【人教版】红对勾2020届高考一轮数学(理)复习:课时作业21

合集下载

【人教版】红对勾2020届高考一轮数学(理)复习:课时作业23

【人教版】红对勾2020届高考一轮数学(理)复习:课时作业23

第五章数列课时作业30数列的概念与简单表示法1.(2019·青岛模拟)数列1,3,6,10,15,…的一个通项公式是(C)A.a n=n2-(n-1) B.a n=n2-1n n+1n n-1 C.a n=D.a n=2 2解析:设此数列为{a n},则由题意可得a1=1,a2=3,a3=6,a4=10,a5=15,…仔细观察数列1,3,6,10,15,…可以发现:1=1,3=1+2,6=1+2+3,10=1+2+3+4,…n n+1所以第n项为1+2+3+4+5+…+n=,2n n+1所以数列1,3,6,10,15,…的通项公式为a n=.22.(2019·长沙模拟)已知数列的前4 项为2,0,2,0,则依此归纳该数列的通项不可能是(C)A.a n=(-1)n-1+1 B.a n=Error!nπC.a n=2sin D.a n=cos(n-1)π+12nπ解析:对n=1,2,3,4 进行验证,a n=2sin 不合题意.23.(2019·广东茂名模拟)S n是数列{a n}的前n项和,且∀n∈N*都有2S n=3a n+4,则S n=(A)A .2-2×3nB .4×3nC .-4×3n -1D .-2-2×3n -1解 析:∵2S n =3a n +4,∴2S n =3(S n -S n -1)+4(n ≥2),变形为 S n - 2=3(S n -1-2),又 n =1 时,2S 1=3S 1+4,解得 S 1=-4,∴S 1-2=- 6.∴数列{S n -2}是等比数列,首项为-6,公比为 3.∴S n -2=-6×3n-1,可得 S n =2-2×3n ,故选 A.1+a n4.(2019·河北石家庄一模)若数列{a n }满足 a 1=2,a n +1= ,1-a n则 a 2 018 的值为( B )A .2B .-311C .-D.2 3 1+a n 1+a 1 解析:∵a 1=2,a n +1= ,∴a 2= =-3, 1-a n 1-a 11 1同理可得:a 3=- ,a 4= ,a 5=2,……,可得 a n +4=a n ,2 3则 a 2 018=a 504×4+2=a 2=-3.故选 B.5.(2019·广东广州一模)已知数列{a n }满足 a 1=2,2a n a n +1=a 2n +1, a n -1设 b n = ,则数列{b n }是( D ) a n +1A .常数列B .摆动数列C .递增数列D .递减数列 1 1 解析:∵2a n a n +1=a 2n +1,∴a n +1= ,a n +2( a n)11 a n + -12( a n)a n -1 a n +1-1 a n -12∵b n = ,∴b n +1= ===b ,2na n+1 a n+1+1 1 1 a n+1 2a n++12(a n)∴b-b n=b2n-b n=b n(b n-1),n+12-1 1∵a=2,b1==,12+1 3Earlybird1 1 1 1 1=(2,∴b3=2=4,b4=2=8,∴b22 43 )[(3)](3)[(3)](3)}是递减数列,故选D.∴数列{bn6.在数列{a n}中,a1=1,a2=2,若a n+2=2a n+1-a n+2,则a n=(C)1 2 6A. n2-n+B.n3-5n2+9n-45 5 5C.n2-2n+2 D.2n2-5n+4解析:由题意得(a n+2-a n+1)-(a n+1-a n)=2,因此数列{a n+1-a n}是以1 为首项,2 为公差的等差数列,a n+1-a n=1+2(n-1)=2n-1,当n≥2 时,a n=a1+(a2-a1)+(a3-a2)+…+(a n-a n-1)=1+1+1+2n-3n-13+…+(2n-3)=1+=(n-1)2+1=n2-2n+2,2又a1=1=12-2×1+2,因此a n=n2-2n+2(n∈N*),故选C.7.(2019·河北保定一模)已知函数f(x)=Error!若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是(C) A.(1,3) B.(1,2]24C.(2,3) D.[,3)11解析:∵数列{a n}是递增数列,f(x)=Error!a n=f(n)(n∈N*),∴3-a>0,a>1 且f(10)<f(11),∴1<a<3 且10(3-a)-6<a2,解得2<a<3,故实数a的取值范围是(2,3),故选C.a n8.已知数列{a n}满足a n+1=a n+2n,且a1=33,则的最小值为n(C)A.21 B.1021 17C. D.2 2Earlybird解析:由已知条件可知,当n≥2 时,a n=a1+(a2-a1)+(a3-a2)+…+(a n-a n-1)=33+2+4+…+2(n-1)=n2-n+33,又n=1 时,a1=33 满足此式.a n33所以=n+-1.n na n33令f(n)==n+-1,n n则f(n)在[1,5]上为减函数,在[6,+∞)上为增函数.53 21又f(5)=,f(6)=,则f(5)>f(6),5 2a n21故f(n)=的最小值为.n 29.在一个数列中,如果∀n∈N*,都有a n a n+1a n+2=k(k为常数),那么这个数列叫做等积数列,k叫做这个数列的公积.已知数列{a n}是等积数列,且a1=1,a2=2,公积为8,则a1+a2+a3+…+a12=28__.解析:依题意得数列{a n}是周期为3 的数列,且a1=1,a2=2,a3=4,因此a1+a2+a3+…+a12=4(a1+a2+a3)=4×(1+2+4)=28.n2 10.(2019·成都质检)在数列{a n}中,a1=1,a n=a n-1(n≥2,n2-12nn∈N*),则a n=.n+1a n n2 n2解析:由题意知==.a n-1 n2-1 n-1n+1a2 a3 a n所以a n=a1×××…×a1 a2 a n-122 32 n2=1×××…×=22-1 32-1 n2-122 ×32 ×42 ×…×n22-1×2+1×3-1×3+1×4-1×4+1×…×n-1×n+1Earlybird22 ×32 ×42 ×…×n2 2n==.1 ×3 ×2 ×4 ×3 ×5 ×…×n-1×n+1n+1111.数列{a n}的通项公式为a n=(2n+1)(n-1,则数列{a n}的2 )1最大项为.21 1=(2n+3)(n+1-(2n+1) n解析:a n+1-a n2 )(2)1 1-2n+1](n=2n+3×[ 2 )23 1-2n+1](n=n+[ 2 )21 1 1 1-n)(2 ) 2 (2) 2a n<0,所以a n+1<a n,所以a1>a2>a3>…>a n>a n+1>…,所以数列1{a n}的最大项为a1=.212.(2019·山东青岛调研)已知S n是数列{a n}的前n项和,S n=3×2n-3,其中n∈N*.(1)求数列{a n}的通项公式;(2)数列{b n}为等差数列,T n为其前n项和,b2=a5,b11=S3,求T n 的最值.解:(1)由S n=3×2n-3,n∈N*得,(ⅰ)当n=1 时,a1=S1=3×21-3=3.(ⅱ)当n≥2 时,a n=S n-S n-1=(3×2n-3)-(3×2n-1-3)=3×(2n -2n-1)=3×2n-1(*).又当n=1 时,a1=3 也满足(*)式.所以,对任意n∈N*,都有a n=3×2n-1.(2)设等差数列{b n}的首项为b1,公差为d,由(1)得b2=a5=3×25-1=48,b11=S3=3×23-3=21.由等差数列的通项公式得EarlybirdError!解得Error!所以b n=54-3n.可以看出b n随着n的增大而减小,令b n≥0,解得n≤18,所以T n有最大值,无最小值,且T18(或T17)为前n项和T n的最大18b1+b18值,T18==9×(51+0)=459.213.(2019·黄冈质检)已知数列{x n}满足x n+2=|x n+1-x n|(n∈N*),若x1=1,x2=a(a≤1,a≠0),且x n+3=x n对于任意的正整数n均成立,则数列{x n}的前2 017 项和S2 017=(D)A.672 B.673C.1 342 D.1 345解析:∵x1=1,x2=a(a≤1,a≠0),∴x=|x2-x1|=|a-1|=1-a,3∴x+x2+x3=1+a+(1-a)=2,1又x n+3=x n对于任意的正整数n均成立,}的周期为3,所以数列{x n}的前2 017 项和S2 017=S672×3∴数列{xn=672×2+1=1 345.故选D.+114.(2019·河南郑州一中模拟)数列{a n}满足:a1=1,且对任意的1 1 1 1m,n∈N*,都有a m+n=a m+a n+mn,则+++…+=(D)a1 a2 a3 a2 0182 017 2 018A. B.2 018 2 0194 034 4 036C. D.2 018 2 019解析:∵a1=1,且对任意的m,n∈N*都有a m+n=a m+a n+mn,∴a n+1=a n+n+1,即a n+1-a n=n+1,用累加法可得a n=a1 +n-1n+2n n+1=,2 2Earlybird1 2 1 1∴==2 ,-n n+1(n+1)a n n1 1 1 1∴+++…+=a1 a2 a3 a2 0181 1 1 1 1 4 0362(=,故选D.2 019)1-+-+…+-2 23 2 018 2 01915.设{a n}是首项为1 的正项数列,且(n+1)a n+2 1-na2n+a n+1·a n=10(n=1,2,3,…),则它的通项公式a n=.n解析:因为(n+1)a n+2 1-na2n+a n+1·a n=0,所以(a n+1+a n)[(n+1)a n+1-na n]=0,又因为a n>0,故(n+1)a n+1-na n=0,a n+1 n a2 1 a3 2 a4 3即=,故=,=,=,…a n n+1 a1 2 a2 3 a3 4a n n-1=,a n-1 na n 1 1把以上各式分别相乘得=,即a n=.a1 n n16.(2019·宝安中学等七校联考)已知{a n}是递增数列,其前n项和为S n,a1>1,且10S n=(2a n+1)(a n+2),n∈N*.(1)求数列{a n}的通项a n;(2)是否存在m,n,k∈N*,使得2(a m+a n)=a k成立?若存在,写出一组符合条件的m,n,k的值;若不存在,请说明理由.解:(1)由10a1=(2a1+1)(a1+2),1得2a21-5a1+2=0,解得a1=2 或a1=.2又a1>1,所以a1=2.因为10S n=(2a n+1)(a n+2),所以10S n=2a2n+5a n+2.故10a n+1=10S n+1-10S n=2a n+2 1+5a n+1+2-2a2n-5a n-2,整理,得2(a n+2 1-a2n)-5(a n+1+a n)=0,Earlybird即(a n+1+a n)[2(a n+1-a n)-5]=0.因为{a n}是递增数列且a1=2,5所以a n+1+a n≠0,因此a n+1-a n=.25所以数列{a n}是以2 为首项,为公差的等差数列.25 1所以a n=2+(n-1)=(5n-1).2 2(2)满足条件的正整数m,n,k不存在,理由如下:假设存在m,n,k∈N*,使得2(a m+a n)=a k,1则5m-1+5n-1=(5k-1),23整理,得2m+2n-k=,(*)5显然,(*)式左边为整数,所以(*)式不成立.故满足条件的正整数m,n,k不存在.。

