4第四章柠檬酸、谷氨酸发酵机制

合集下载

柠檬酸发酵

柠檬酸发酵

思考题
1.柠檬酸发酵过程中有哪几个控制要点, 如何控制?
2.说明柠檬酸发酵过程中氧的重要性。 3.简述二氧化碳固定反应对提高柠檬酸产 率的意义。
二、柠檬酸及其盐的应用概况
食品工业:酸味剂、增溶剂、抗氧化剂,除腥脱 臭剂; 医药工业:
化学工业: 美容品、化妆品
三、我国柠檬酸生产现状 生产状况: 60年代开始,生产柠檬酸年总产量居世界
第一,出口量一直占国内总产量的50%以上。目前,生产 厂家近百家,万吨级以上的有6家。主要有安徽丰原生物 化学集团公司(生产能力为12.0万吨/年)、江苏无锡罗氏 中亚柠檬酸有限公司(生产能力为4.0万吨/年)、安徽华 源生物药业有限公司(生产能力为3.5万吨/年)等。
2、丙酮酸羧化酶:催化生成草酰乙酸。
3、丙酮酸脱氢酶:催化生成乙酰CoA
(二)三羧酸循环的调节
1、柠檬酸合成酶的调节:柠檬酸合成酶是TCA循环第一个 酶。但黑曲霉中柠檬酸合成酶没有调节作用。 2、顺乌头酸水合酶、异柠檬酸脱氢酶的调节: 顺乌头酸水合酶是催化柠檬酸<>顺乌头酸<>异柠檬酸 正逆反应的酶,研究表明,黑曲霉中有一种单纯的位于线 粒体上的顺乌头酸水合酶,它在催化时能建立下面的平衡: 柠檬酸:顺乌头酸:异柠檬酸=90:3:7。 顺乌头酸水合酶、NAD和NADP-异柠檬酸脱氢酶在柠檬 酸产生与不产生时,这3种酶均存在,而当铜离子0.3mg/L, 铁离子2mg/L和pH2.0情况下,这3种酶均不出现活力,发酵 中柠檬酸正是在这个pH条件下积累的。
(三)氧对柠檬酸积累的调节
乙酰CoA和草酰乙酸结合生成柠檬酸过程中要引进一 个氧原子,因此氧也可以看作为柠檬酸生物合成底物。它 对柠檬酸发酵的作用为: (1)氧是发酵过程生成的NADH2重新氧化的氢受体。 (2)近来的研究发现,黑曲霉中除了具有一条标准呼吸链 以外,还有一条侧系呼吸链。

4谷氨酸发酵机制

4谷氨酸发酵机制


硫是含硫氨基酸的组成成分,构成酶的活性基团。培养基 中的硫酸镁供应的硫已充足,不需另加。
3. 钾盐
许多酶的激活剂,钾盐少长菌体,钾盐足够产谷氨酸。 谷氨酸发酵产物生成期需要的钾盐比菌体生长期高。
菌体生长期需硫酸钾量约为0.1g/L,谷氨酸生成期需硫酸钾量
为0.2-1.0g/L.
4. 微量元素
添加方式:
铵盐、液氨等可采取流加方法,液氨作用快,采取连续流加, 尿素少量多次分批流加。 用硫酸铵等生理酸性盐为氮源时,由于铵离子被利用而残留 SO42-等酸根,使PH下降,需在培养基中加入碳酸钙以自动中 和pH。但添加碳酸钙易形成污染,生产上一般不用此法。
三、无机盐

功能
构成菌体成分、酶的组成成分、酶的激活剂或抑制剂、


斜面菌种的培养 目的:纯菌生长繁殖 措施:多含有机氮,不含或少含糖 一级种子培养
目的:大量繁殖活力强的菌体 措施:少含糖分,多含有机氮,培养条件有利于长菌。

二级种子培养
目的:获得发酵所需的足够数量的菌体
为发酵培养基的配制原则
供给菌体生长繁殖和谷氨酸生产所需要的适量的营养和能源 原料来源丰富,价格便宜,发酵周期短,对产物提取无妨碍等。
酶活
改变生物合成途径,使代谢产物发生变化
改变发酵液物理性质 影响菌种对营养物的分解与吸收
5.
6.
不同微生物的最适生长温度不同
同一种微生物,菌体生长和产物合成的最适温度不一定相同。

