/16
6
• <step.1>数据构造与预处理 •2020/5Fra bibliotek167
• <step.2>训练数据导入nntool
• 根据数据的多少,数据文件的格式等获取样本 数据的方法有:
• 1)直接输入数据:通过采用元素列表方式输 入。适用于样本数目较少时。New…按钮
2020/5/16
11
• <step.4>训练网络 • Network/Data Manager窗口中选中network1,
双击或Open…。打开如下图
• 在Train中,见下页图,
2020/5/16
12
2020/5/16
13
可以看出,该窗口为一个多页面对话框,在 Train 页面有2个子页面:
单击Simulate Network按钮,则在Network/ Data Manager窗口的Outputs和Errors区域分 别显示出相应的仿真结果,选中变量名,单击该 窗口的Open按钮,弹出数据窗口,在该窗口可以 查看仿真结果的具体数据,如图 所示。
• 2)Import from Matlab Workspace:Import… 按钮。
• 3)Load from disk file:适合从M-file 文件中 读取数据。 Import…按钮。
2020/5/16
8
2020/5/16
Import from Matlab Workspace 9
Load from disk file
2020/5/16
2
1图形用户界面简介
函数nntool 的详解见help文档。在MATLAB 命令窗口(command window)输入nntool, 按 Enter后即可打network\data manager(网络/ 数据管理器窗补如图1 所示。)
(或点击Start/Toolboxes/Neural Network)
2020/5/16
17
• <step.5>仿真 • Network/Data Manager窗口中选中network1,
双击或Open…。
• 在Simulate中,见图,
2020/5/16
18
将仿真数据选择为testX,仿真结果选择为 network1_outputs_sim;Targets选为TestY, 误差errors为network1_errors_sim。
2020/5/16
14
●TrainingParameters :设置训练的各种参数, 这要根据具体训练和学习函数进行确定,相关内 容可参看各神经网络模型的训练和学习算法。 本例采用其默认值即可。
• epochs:训练的最大循环次数 • goal:性能目标 • max_fail:最大验证数据失败的次数 • mem_reduc:降低内存需求的系数 • min_grad:最小性能梯度 • mu:动量的初始值 • mu_dec:动量减少系数 • mu_inc:动量增加系数 • mu_max:动量最大值 • show:每格多少训练循环次数会 显示训练过程 • time:最大的训练所须时间, 单位为秒
●Training :训练数据(Training Data)的输入 向量(Inputs )选择为p,目标向量(Targets)选 择为t;训练结果(Training Results)的输出变 量(outputs ) 和误差性能变量(Errors)采用 系统自动生成的network1 _ output,和 network1 _ errors,当然它们也可以由用户重 新定义。
x3

xd
1
… … …
xnd 1

xn1
xd 1
Y
xd 2 …
xn
by learning, there ' s a pattern f , which Y f (X )
then
if p xnd1 xnd2 … xn is available,
hence,
t
'
x' n1
神经网络工具箱介绍
2020/5/16
1
MATLAB 2009b的神经网络工具箱neural network toolbox提供了图形用户界面(graph user interface , GUI) ,从而使用户在图形 界面上,通过与计算机的交互操作设计和仿真 神经网络,使得神经网络的设计和仿真变得简 单易学.
2020/5/16
3

图1 图形用户界面
2020/5/16
4
• 2.nntool使用过程与实例
• <step.1>数据构造与预处理 • <step.2>训练数据导入nntool • <step.3>建立网络 • <step.4>训练网络 • <step.5>仿真网络 • <step.6>输出与存储模拟结果 • <step.7>加载先前仿真过的网络于nntool
2020/5/16
5
• <step.1>数据构造与预处理 • Time Series Forecasting
Given time series :{x1, x2 ,..., xn1, xn}, in order to forecast xn1 Consider,
x1
X
x2 …
xnd
x2 … xd
相关文档
最新文档