【人教版】红对勾2020届高考一轮数学(理)复习:课时作业11

【人教版】红对勾2020届高考一轮数学(理)复习:课时作业11

课时作业2命题及其关系、充分条件与必要条件1.命题“若a>b,则a+c>b+c”的否命题是(A)A.若a≤b,则a+c≤b+c B.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>b D.若a>b,则a+c≤b+c解析:将条件、结论都否定.命题的否命题是“若a≤b,则a+c≤b+c”.2.(2019·江西九江十校联考)已知函数f(x)=Error!则“x=0”是“f(x)=1”的(B)A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:若x=0,则f(0)=e0=1;若f(x)=1,则e x=1 或ln(-x)=1,解得x=0 或x=-e.故“x=0”是“f(x)=1”的充分不必要条件.3.在命题“若抛物线y=ax2+bx+c的开口向下,则{x|ax2+bx+c<0}≠∅”的逆命题、否命题、逆否命题中结论成立的是(D) A.都真B.都假C.否命题真D.逆否命题真解析:对于原命题:“若抛物线y=ax2+bx+c的开口向下,则{x|ax2+bx+c<0}≠∅”,这是一个真命题,所以其逆否命题也为真命题;但其逆命题:“若{x|ax2+bx+c<0}≠∅,则抛物线y=ax2+bx+c的开口向下”是一个假命题,因为当不等式ax2+bx+c<0 的解集非空时,可以有a>0,即抛物线的开口可以向上,因此否命题也是假命题,故选D.4.(2019·河南郑州一模)下列说法正确的是(D)A.“若a>1,则a2>1”的否命题是“若a>1,则a2≤1”B.“若am2<bm2,则a<b”的逆命题为真命题C.存在x0∈(0,+∞),使3x0>4x0 成立1 πD.“若sinα≠,则α≠”是真命题2 6解析:对于选项A,“若a>1,则a2>1”的否命题是“若a≤1,则a2≤1”,故选项A 错误;对于选项B,“若am2<bm2,则a<b”的逆命题为“若a<b,则am2<bm2”,因为当m=0 时,am2=bm2,所以逆命题为假命题,故选项B 错误;对于选项C,由指数函数的图象知,对任意的x∈(0,+∞),都有4x>3x,故选项C 错误;1 ππ对于选项D,“若sinα≠,则α≠”的逆否命题为“若α=,则sinα2 6 61=”,该逆否命题为真命题,所以原命题为真命题,故选D.25.(2019·江西鹰谭中学月考)设f(x)=x2-4x(x∈R),则f(x)>0 的一个必要不充分条件是(C)A.x<0 B.x<0 或x>4C.|x-1|>1 D.|x-2|>3解析:依题意,f(x)>0⇔x2-4x>0⇔x<0 或x>4.又|x-1|>1⇔x-1<-1 或x-1>1,即x<0 或x>2,而{x|x<0 或x>x|x<0 或x>2},因此选C.6.(2019·山东日照联考)“m<0”是“函数f(x)=m+log2x(x≥1)存在零点”的(A)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当m<0 时,由图象的平移变换可知,函数f(x)必有零点;当函数f(x)有零点时,m≤0,所以“m<0”是“函数f(x)=m+log2x(x≥1)存在零点”的充分不必要条件,故选A.7.(2019·安徽两校阶段性测试)设a∈R,则“a=4”是“直线l1:ax+8y-8=0 与直线l2:2x+ay-a=0 平行”的(D)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件a8 -8解析:∵当a≠0 时,==⇒直线l1 与直线l2 重合,∴无论a2 a-a取何值,直线l1 与直线l2 均不可能平行,当a=4 时,l1 与l2 重合.故选D.8.(2019·山西太原模拟)已知a,b都是实数,那么“2a>2b”是“a2>b2”的(D)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:充分性:若2a>2b,则2a-b>1,∴a-b>0,∴a>b.当a=-1,b=-2 时,满足2a>2b,但a2<b2,故由2a>2b不能得出a2>b2,因此充分性不成立.必要性:若a2>b2,则|a|>|b|.当a=-2,b=1 时,满足a2>b2,但2-2<21,即2a<2b,故必要性不成立.综上,“2a>2b”是“a2>b2”的既不充分也不必要条件,故选D.ππ 19.(2017·天津卷)设θ∈R,则“|θ-12|<”是“sinθ<”的12 2(A)A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件ππππππ 1 解析:∵|θ-12|<⇔-<θ-<⇔0<θ<,sinθ<⇔θ∈12 12 12 12 6 27ππ(2kπ-6),k∈Z,,2kπ+6π7ππ(0,6)(2kπ-6),k∈Z,,2kπ+6ππ 1∴“|θ-12|<”是“sinθ<”的充分而不必要条件.12 2Earlybird10.(2019·江西红色七校模拟)在△ABC中,角A,B均为锐角,则“cos A>sin B”是“△ABC为钝角三角形”的(C)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件π解析:因为cos A>sin B,所以cos A>cos(-B),2π因为角A,B均为锐角,所以-B为锐角,2又因为余弦函数y=cos x在(0,π)上单调递减,ππ所以A<-B,所以A+B<,2 2π在△ABC中,A+B+C=π,所以C>,2所以△ABC为钝角三角形;若△ABC为钝角三角形,角A,B均为锐角,πππ则C>,所以A+B<,所以A<-B,2 2 2π所以cos A>cos(-B),即cos A>sin B.2故“cos A>sin B”是“△ABC为钝角三角形”的充要条件.11.设向量a=(sin2θ,cosθ),b=(cosθ,1),则“a∥b”是“tanθ1=成立”的必要不充分__条件.