谷氨酸生产菌的最适生长温度为30-34℃,T6-13菌 株比较耐高温,斜面、一级、二级种子和发酵开始 温度可选用33-34 ℃,生产谷氨酸的最适温度为3537℃. 谷氨酸温度敏感菌株1021最适生长温度是30 ℃, 最适产谷氨酸温度38 ℃,发酵过程中采用分段控制。

发酵工程章节复习资料

发酵工程章节复习资料

发酵⼯程章节复习资料第⼀章绪论1、发酵及发酵⼯程的概念1、传统发酵最初发酵是⽤来描述酵母菌作⽤于果汁或麦芽汁产⽣⽓泡的现象,或者是指酒的⽣产过程。

2、⽣化和⽣理学意义的发酵指微⽣物在⽆氧条件下,分解各种有机物质产⽣能量的⼀种⽅式,或者更严格地说,发酵是以有机物作为电⼦受体的氧化还原产能反应。

如葡萄糖在⽆氧条件下被微⽣物利⽤产⽣酒精并放出CO2。

3、⼯业上的发酵泛指利⽤微⽣物制造或⽣产某些产品的过程包括:1. 厌氧培养的⽣产过程,如酒精,乳酸等。

2. 通⽓(有氧)培养的⽣产过程,如抗⽣素、氨基酸、酶制剂等。

产品有细胞代谢产物,也包括菌体细胞、酶等。

发酵⼯程(Fermentation Biotechnology): 应⽤微⽣物学等相关的⾃然科学以及⼯程学原理,利⽤微⽣物等⽣物细胞进⾏酶促转化,将原料转化成产品或提供社会性服务的⼀门科学。

2、发酵⼯程技术的发展⼤致可分为哪⼏个阶段,每段的技术特点是什么?1. ⾃然发酵时期:嫌⽓性发酵⽤于酒类酿造,好⽓性发酵⽤于酿醋、制曲。

2. 纯培养技术的建⽴:⼈⼯控制环境条件使发酵效率迅速提⾼。

3.通⽓搅拌好⽓发酵过程技术的建⽴:从分解代谢转为⽣物合成代谢,可以利⽤微⽣物合成积累⼤量有⽤的代谢产物。

4.⼈⼯诱变育种与代谢控制发酵⼯程技术的建⽴:遗传⽔平上控制微⽣物代谢。

5. 发酵动⼒学、发酵⼯程连续化、⾃动化⼯程:以数学、动⼒学、化⼯原理等为基础,通过计算机实现发酵过程的⾃动化控制的研究,使发酵过程的⼯艺控制更为合理。

6. 微⽣物酶反应⽣物合成与化学合成反应结合⼯程技术:可⽣产许多过去不能⽣产的有⽤物质。

3、发酵⼯业的应⽤范围1. 酿酒⼯业(啤酒、葡萄酒、⽩酒)2. ⾷品⼯业(酱、酱油、⾷醋、腐乳、⾯包、乳酸)3. 抗⽣素⼯业(青霉素、链霉素、⼟霉素)4. 有机酸⼯业(柠檬酸、葡萄糖酸)5. 酶制剂⼯业(淀粉酶、蛋⽩酶)6. 氨基酸⼯业(⾕氨酸、赖氨酸)7. 核苷酸发酵⼯业(肌苷酸、肌苷)8. 有机溶剂⼯业(酒精、丙酮)9. 维⽣素⼯业(VB2、VB12)10.⽣物能源⼯业(沼⽓、⽣物柴油)11.环境保护产业(废⽔⽣物处理)12.⽣理活性物质发酵⼯业(激素)13. 冶⾦⼯业(微⽣物探矿、⽯油脱硫)14.微⽣物菌体蛋⽩发酵⼯业(酵母、单细胞蛋⽩)4、发酵⼯业的特点与化学⼯程相⽐,发酵⼯程具有以下特点:1、发酵过程是极其复杂的⽣物化学反应,与微⽣物细胞息息相关2、通常在常温常压下进⾏,反应安全,需求条件也⽐较简单3、发酵醪(包括固相、液相、⽓相,还含有活细胞体或菌丝体),属⾮⽜顿流体,其特性影响因素很多,对发酵⼯程都有关联4、具有严格的灭菌系统,以防⽌杂菌污染如空⽓除菌系统、培养基灭菌系统、设备的冲洗灭菌等5、反应以⽣命体的⾃动调节⽅式进⾏,因此数⼗个反应过程能够像单⼀反应⼀样,在同⼀发酵罐内进⾏6、后处理阶段,为了适应菌体与发酵产物的特点,需采取⼀些特殊的⼯艺措施并选⽤合适的设备。

(完整版)谷氨酸发酵

(完整版)谷氨酸发酵

1)生物素营养缺陷型⏹作用机制:生物素是脂肪酸生物合成最初反应的关键酶乙酰CoA羧化酶的辅酶,参与了脂肪酸的合成,进而影响脂肪酸的合成.当磷脂合成量少到正常的1/2左右时,细胞变形,Glu向膜外泄漏.⏹控制关键:使用该类突变株必须限制发酵培养基中生物素亚适量(5-10 g/L).在发酵初期(0-8小时),细胞正常生长,当生物素耗尽后,在菌的再次倍增时,开始出现异常形态细胞,即完成了细胞从生长型到积累型转换.2)油酸营养缺陷型⏹作用机制:油酸营养缺陷型丧失了合成油酸的能力,通过控制油酸使磷脂合成量减少到正常量的1/2左右.⏹控制关键:保证在培养基中油酸亚适量,完成细胞从生长型到生产型的转换.(3)添加表面活性剂⏹添加表面活性剂(如吐温60)或不饱和脂肪酸(C16-18),也能造成细胞渗漏,积累谷氨酸.⏹机理:两者在脂肪酸合成时对生物素有拮抗作用,导致磷脂合成不足,形成不完整的细胞膜.⏹关键:控制好脂肪酸或表面活性剂的时间和浓度,必须在药剂加入后,在这些药剂存在下进行分裂,形成产酸型细胞.(4)添加青霉素⏹机理:青霉素抑制谷氨酸生产菌细胞壁后期的合成,细胞膜在失去保护,在渗透压的作用下受损,向外泄露谷氨酸.⏹控制关键:一般在进入对数生长期的早期(3-6小时)添加.添加青霉素后倍增的菌体不能合成完整的细胞壁,完成细胞功能的转换.谷氨酸发酵强制控制工艺⏹为了稳产,克服培养基原料中某些成分不易控制带来的影响,在谷氨酸发酵时可采取“强制控制”的方法,如:“高生物素高吐温”或“高生物素高青霉素”的方法.⏹控制方法:在发酵培养基中预先配加一定量(过量)的纯生物素,大大地削弱每批原料中生物素含量变化的影响,高生物素、大接种量能促进菌体迅速增殖.再在菌体倍增的早期加入相对高的吐温或青霉素,形成产酸型细胞.固定其它条件,确保高产稳产。

谷氨酸发酵⏹ 1.适应期:尿素分解出氨使pH上升.糖不利用.2-4h.措施:接种量和发酵条件控制使适应期缩短.⏹ 2.对数生长期:糖耗快,尿素大量分解使pH上升,氨被利用pH又迅速下降.溶氧急剧下降后维持在一定水平.菌体浓度迅速增大,菌体形态为排列整齐的八字形.不产酸.12h.措施:及时供给菌体生长必须的氮源及调节pH,在pH7.5-8.0时流加尿素;维持温度30- 32℃⏹ 3.菌体生长停止期:谷氨酸合成.措施:提供必须的氨及pH维持在7.2-7.4.大量通**,控制温度34-37 ℃.⏹ 4.发酵后期:菌体衰老,糖耗慢,残糖低.措施:营养物耗尽酸浓度不增加时,及时放罐.发酵周期一般为30h.二、谷氨酸发酵的生化过程⏹(1)是代谢控制发酵的典型代表⏹(2)是目前代谢控制发酵中,在理论与实践上最成熟的……⏹整个过程可简单的分为2 个阶段:➢第1阶段是菌体生长阶段;➢第2阶段是产酸阶段,谷氨酸得以大量积累。