(选填“充分不必要”“必要不充2分”“充要”“既不充分也不必要”)解析:a∥b⇔sin2θ=cos2θ⇔cosθ=0 或2sinθ=cosθ⇔cosθ=0 或1 1tanθ=,所以“a∥b”是“tanθ=成立”的必要不充分条件.2 212.已知条件p:2x2-3x+1≤0,条件q:x2-(2a+1)x+a(a+1)≤0.若綈p是綈q的必要不充分条件,则实数a的取值范围是1 [02].解析:方法一命题p为Error!,命题q为{x|a≤x≤a+1}.綈p对应的集合A=Error!.綈q对应的集合B={x|x>a+1 或x<a}.∵綈p是綈q的必要不充分条件,1∴Error!或Error!∴0≤a≤.2方法二命题p:A=Error!,命题q:B={x|a≤x≤a+1}.∵綈p是綈q的必要不充分条件,∴p是q的充分不必要条件,即A B,1∴Error!或Error!∴0≤a≤.213.已知p:函数f(x)=|x+a|在(-∞,-1)上是单调函数,q:函数g(x)=log a(x+1)(a>0,且a≠1)在(-1,+∞)上是增函数,则綈p 是q的(C)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:易知p成立⇔a≤1,q成立⇔a>1,所以綈p成立⇔a>1,则綈p是q的充要条件,故选C.14.(2019·昆明诊断)下列选项中,说法正确的是(D)A.若a>b>0,则ln a<ln bB.向量a=(1,m),b=(m,2m-1)(m∈R)垂直的充要条件是m=1C.命题“∀n∈N*,3n>(n+2)·2n-1”的否定是“∀n∈N*,3n≥(n+2)·2n-1”D.已知函数f(x)在区间[a,b]上的图象是连续不断的,则命题“若f(a)·f(b)<0,则f(x)在区间(a,b)内至少有一个零点”的逆命题为假命题解析:∵函数y=ln x(x>0)是增函数,∴若a>b>0,则ln a>ln b,故A 错误;若a⊥b,则m+m(2m-1)=0,解得m=0,故B 错误;命题“∀n∈N*,3n>(n+2)·2n-1”的否定是“∃n∈N*,3n≤(n+2)·2n-1”,故C 错误;命题“若f(a)·f(b)<0,则f(x)在区间(a,b)内至少有一个零点”的逆命题“若f(x)在区间(a,b)内至少有一个零点,则f(a)·f(b)<0”是假命题,如函数f(x)=x2-2x-3 在区间[-2,4]上的图象连续不断,且在区间(-2,4)内有两个零点,但f(-2)·f(4)>0,D 正确.15.已知集合A=Error!,B={x|-1<x<m+1,x∈R},若x∈B成立的一个充分不必要条件是x∈A,则实数m的取值范围是(2,+∞)__.解析:A=Error!={x|-1<x<3},∵x∈B成立的一个充分不必要条件是x∈A,∴A B,∴m+1>3,即m>2.x-116.(2019·石家庄模拟)已知p:|1- 3|≤2,q:x2-2x+1-m2≤0(m>0),且綈p是綈q的必要不充分条件,则实数m的取值范围是[9,+∞)__.x-1解析:法一:由|1- 3|≤2,得-2≤x≤10,∴綈p对应的集合为{x|x>10 或x<-2},设A={x|x>10 或x<-2}.由x2-2x+1-m2≤0(m>0),得1-m≤x≤1+m(m>0),∴綈q对应的集合为{x|x>1+m或x<1-m,m>0},设B={x|x>1+m或x<1-m,m>0}.∵綈p是綈q的必要不充分条件,∴B A,∴Error!或Error!解得m≥9,∴实数m的取值范围为[9,+∞).法二:∵綈p是綈q的必要不充分条件,∴q是p的必要不充分条件.即p是q的充分不必要条件,由x2-2x+1-m2≤0(m>0),得1-m≤x≤1+m(m>0).∴q对应的集合为{x|1-m≤x≤1+m,m>0},设M={x|1-m≤x≤1+m,m>0},x-1又由|1- 3 |≤2,得-2≤x≤10,∴p对应的集合为{x|-2≤x≤10},设N={x|-2≤x≤10}.由p是q的充分不必要条件知,N M,∴Error!或Error!解得m≥9.∴实数m的取值范围为[9,+∞).。

2020年高考红对勾一轮复习理科数学人教版创新方案课件课时作业21

2020年高考红对勾一轮复习理科数学人教版创新方案课件课时作业21
当 x∈-98π,-78π时,2x∈-94π,-74π,g(x)单调递增, 又 g(x)为奇函数,故 C 中说法正确.
g(x)图象的对称中心为k2π,0(k∈Z),故 D 中说法正确.
大一轮复习 ·高三数学理科 ·创新方案
第10页
系列丛书
当 x∈-98π,-78π时,2x∈-94π,-74π,g(x)单调递增, 又 g(x)为奇函数,故 C 中说法正确.
系列丛书
课时作业21 函数y=Asin(ωx+φ)的图象及应用
大一轮复习 ·高三数学理科 ·创新方案
第1页
系列丛书
1.(2018·天津卷)将函数 y=sin2x+5π的图象向右平移1π0个单位
长度,所得图象对应的函数( A )
A.在区间34π,54π上单调递增 B.在区间34π,π上单调递减 C.在区间54π,32π上单调递增 D.在区间32π,2π上单调递减
第6页
系列丛书
3.设偶函数 f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图 象如图所示,△KLM 为等腰直角三角形,∠KML=90°,KL=1,则
f16的值为( D )
A.-
3 4
C.-12
B.-14
D.
3 4
大一轮复习 ·高三数学理科 ·创新方案
第7页
系列丛书
大一轮复习 ·高三数学理科 ·创新方案
第5页
系列丛书
由 y=2sin3x+3π-3θ的图象关于 y 轴对称得3π-3θ=kπ+π2(k ∈Z),
即 θ=-6k1+8 1π(k∈Z). 又 θ>0,故当 k=-1 时,θ 取得最小值158π,故选 B.
大一轮复习 ·高三数学理科 ·创新方案
g(x)图象的对称中心为k2π,0(k∈Z),故 D 中说法正确.