(完整版)谷氨酸发酵

(完整版)谷氨酸发酵

1)生物素营养缺陷型⏹作用机制:生物素是脂肪酸生物合成最初反应的关键酶乙酰CoA羧化酶的辅酶,参与了脂肪酸的合成,进而影响脂肪酸的合成.当磷脂合成量少到正常的1/2左右时,细胞变形,Glu向膜外泄漏.⏹控制关键:使用该类突变株必须限制发酵培养基中生物素亚适量(5-10 g/L).在发酵初期(0-8小时),细胞正常生长,当生物素耗尽后,在菌的再次倍增时,开始出现异常形态细胞,即完成了细胞从生长型到积累型转换.2)油酸营养缺陷型⏹作用机制:油酸营养缺陷型丧失了合成油酸的能力,通过控制油酸使磷脂合成量减少到正常量的1/2左右.⏹控制关键:保证在培养基中油酸亚适量,完成细胞从生长型到生产型的转换.(3)添加表面活性剂⏹添加表面活性剂(如吐温60)或不饱和脂肪酸(C16-18),也能造成细胞渗漏,积累谷氨酸.⏹机理:两者在脂肪酸合成时对生物素有拮抗作用,导致磷脂合成不足,形成不完整的细胞膜.⏹关键:控制好脂肪酸或表面活性剂的时间和浓度,必须在药剂加入后,在这些药剂存在下进行分裂,形成产酸型细胞.(4)添加青霉素⏹机理:青霉素抑制谷氨酸生产菌细胞壁后期的合成,细胞膜在失去保护,在渗透压的作用下受损,向外泄露谷氨酸.⏹控制关键:一般在进入对数生长期的早期(3-6小时)添加.添加青霉素后倍增的菌体不能合成完整的细胞壁,完成细胞功能的转换.谷氨酸发酵强制控制工艺⏹为了稳产,克服培养基原料中某些成分不易控制带来的影响,在谷氨酸发酵时可采取“强制控制”的方法,如:“高生物素高吐温”或“高生物素高青霉素”的方法.⏹控制方法:在发酵培养基中预先配加一定量(过量)的纯生物素,大大地削弱每批原料中生物素含量变化的影响,高生物素、大接种量能促进菌体迅速增殖.再在菌体倍增的早期加入相对高的吐温或青霉素,形成产酸型细胞.固定其它条件,确保高产稳产。

谷氨酸发酵⏹ 1.适应期:尿素分解出氨使pH上升.糖不利用.2-4h.措施:接种量和发酵条件控制使适应期缩短.⏹ 2.对数生长期:糖耗快,尿素大量分解使pH上升,氨被利用pH又迅速下降.溶氧急剧下降后维持在一定水平.菌体浓度迅速增大,菌体形态为排列整齐的八字形.不产酸.12h.措施:及时供给菌体生长必须的氮源及调节pH,在pH7.5-8.0时流加尿素;维持温度30- 32℃⏹ 3.菌体生长停止期:谷氨酸合成.措施:提供必须的氨及pH维持在7.2-7.4.大量通**,控制温度34-37 ℃.⏹ 4.发酵后期:菌体衰老,糖耗慢,残糖低.措施:营养物耗尽酸浓度不增加时,及时放罐.发酵周期一般为30h.二、谷氨酸发酵的生化过程⏹(1)是代谢控制发酵的典型代表⏹(2)是目前代谢控制发酵中,在理论与实践上最成熟的……⏹整个过程可简单的分为2 个阶段:➢第1阶段是菌体生长阶段;➢第2阶段是产酸阶段,谷氨酸得以大量积累。