【人教版】红对勾2020届高考一轮数学(理)复习:课时作业30

【人教版】红对勾2020届高考一轮数学(理)复习:课时作业30

课时作业37 基本不等式1.“a >b >0”是“ab <a 2+b 22”的( A ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:由a >b >0得,a 2+b 2>2ab ;但由a 2+b 2>2ab 不能得到a >b >0,故“a >b >0”是“ab <a 2+b 22”的充分不必要条件,故选A.2.若a >0,b >0,且a +b =4,则下列不等式恒成立的是( D ) A.1ab ≤14 B.1a +1b ≤1 C.ab ≥2D .a 2+b 2≥8解析:4=a +b ≥2ab (当且仅当a =b 时,等号成立),即ab ≤2,ab ≤4,1ab ≥14,选项A ,C 不成立;1a +1b =a +b ab =4ab ≥1,选项B 不成立;a 2+b 2=(a +b )2-2ab =16-2ab ≥8,选项D 成立.3.(2019·安庆一模)已知a >0,b >0,a +b =1a +1b ,则1a +2b 的最小值为( B )A .4B .2 2C .8D .16解析:由a >0,b >0,a +b =1a +1b =a +b ab ,得ab =1,则1a +2b ≥2 1a ·2b =2 2.当且仅当1a =2b ,即a =22,b =2时等号成立,故选B. 4.若正数x ,y 满足4x 2+9y 2+3xy =30,则xy 的最大值是( C )A.43B.53 C .2D.54解析:由x >0,y >0,得4x 2+9y 2+3xy ≥2·(2x )·(3y )+3xy (当且仅当2x =3y 时等号成立),∴12xy +3xy ≤30,即xy ≤2,∴xy 的最大值为2.5.设x >0,y >0,且x +4y =40,则lg x +lg y 的最大值是( D ) A .40 B .10 C .4D .2解析:因为x +4y =40,且x >0,y >0,所以x +4y ≥2x ·4y =4xy .(当且仅当x =4y 时取“=”) 所以4xy ≤40,所以xy ≤100. 所以lg x +lg y =lg xy ≤lg100=2. 所以lg x +lg y 的最大值为2.6.(2019·海淀模拟)当0<m <12时,若1m +21-2m ≥k 2-2k 恒成立,则实数k 的取值范围为( D )A .[-2,0)∪(0,4]B .[-4,0)∪(0,2]C .[-4,2]D .[-2,4]解析:因为0<m <12,所以12×2m ×(1-2m )≤12×⎣⎢⎡⎦⎥⎤2m +(1-2m )22=18,当且仅当2m =1-2m ,即m =14时取等号,所以1m +21-2m =1m (1-2m )≥8,又1m +21-2m ≥k 2-2k 恒成立,所以k 2-2k -8≤0,所以-2≤k ≤4.所以实数k 的取值范围是[-2,4],故选D.7.已知a >b >0,那么a 2+1b (a -b )的最小值为 4 .解析:∵a >b >0,∴a -b >0,∴b (a -b )≤⎝⎛⎭⎪⎫b +a -b 22=a 24,∴a 2+1b (a -b )≥a 2+4a 2≥2a 2·4a 2=4,当且仅当b =a -b 且a 2=4a 2, 即a =2且b =22时取等号, ∴a 2+1b (a -b )的最小值为4.8.(2019·河南中原名校联考)已知直线ax -2by =2(a >0,b >0)过圆x 2+y 2-4x +2y +1=0的圆心,则4a +2+1b +1的最小值为 94 .解析:圆x 2+y 2-4x +2y +1=0的圆心坐标为(2,-1). 由于直线ax -2by =2(a >0,b >0)过圆x 2+y 2-4x +2y +1=0的圆心,故有a +b =1.∴4a +2+1b +1=14⎝⎛⎭⎪⎫4a +2+1b +1(a +2+b +1) =14⎣⎢⎡⎦⎥⎤5+4(b +1)a +2+a +2b +1 ≥54+14×24(b +1)a +2·a +2b +1=94, 当且仅当a =2b =23时,取等号, 故4a +2+1b +1的最小值为94. 9.某游泳馆拟建一座平面图形为矩形且面积为200平方米的泳池,池的深度为1米,池的四周墙壁建造单价为每米400元,中间一条隔壁建造单价为每米100元,池底建造单价每平方米60元(池壁厚忽略不计).则泳池的长设计为 15 米时,可使总造价最低.解析:设泳池的长为x 米,则宽为200x 米,总造价f (x )=400×⎝ ⎛⎭⎪⎫2x +2×200x +100×200x +60×200=800×⎝ ⎛⎭⎪⎫x +225x +12 000≥1600x ·225x +12 000=36 000(元),当且仅当x =225x (x >0),即x =15时等号成立,即泳池的长设计为15米时,可使总造价最低. 10.(2019·湖南长郡中学月考)设正项等差数列{a n }的前n 项和为S n ,若S 2 017=4 034,则1a 9+9a 2 009的最小值为 4 .解析:由等差数列的前n 项和公式, 得S 2 017=2 017(a 1+a 2 017)2=4 034, 则a 1+a 2 017=4.由等差数列的性质得a 9+a 2 009=4, 所以1a 9+9a 2 009=14⎝ ⎛⎭⎪⎫4a 9+9×4a 2 009 =14⎣⎢⎡⎦⎥⎤a 9+a 2 009a 9+9(a 9+a 2 009)a 2 009 =14⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a 2 009a 9+9a 9a 2 009+10 ≥14⎝ ⎛⎭⎪⎫2 a 2 009a 9×9a 9a 2 009+10=4,当且仅当a 2 009=3a 9时等号成立,故所求最小值为4.11.若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值为 5 . 解析:法一 由x +3y =5xy 可得15y +35x =1, ∴3x +4y =(3x +4y )⎝ ⎛⎭⎪⎫15y +35x =95+45+3x 5y +12y5x≥135+125=5(当且仅当3x 5y =12y 5x ,即x =1,y =12时,等号成立), ∴3x +4y 的最小值是5.法二 由x +3y =5xy ,得x =3y5y -1,∵x >0,y >0,∴y >15,∴3x +4y =9y5y -1+4y =13⎝ ⎛⎭⎪⎫y -15+95+45-4y 5⎝ ⎛⎭⎪⎫y -15+4y =135+95·15y -15+4⎝ ⎛⎭⎪⎫y -15≥135+23625=5, 当且仅当y =12时等号成立, ∴(3x +4y )min =5.12.经调查测算,某产品的年销售量(即该厂的年产量)x 万件与年促销费用m 万元(m ≥0)满足x =3-km +1(k 为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知2017年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2017年该产品的利润y 万元表示为年促销费用m 万元的函数;(2)该厂家2017年的促销费用投入多少万元时,厂家的利润最大? 解:(1)由题意可知,当m =0时,x =1, ∴1=3-k ,解得k =2,即x =3-2m +1,每1万件产品的销售价格为1.5×8+16xx (万元),∴2017年的利润y =x ⎝⎛⎭⎪⎫1.5×8+16x x -(8+16x +m )=4+8x -m=4+8⎝ ⎛⎭⎪⎫3-2m +1-m=28-16m +1-m (m ≥0).∴利润y 表示为年促销费用的函数关系式是y =28-16m +1-m (m ≥0).(2)由(1)知y =-⎣⎢⎡⎦⎥⎤16m +1+(m +1)+29(m ≥0).∵m ≥0时,16m +1+(m +1)≥216m +1·(m +1)=8, 当且仅当16m +1=m +1,即m =3时取等号.∴y ≤-8+29=21,即当m =3时,y 取得最大值21.∴当该厂家2017年的促销费用投入3万元时,厂家获得的利润最大,为21万元.13.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xyz 取得最大值时,2x +1y -2z 的最大值是( B )A .0B .1 C.94D .3解析:xy z =xy x 2-3xy +4y 2=1x y +4y x -3≤14-3=1,当且仅当x =2y 时等号成立,此时z =2y 2,2x +1y -2z =-1y 2+2y =-⎝⎛⎭⎪⎫1y -12+1≤1,当且仅当y =1时等号成立,故所求的最大值为1.14.(2019·合肥模拟)已知函数f (x )=13ax 3-2x 2+cx 在R 上单调递增,且ac ≤4,则a c 2+4+ca 2+4的最小值为( B )A .0 B.12 C.14D .1解析:因为函数f (x )=13ax 3-2x 2+cx 在R 上单调递增,所以f ′(x )=ax 2-4x +c ≥0在R 上恒成立.所以⎩⎪⎨⎪⎧a >0,Δ=16-4ac ≤0,所以ac ≥4,又ac ≤4,所以ac =4,又a >0,所以c >0,则a c 2+4+c a 2+4=a c 2+ac +c a 2+ac =a c (c +a )+c a (c +a )=1c -1c +a +1a -1c +a =1a +1c -2c +a ≥21ac -22ac =1-12=12,当且仅当a =c =2时等号成立,故选B.15.(2019·洛阳模拟)设函数f (x )=98cos2x +16-sin 2x 的最小值为m ,且与m 对应的x 的最小正值为n ,则m +n = π3 .解析:f (x )=98cos2x +16+cos2x -12=98cos2x +2+cos2x +22-32,因为cos2x +2>0,所以f (x )≥2×34-32=0,当且仅当98cos2x +2=cos2x +22,即cos2x =-12时等号成立,所以x 的最小正值为n =π3,所以m +n =π3.16.已知两条直线l 1:y =m (m >0)和l 2:y =82m +1,l 1与函数y=|log 2x |的图象从左到右相交于点A ,B ,l 2与函数y =|log 2x |的图象从左到右相交于点C ,D ,记线段AC 和BD 在x 轴上的投影长度分别为a ,b ,当m 变化时,ba 的最小值为解析:根据题意得x A =2-m ,x B =2m ,x C =2-82m +1,x D =282m +1,所以a =|x A -x C |=|2-m -2-82m +1|,b =|x B -x D |=|2m -282m +1|,即b a =⎪⎪⎪⎪⎪⎪2m-282m +12-m-2-82m +1 =282m +1 ·2m=282m +1+m . 因为m >0,所以82m +1+m =12(2m +1)+82m +1-12≥2 12(2m +1)·82m +1-12=72,当且仅当12(2m +1)=82m +1,即m =32时取等号,所以b a 的最小值为272=8 2.。

【人教版】红对勾2020届高考一轮数学(理)复习:课时作业69

【人教版】红对勾2020届高考一轮数学(理)复习:课时作业69

课时作业72 坐标系1.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π3=1,M ,N 分别为C 与x 轴,y 轴的交点.(1)求C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程. 解:(1)由ρcos ⎝⎛⎭⎪⎫θ-π3=1得ρ⎝ ⎛⎭⎪⎫12cos θ+32sin θ=1.从而C 的直角坐标方程为12x +32y =1,即x +3y =2. 当θ=0时,ρ=2,所以M (2,0).当θ=π2时,ρ=233,所以N ⎝ ⎛⎭⎪⎫233,π2. (2)由(1)知M 点的直角坐标为(2,0),N 点的直角坐标为⎝ ⎛⎭⎪⎫0,233. 所以P 点的直角坐标为⎝ ⎛⎭⎪⎫1,33,则P 点的极坐标为⎝ ⎛⎭⎪⎫233,π6,所以直线OP 的极坐标方程为θ=π6(ρ∈R ).2.已知极坐标系的极点为直角坐标系xOy 的原点,极轴为x 轴的正半轴,两种坐标系中的长度单位相同,圆C 的直角坐标方程为x 2+y 2+2x -2y =0,直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t ,y =t(t 为参数),射线OM 的极坐标方程为θ=3π4.(1)求圆C 和直线l 的极坐标方程;(2)已知射线OM 与圆C 的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长.解:(1)∵ρ2=x 2+y 2,x =ρcos θ,y =ρsin θ, 圆C 的直角坐标方程为 x 2+y 2+2x -2y =0, ∴ρ2+2ρcos θ-2ρsin θ=0, ∴圆C 的极坐标方程为 ρ=22sin ⎝ ⎛⎭⎪⎫θ-π4.又直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t ,y =t (t 为参数),消去t 后得y =x +1,∴直线l 的极坐标方程为sin θ-cos θ=1ρ.(2)当θ=3π4时,|OP |=22sin ⎝ ⎛⎭⎪⎫3π4-π4=22,∴点P 的极坐标为⎝ ⎛⎭⎪⎫22,3π4,|OQ |=122+22=22, ∴点Q 的极坐标为⎝ ⎛⎭⎪⎫22,3π4,故线段PQ 的长为322.3.在极坐标系中,曲线C 的方程为ρ2=31+2sin 2θ,点R ⎝ ⎛⎭⎪⎫22,π4. (1)以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,求曲线C 的直角坐标方程,点R 的直角坐标;(2)设P 为曲线C 上一动点,以PR 为对角线的矩形PQRS 的一边垂直于极轴,求矩形PQRS 周长的最小值,及此时点P 的直角坐标.解:(1)由于x 2+y 2=ρ2,x =ρcos θ,y =ρsin θ,则曲线C 的极坐标方程化成直角坐标方程为x 23+y 2=1.点R 的直角坐标为(2,2). (2)设P (3cos θ,sin θ),根据题意,可令Q (2,sin θ), 则|PQ |=2-3cos θ,|QR |=2-sin θ, 所以|PQ |+|QR |=4-2sin ⎝ ⎛⎭⎪⎫θ+π3,当θ=π6时,(|PQ |+|QR |)min =2. 所以矩形PQRS 周长的最小值为4,且P ⎝ ⎛⎭⎪⎫32,12. 4.(2019·福建福州四校联考)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2+cos α,y =2+sin α(α为参数),直线C 2的方程为y =3x .以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 1和直线C 2的极坐标方程;(2)若直线C 2与曲线C 1交于A ,B 两点,求1|OA |+1|OB |. 解:(1)由曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2+cos α,y =2+sin α(α为参数),得曲线C 1的普通方程为(x -2)2+(y -2)2=1,则C 1的极坐标方程为 ρ2-4ρcos θ-4ρsin θ+7=0,由于直线C 2过原点,且倾斜角为π3,故其极坐标方程为θ=π3(ρ∈R ).(2)由⎩⎨⎧ρ2-4ρcos θ-4ρsin θ+7=0,θ=π3得ρ2-(23+2)ρ+7=0,设A ,B 对应的极径分别为ρ1,ρ2, 则ρ1+ρ2=23+2,ρ1ρ2=7,∴1|OA |+1|OB |=|OA |+|OB ||OA |·|OB |=ρ1+ρ2ρ1ρ2=23+27.5.在平面直角坐标系中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos φ,y =sin φ(φ为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2是圆心在极轴上且经过极点的圆,射线θ=π3与曲线C 2交于点D ⎝ ⎛⎭⎪⎫2,π3. (1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)已知极坐标系中两点A (ρ1,θ0),B ⎝ ⎛⎭⎪⎫ρ2,θ0+π2,若A ,B 都在曲线C 1上,求1ρ21+1ρ22的值.解:(1)∵C 1的参数方程为⎩⎪⎨⎪⎧x =2cos φ,y =sin φ,∴C 1的普通方程为x 24+y 2=1. 由题意知曲线C 2的极坐标方程为 ρ=2a cos θ(a 为半径),将D ⎝ ⎛⎭⎪⎫2,π3代入,得2=2a ×12,∴a =2,∴圆C 2的圆心的直角坐标为(2,0),半径为2, ∴C 2的直角坐标方程为(x -2)2+y 2=4. (2)曲线C 1的极坐标方程为 ρ2cos 2θ4+ρ2sin 2θ=1, 即ρ2=44sin 2θ+cos 2θ.