氨基酸发酵机制及过程

氨基酸发酵机制及过程

④沿着由柠檬酸至α–酮戊二酸的氧化途径,谷氨酸产 生菌有两种NADP专性脱氢酶,即异柠檬酸脱氢酶和L谷氨酸脱氢酶。 在谷氨酸的生物合成中,谷氨酸脱氢酶和异柠檬 酸脱氢酶在铵离子存在下,两者非常密切地偶联起 来,形成强固的氧化还原共轭体系,不与NADPH2 的末端氧化系相连接,使α–酮戊二酸还原氨基化生 成谷氨酸。
2.三羧酸循环(TCA循环)的调节
谷氨酸产生菌在代谢途径中,三羧酸循环的调节主要 是通过5种酶的调节进行的。这五种酶是磷酸烯醇式丙酮 酸羧化酶、柠檬酸合成酶、异柠檬酸脱氢酶、谷氨酸脱氢 酶和α-酮戊二酸脱氢酶。
草酰乙酸+谷氨酸
谷氨酸转氨酶
天冬氨酸+α -酮戊二酸
谷氨酸比天冬氨酸优先合成,谷氨酸合成过量后, 谷氨酸抑制谷氨酸脱氢酶的活力并阻遏柠檬酸合成酶 的合成,使代谢转向天冬氨酸的合成。
在谷氨酸发酵生产中,生物素缺陷型菌在 NH4+存在时,葡萄糖消耗速率快而且谷氨酸收率 高; NH4+不存在时,葡萄糖消耗速率很慢,生 成物是α–酮戊二酸、丙酮酸等物质,不产生谷氨 酸。
四、细胞膜通透性的调节
对谷氨酸发酵的重要性: 当细胞膜转变为有利于谷 氨酸向膜外渗透的方式, 谷氨酸才能不断地排出细 胞外,这样既有利于细胞 内谷氨酸合成反应的优先 性、连续性,也有利于谷 氨酸在胞外的积累。
4.CO2固定反应的调节
CO2固定反应主要通过以下途径完成:
C02的固定反应的作用:补充草酰乙酸; 在谷氨酸合成过程中,糖的分解代谢途径与C02固定 的适当比例是提高谷氨酸对糖收率的关键问题。
5.NH4+的调节
谷氨酸脱氢酶也能催化谷氨酸氧化脱氨反应,脱 氨过程以NAD+作为辅酶,该酶催化的反应虽然偏向 氨合成谷氨酸一边,但是脱氢过程产生的NADH被氧 化成NAD+,同时产生的NH3很容易被除去。 脱氨反应被NH4+和α–酮戊二酸所抑制,这对于谷 氨酸的积累也起到了很好的作用。

谷氨酸发酵机制

谷氨酸发酵机制

理想的发酵按如下反应进行:
• C6H12O6+NH3+1.5O2──C6H9O4N+CO2+3H2 O
谷氨酸发酵的代谢途径:
谷氨酸生产菌的育种思路 :
第二章 谷氨酸发酵机制
谷氨酸生产菌的具体育种思路
1.切断或减弱支路代谢 2.解除自身的反馈抑制 3.增加前体物的合成 4.提高细胞膜的渗透性 5.强化能量代谢 6.利用基因工程技术构建谷氨酸工程菌 株
谷氨酸发酵机制
谷氨酸的生物合成途径:
在谷氨酸发酵中,生成谷氨酸的主要酶反应有以下 三种: 1.谷氨酸脱氢酶(GHD)所催化的还原氨基化反 应. 2.转氨酶(AT)催化的转氨反应. 3.谷氨酸合成酶(GS)催化的反应.
葡萄糖生物合成谷氨酸理想途径:
• 在谷氨酸发酵时,糖酵解经过EMP及HMP两 个途径进行,生物素充足菌HMP所占比例是 38%,控制生物素亚适量的结果,发酵产酸 期,EMP所占的比例更大,HMP所占比例约为 26%
三)乙醛酸循环的作用
• 由于三羧酸循环的缺陷,在谷氨酸发酵的菌体生长期,需要异柠檬酸裂 解酶催化反应,走乙醛酸循环途径。 乙醛酸循环中生成的四碳二羧酸可返回三羧酸循环,乙醛酸循环途径可 看作三羧酸循环的支路和中间产物的补给途径。 若二氧化碳固定反应完全不起作用,丙酮酸在丙酮酸脱氢酶的催化作用 下,脱氢脱羧全部氧化成乙酰CoA,通过乙醛酸循环供给四碳二羧酸。 当以葡萄糖为碳源时,二氧化碳固定反应与乙醛酸循环的比率对谷氨酸 产率有影响,乙醛酸循环活性越高,谷氨酸生成收率越低。因此,在糖质原 料发酵生产谷氨酸时,应尽量控制通过二氧化碳固定反应供给四碳二羧酸。
第二章 谷氨酸发酵机制
第三节 谷氨酸发酵中如何控制细胞膜 的渗透性