∴ρ21=44sin 2θ0+cos 2θ0,ρ22=44sin 2⎝ ⎛⎭⎪⎫θ0+π2+cos 2⎝ ⎛⎭⎪⎫θ0+π2=4sin 2θ0+4cos 2θ0. ∴1ρ21+1ρ22=4sin 2θ0+cos 2θ04+4cos 2θ0+sin 2θ04=54. 6.(2019·山东淄博模拟)在平面直角坐标系xOy 中,直线l 的方程是x =4.曲线C 的参数方程是⎩⎪⎨⎪⎧x =1+2cos φ,y =1+2sin φ(φ为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求直线l 和曲线C 的极坐标方程;(2)若射线θ=α⎝ ⎛⎭⎪⎫ρ≥0,0<α<π4与曲线C 交于点O ,A ,与直线l 交于点B ,求|OA ||OB |的取值范围.解:(1)由ρcos θ=x ,得直线l 的极坐标方程为ρcos θ=4.曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+2cos φ,y =1+2sin φ(φ为参数),消去参数φ得曲线C 的普通方程为(x -1)2+(y -1)2=2,即x 2+y 2-2x -2y =0,将x 2+y 2=ρ2,x =ρcos θ,y =ρsin θ代入上式得ρ2=2ρcos θ+2ρsin θ,所以曲线C 的极坐标方程为 ρ=2cos θ+2sin θ.(2)设A (ρ1,α),B (ρ2,α),则 ρ1=2cos α+2sin α,ρ2=4cos α, 所以|OA ||OB |=ρ1ρ2=(2cos α+2sin α)cos α4 =sin αcos α+cos 2α2=14(sin 2α+cos 2α)+14 =24sin ⎝ ⎛⎭⎪⎫2α+π4+14,因为0<α<π4,所以π4<2α+π4<3π4, 所以22<sin ⎝ ⎛⎭⎪⎫2α+π4≤1,所以12<24sin ⎝⎛⎭⎪⎫2α+π4+14≤1+24. 故|OA ||OB |的取值范围是⎝ ⎛⎦⎥⎤12,1+24. 7.(2019·福建福州模拟)在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π6=2.已知点Q 是曲线C 1上的动点,点P 在线段OQ 上,且满足|OQ |·|OP |=4,动点P 的轨迹为C 2.(1)求C 2的直角坐标方程;(2)设点A 的极坐标为⎝ ⎛⎭⎪⎫2,π3,点B 在曲线C 2上,求△AOB 面积的最大值.解:(1)设P 的极坐标为(ρ,θ)(ρ>0),Q 的极坐标为(ρ1,θ)(ρ1>0), 则|OP |=ρ,|OQ |=ρ1=2cos ⎝⎛⎭⎪⎫θ-π6, 由|OQ |·|OP |=4得C 2的极坐标方程为 ρ=2cos ⎝ ⎛⎭⎪⎫θ-π6(ρ>0), 所以ρ=3cos θ+sin θ,两边乘ρ得ρ2=3ρcos θ+ρsin θ, 因为ρ2=x 2+y 2,ρcos θ=x ,ρsin θ=y , 所以x 2+y 2-3x -y =0, 所以C 2的直角坐标方程为⎝⎛⎭⎪⎫x -322+⎝ ⎛⎭⎪⎫y -122=1(x 2+y 2≠0).(2)设点B 的极坐标为(ρB ,α)(ρB >0),由题设及(1)知|OA |=2, ρB =2cos ⎝ ⎛⎭⎪⎫α-π6, 于是△AOB 的面积 S =12|OA |·ρB ·sin ∠AOB =2cos ⎝ ⎛⎭⎪⎫α-π6·⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫α-π3= 2⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫32cos α+12sin α⎝ ⎛⎭⎪⎫12sin α-32cos α=2⎪⎪⎪⎪⎪⎪sin 2α-34≤32,当α=0时,S 取得最大值32. 所以△AOB 面积的最大值为32.8.(2019·河南名校联盟联考)在平面直角坐标系xOy 中,圆C 的直角坐标方程为x 2+(y -1)2=1.以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρ(3cos θ+sin θ)=5.(1)求圆C 的极坐标方程和直线l 的直角坐标方程;(2)在圆上找一点A ,使它到直线l 的距离最小,并求点A 的极坐标.解:(1)x 2+(y -1)2=1即x 2+y 2-2y =0, 因为ρ2=x 2+y 2,ρsin θ=y ,所以圆C 的极坐标方程为ρ2=2ρsin θ, 即ρ=2sin θ.ρ(3cos θ+sin θ)=5即3ρcos θ+ρsin θ=5, 因为ρcos θ=x ,ρsin θ=y ,所以直线l 的直角坐标方程为y =-3x +5.(2)曲线C :x 2+(y -1)2=1是以C (0,1)为圆心,1为半径的圆. 设圆上点A (x 0,y 0)到直线l :y =-3x +5的距离最短,所以圆C 在点A 处的切线与直线l :y =-3x +5平行.即直线CA 与l 的斜率的乘积等于-1,即y 0-1x 0×(-3)=-1.①因为点A 在圆上,所以x 20+(y 0-1)2=1,②联立①②可解得x 0=-32,y 0=12或x 0=32,y 0=32.所以点A 的坐标为⎝ ⎛⎭⎪⎫-32,12或⎝ ⎛⎭⎪⎫32,32.又由于圆上点A 到直线l :y =-3x +5的距离最小,所以点A 的坐标为⎝ ⎛⎭⎪⎫32,32,点A 的极径为⎝ ⎛⎭⎪⎫322+⎝ ⎛⎭⎪⎫322=3,极角θ满足tan θ=3且θ为第一象限角,则可取θ=π3.所以点A 的极坐标为⎝ ⎛⎭⎪⎫3,π3.。

【人教版】2020届高考一轮数学(理)复习:课时作业 (24)

【人教版】2020届高考一轮数学(理)复习:课时作业 (24)

课时作业24 正弦定理和余弦定理1.(2016·天津卷)在△ABC 中,若AB =13,BC =3,∠C =120°,则AC =( A ) A .1 B .2 C .3 D .4 解析:在△ABC 中,设A 、B 、C 所对的边分别为a ,b ,c ,则由c 2=a 2+b 2-2ab cos C ,得13=9+b 2-2×3b ×⎝ ⎛⎭⎪⎫-12,即b 2+3b -4=0,解得b =1(负值舍去),即AC =1,故选A . 2.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,C .已知8b =5c ,C =2B ,则cos C 等于( A ) A .725 B .-725 C .±725 D .2425 解析:∵8b =5c ,∴由正弦定理,得8sin B =5sin C . 又∵C =2B ,∴8sin B =5sin2B ,∴8sin B =10sin B cos B . ∵sin B ≠0,∴cos B =45, ∴cos C =cos2B =2cos 2B -1=725. 3.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,C .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( C ) A .3 B .932 C .332 D .3 3 解析:c 2=(a -b )2+6,即c 2=a 2+b 2-2ab +6.①∵C =π3,∴由余弦定理得c 2=a 2+b 2-ab ,② 由①和②得ab =6, ∴S △ABC =12ab sin C =12×6×32=332,故选C . 4.(2019·湖南衡阳调研)在△ABC 中,a 、b 、c 分别为内角A 、B 、C 所对的边,若2sin C =sin A +sin B ,cos C =35且S △ABC =4,则c =( A ) A .463 B .4 C .263 D .5 解析:因为2sin C =sin A +sin B , 所以由正弦定理可得2c =a +b ,① 由cos C =35可得c 2=a 2+b 2-2ab cos C =(a +b )2-165ab ,② 又由cos C =35,得sin C =45, 所以S △ABC =12ab sin C =2ab 5=4, ∴ab =10.③ 由①②③解得c =463,故选A . 5.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =a c ,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( C ) A .直角三角形 B .等腰非等边三角形 C .等边三角形 D .钝角三角形 解析:∵sin A sin B =a c ,∴a b =a c ,∴b =C . 又(b +c +a )(b +c -a )=3bc ,∴b 2+c 2-a 2=bc , ∴cos A =b 2+c 2-a 22bc =bc 2bc =12.∵A ∈(0,π),∴A =π3,∴△ABC 是等边三角形. 6.(2019·合肥质检)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos C =223,b cos A +a cos B =2,则△ABC 的外接圆面积为( C ) A .4π B .8π C .9π D .36π 解析:由余弦定理得b ·b 2+c 2-a 22bc +a ·a 2+c 2-b 22ac =2.即b 2+c 2-a 2+a 2+c 2-b 22c =2,整理得c =2,由cos C =223得sin C =13,再由正弦定理可得2R =c sin C =6,所以△ABC 的外接圆面积为πR 2=9π. 7.(2018·浙江卷)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,C .若a =7,b =2,A =60°,则sin B =217,c =3_. 解析:由a sin A =b sin B 得sin B =b a sin A =217,由a 2=b 2+c 2-2bc cos A ,得c 2-2c -3=0,解得c =3(舍负). 8.(2019·烟台模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若角A ,B ,C 依次成等差数列,且a =1,b =3,则S △ABC 2. 解析:因为角A ,B ,C 依次成等差数列,所以B =60°. 由正弦定理,得1sin A =3sin60°,解得sin A =12, 因为0°<A <120°,所以A =30°, 此时C =90°,所以S △ABC =12ab =32. 9.(2018·江苏卷)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =120°,∠ABC 的平分线交AC 于点D ,且BD =1,则4a +c 的最小值为9__.解析:依题意画出图形,如图所示.易知S △ABD +S △BCD =S △ABC , 即12c sin60°+12a sin60°=12ac sin120°, ∴a +c =ac ,∴1a +1c =1, ∴4a +c =(4a +c )⎝ ⎛⎭⎪⎫1a +1c =5+c a +4a c ≥9,当且仅当c a =4a c ,即a =32,c =3时取“=”. 10.(2019·梅州质检)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a 2-b 2=3bc ,且sin C =23sin B ,则角A 的大小为π6. 解析:由sin C =23sin B 得,c =23b , ∴a 2-b 2=3bc =3b ·23b =6b 2,∴a 2=7b 2. 则cos A =b 2+c 2-a 22bc =b 2+12b 2-7b 243b 2=32, 又∵0<A <π,∴A =π6. 11.(2019·贵阳质检)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a 2-(b -c )2=(2-3)bc ,sin A sin B =cos 2C 2,BC 边上的中线AM 的长为7. (1)求角A 和角B 的大小; (2)求△ABC 的面积. 解:(1)由a 2-(b -c )2=(2-3)bc , 得a 2-b 2-c 2=-3bc ,∴cos A =b 2+c 2-a 22bc =32,又0<A <π,∴A =π6. 由sin A sin B =cos 2C 2, 得12sin B =1+cos C 2,即sin B =1+cos C , 则cos C <0,即C 为钝角,∴B 为锐角,且B +C =5π6, 则sin ⎝ ⎛⎭⎪⎫5π6-C =1+cos C ,化简得cos ⎝ ⎛⎭⎪⎫C +π3=-1, 解得C =2π3,∴B =π6. (2)由(1)知,a =b ,在△ACM 中, 由余弦定理得AM 2=b 2+⎝ ⎛⎭⎪⎫a 22-2b ·a 2·cos C =b 2+b 24+b 22=(7)2, 解得b =2,故S △ABC =12ab sin C =12×2×2×32= 3. 12.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =b tan A ,且B 为钝角. (1)证明:B -A =π2; (2)求sin A +sin C 的取值范围. 解:(1)证明:由a =b tan A 及正弦定理,得sin A cos A =a b =sin A sin B ,所以sin B =cos A ,即sin B =sin ⎝ ⎛⎭⎪⎫π2+A . 又B 为钝角,因此π2+A ∈⎝ ⎛⎭⎪⎫π2,π, 故B =π2+A ,即B -A =π2. (2)由(1)知,C =π-(A +B )=π-⎝ ⎛⎭⎪⎫2A +π2=π2-2A >0,所以A ∈⎝ ⎛⎭⎪⎫0,π4.于是sin A +sin C =sin A +sin ⎝ ⎛⎭⎪⎫π2-2A =sin A +cos2A =-2sin 2A +sin A +1 =-2⎝ ⎛⎭⎪⎫sin A -142+98. 因为0<A <π4,所以0<sin A <22, 因此22<-2⎝ ⎛⎭⎪⎫sin A -142+98≤98. 由此可知sin A +sin C 的取值范围是⎝ ⎛⎦⎥⎤22,98.13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足b 2+c 2-a 2=bc ,AB →·BC →>0,a =32,则b +c 的取值范围是( B ) A .⎝ ⎛⎭⎪⎫1,32 B .⎝ ⎛⎭⎪⎫32,32 C .⎝ ⎛⎭⎪⎫12,32 D .⎝ ⎛⎦⎥⎤12,32 解析:由b 2+c 2-a 2=bc 得,cos A =b 2+c 2-a 22bc =12, ∵0<A <π,则A =π3,由AB →·BC →>0知,B 为钝角, 又a sin A =1,则b =sin B ,c =sin C ,b +c =sin B +sin C =sin B +sin ⎝ ⎛⎭⎪⎫2π3-B =32sin B +32cos B =3sin ⎝ ⎛⎭⎪⎫B +π6, ∵π2<B <2π3,∴2π3<B +π6<5π6, ∴12<sin ⎝ ⎛⎭⎪⎫B +π6<32,b +c ∈⎝ ⎛⎭⎪⎫32,32. 14.(2019·山东济宁模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且a cos B -b cos A =23c ,则tan(A -B )的最大值为( A )A .255B .55C .33D . 3 解析:由a cos B -b cos A =23c 及正弦定理可得, sin A ·cos B -sin B cos A =23sin C =23sin(A +B )= 23sin A cos B +23cos A sin B , 即13sin A cos B =53sin B cos A ,得tan A =5tan B , 从而可得tan A >0,tan B >0, ∴tan(A -B )=tan A -tan B 1+tan A tan B =4tan B 1+5tan 2B =41tan B +5tan B ≤425=255,当且仅当1tan B =5tan B ,即tan B =55时取得等号, ∴tan(A -B )的最大值为255,故选A . 15.(2019·广东七校联考)已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,若a =2,A =π3,且32-sin(B -C )=sin2B ,则△ABC 3. 解析:法1 ∵A =π3,且32-sin(B -C )=sin2B , ∴32=sin2B +sin(B -C ), 即sin A =sin2B +sin(B -C ),又sin A =sin(B +C ), ∴sin B cos C +cos B sin C =2sin B cos B +sin B cos C -cos B sin C ,即cos B sin C =sin B cos B . 当cos B =0时,可得B =π2,C =π6,∴S △ABC =12ac =12×2×2×tan π6=233; 当cos B ≠0时,sin B =sin C , 由正弦定理可知b =c ,∴△ABC 为等腰三角形, 又∵A =π3,∴a =b =c =2,∴S △ABC =34a 2= 3. 综上可知△ABC 的面积为3或233. 法2 由已知及A +B +C =π可得32-sin ⎝ ⎛⎭⎪⎫2B -23π =sin2B ,即sin2B +sin ⎝ ⎛⎭⎪⎫2B -23π=32, ∴sin2B -32cos2B -12sin2B =32, 即sin ⎝ ⎛⎭⎪⎫2B -π3=32. ∵A =π3,∴0<B <23π,∴-π3<2B -π3<π, ∴2B -π3=π3或2π3,∴B =π3或π2. 当B =π2时,C =π6, ∴S △ABC =12×2×2×tan π6=233; 当B =π3时,△ABC 是边长为2的等边三角形, ∴S △ABC =34a 2=34×4= 3. 综上可知,△ABC 的面积为3或233. 16.(2019·河南信阳模拟)已知a ,b ,c 分别是△ABC 内角A ,B ,C 的对边,且满足(a +b +c )(sin B +sin C -sin A )=b sin C . (1)求角A 的大小; (2)设a =3,S 为△ABC 的面积,求S +3cos B cos C 的最大值.解:(1)∵(a +b +c )(sin B +sin C -sin A )=b sin C , ∴根据正弦定理,知(a +b +c )(b +c -a )=bc , 即b 2+c 2-a 2=-bC . ∴由余弦定理,得cos A =b 2+c 2-a 22bc =-12. 又A ∈(0,π),所以A =23π. (2)根据a =3,A =23π及正弦定理可得 b sin B =c sin C =a sin A =332=2, ∴b =2sin B ,c =2sin C . ∴S =12bc sin A =12×2sin B ×2sin C ×32=3sin B sin C . ∴S +3cos B cos C =3sin B sin C +3cos B ·cos C =3cos(B -C ). 故当⎩⎨⎧ B =C ,B +C =π3,即B =C =π6时, S +3cos B ·cos C 取得最大值 3.。