四 柠檬酸发酵机制

四   柠檬酸发酵机制

第二节 柠檬酸生物合成的代谢调节
柠檬酸是重要的代谢调节因子,正常细胞中 柠檬酸不积累,但黑曲霉可积累。
一、糖酵解及丙酮酸代谢的调节
1.在正常情况下,柠檬酸、ATP对磷酸果糖激酶 (PFK)有抑制作用,而AMP、无机磷、 NH4+对 该酶则有激活作用,特别是NH4+还能解除柠檬酸、 ATP对磷酸果糖激酶的抑制作用。 微生物体内的NH4+,可以解除柠檬酸对PFK的 这种反馈抑制作用,在较高的NH4+的浓度下,细 胞可以大量形成柠檬酸,那么NH4+ 浓度是如何 升高的呢?
2.进一步的研究表明,柠檬酸产生菌—— 黑曲霉如果生长在Mn+ 缺乏的培养基中, NH4+浓度异常的高,可达到25mmol/L, 显然,由于Mn+的缺乏,使得微生物体内 NH4+浓度升高,进而解除了柠檬酸对PFK 活性的抑制作用,使得葡萄糖源源不断 的合成大量的柠檬酸。 缺乏如何会使NH4+浓度升高呢? NH4+浓度升高呢 Mn+ 缺乏如何会使NH4+浓度升高呢
目前,我国柠檬酸行业从产量上位居世 界第一,从技术上,在国际上也是处于世界 领先水平,并远远领先于其他国家,其优势 在于: 1.我国的柠檬酸发酵采用的菌种(黑曲霉) 具有双重功能,当淀粉原料被液化后,即可 进行发酵,不需要将淀粉水解成葡萄糖,简 化了生产工艺,降低了生产成本。
2.尽管采用边糖化边发酵的工艺,但发酵周 期只有64小时,生产周期比国外的单边发酵周期 还要短。 3.柠檬酸的产酸速度大大地高于国外水平。 平均产酸速率是国外的2 倍。 柠檬酸合成途径: 氧化脱羧 丙 乙酰COA EMP 葡萄糖 酮 酸 羧化 草酰乙酸
二、TCA循环的调节: TCA循环的调节: 循环的调节 1.TCA环的起始酶 环的起始酶: 1.TCA环的起始酶: 柠檬酸合成酶是一种调节酶。但在黑曲霉中, 柠檬酸合成酶是一种调节酶。但在黑曲霉中,柠 檬酸合成酶没有调节作用,这是黑曲霉TCA TCA环的第一 檬酸合成酶没有调节作用,这是黑曲霉TCA环的第一 个特点。 个特点。 2.顺乌头酸酶活性的控制 顺乌头酸酶活性的控制: 2.顺乌头酸酶活性的控制: 该酶的丧失或失活是阻断TCA TCA循环大量生成柠檬 该酶的丧失或失活是阻断TCA循环大量生成柠檬 酸的必要条件。 酸的必要条件。通常柠檬酸产生菌体内该酶的活性本 身就要求很弱,但在发酵过程中仍需要控制它的活性。 身就要求很弱,但在发酵过程中仍需要控制它的活性。 由于该酶的活性受到Fe2+ 的影响, 由于该酶的活性受到Fe2+ 的影响,控制培养基中的 的浓度,可以使该酶失活。 Fe2+ 的浓度,可以使该酶失活。 3.第二个特点 黑曲霉菌体内α 第二个特点: 3.第二个特点:黑曲霉菌体内α-酮戊二酸脱氢酶缺失 或活力很低(TCA环被阻断),被葡萄糖和 环被阻断),被葡萄糖和NH4+ 抑制。 抑制。 或活力很低(TCA环被阻断),被葡萄糖和 4.氧和pH值对柠檬酸发酵的影响很大 氧和pH值对柠檬酸发酵的影响很大。 4.氧和pH值对柠檬酸发酵的影响很大。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档