【人教版】红对勾2020届高考一轮数学(理)复习:课时作业22

课时作业3简单的逻辑联结词、全称量词与存在量词1.命题“函数y=f(x)(x∈M)是偶函数”的否定可表示为(A) A.∃x0∈M,f(-x0)≠f(x0)B.∀x∈M,f(-x)≠f(x)C.∀x∈M,f(-x)=f(x)D.∃x0∈M,f(-x0)=f(x0)解析:命题“函数y=f(x)(x∈M)是偶函数”即“∀x∈M,f(-x)=f(x)”,该命题是一个全称命题,其否定是一个特称命题,即“∃x0∈M,f(-x0)≠f(x0)”.2.(2019·清华大学自主招生能力测试)“∀x∈R,x2-πx≥0”的否定是(D)A.∀x∈R,x2-πx<0 B.∀x∈R,x2-πx≤0C.∃x0∈R,x20-πx0≤0 D.∃x0∈R,x20-πx0<0解析:全称命题的否定是特称命题,所以“∀x∈R,x2-πx≥0”的否定是“∃x0∈R,x20-πx0<0”,故选D.3.(2019·衡水二调)已知命题p:∀x1,x2∈R,[f(x2)-f(x1)](x2-x1)≥0,则綈p是(B)A.∃x1,x2∉R,[f(x2)-f(x1)](x2-x1)<0B.∃x1,x2∈R,[f(x2)-f(x1)](x2-x1)<0C.∀x1,x2∉R,[f(x2)-f(x1)](x2-x1)<0D.∀x1,x2∈R,[f(x2)-f(x1)](x2-x1)<0解析:根据全称命题与特称命题互为否定的关系可知綈p:∃x1,x2∈R,[f(x2)-f(x1)](x2-x1)<0.4.(2019·安徽安庆模拟)设命题p:∃x0∈(0,+∞),x0+1x0>3;命题q:∀x∈(2,+∞),x2>2x,则下列命题为真的是(A) A.p∧(綈q) B.(綈p)∧qC.p∧q D.(綈p)∨q解析:对于命题p,当x0=4时,x0+1x0=174>3,故命题p为真命题;对于命题q,当x=4时,24=42=16,即∃x0∈(2,+∞),使得2x0=x20成立,故命题q为假命题,所以p∧(綈q)为真命题,故选A.5.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为(A)A.綈p∨綈q B.p∨綈qC.綈p∧綈q D.p∨q解析:命题p是“甲降落在指定范围”,则綈p是“甲没降落在指定范围”,q是“乙降落在指定范围”,则綈q是“乙没降落在指定范围”,命题“至少有一位学员没有降落在指定范围”包括“甲降落在指定范围,乙没降落在指定范围”“甲没降落在指定范围,乙降落在指定范围”“甲没降落在指定范围,乙没降落在指定范围”.所以命题“至少有一位学员没有降落在指定范围”可表示为綈p∨綈q.故选A.6.(2019·河南郑州外国语中学模拟)已知命题p:若复数z满足(z-i)·(-i)=5,则z=6i;命题q:复数1+i1+2i 的虚部为-15i,则下列命题中为真命题的是(C)A.(綈p)∧(綈q) B.(綈p)∧q C.p∧(綈q) D.p∧q解析:复数z满足(z-i)·(-i)=5,则z =-5i +i =6i ,故命题p 为真命题, 则綈p 为假命题;复数1+i 1+2i =(1+i )·(1-2i )(1+2i )·(1-2i )=35-15i ,则z 的虚部为-15,故命题q为假命题,则綈q 为真命题.由复合命题真假判断的真值表可知(綈p )∧(綈q )为假命题,(綈p )∧q 为假命题,p ∧(綈q )为真命题,p ∧q 为假命题.故选C.7.(2019·山东泰安联考)下列命题正确的是( D )A .命题“∃x ∈[0,1],使x 2-1≥0”的否定为“∀x ∈[0,1],都有x 2-1≤0”B .若命题p 为假命题,命题q 是真命题,则(綈p )∨(綈q )为假命题C .命题“若a 与b 的夹角为锐角,则a ·b >0”及它的逆命题均为真命题D .命题“若x 2+x =0,则x =0或x =-1”的逆否命题为“若x ≠0且x ≠-1,则x 2+x ≠0”解析:对于选项A ,命题“∃x ∈[0,1],使x 2-1≥0”的否定为“∀x ∈[0,1],都有x 2-1<0”,故A 项错误;对于选项B ,p 为假命题,则綈p 为真命题;q 为真命题,则綈q 为假命题,所以(綈p )∨(綈q )为真命题,故B 项错误;对于选项C ,原命题为真命题,若a ·b >0,则a 与b 的夹角可能为锐角或零角,所以原命题的逆命题为假命题,故C 项错误;对于选项D ,命题“若x 2+x =0,则x =0或x =-1”的逆否命题为“若x ≠0且x ≠-1,则x 2+x ≠0”,故选项D 正确,因此选D.8.(2019·江西七校联考)已知函数f (x )=⎩⎪⎨⎪⎧3x,x <0,m -x 2,x ≥0,给出下列两个命题:命题p :∃m ∈(-∞,0),方程f (x )=0有解,命题q :若m =19,则f (f (-1))=0,那么,下列命题为真命题的是( B )A .p ∧qB .(綈p )∧qC .p ∧(綈q )D .(綈p )∧(綈q )解析:因为3x >0,当m <0时,m -x 2<0, 所以命题p 为假命题;当m =19时,因为f (-1)=3-1=13,所以f (f (-1))=f ⎝ ⎛⎭⎪⎫13=19-⎝ ⎛⎭⎪⎫132=0,所以命题q 为真命题,逐项检验可知,只有(綈p )∧q 为真命题,故选B.9.已知命题p :∀x ∈R ,ax 2+ax +1>0,命题q :∃x 0∈R ,x 20-x 0+a =0.若p ∧q 为真命题,则实数a 的取值范围是( D )A .(-∞,4]B .[0,4) C.⎝⎛⎦⎥⎤0,14D.⎣⎢⎡⎦⎥⎤0,14解析:当a =0时,命题p 为真;当a ≠0时,若命题p 为真,则a >0且Δ=a 2-4a <0,即0<a <4.故命题p 为真时,0≤a <4.命题q 为真时,Δ=1-4a ≥0,即a ≤14.命题p ∧q 为真命题时,p ,q 均为真命题,则实数a 的取值范围是⎣⎢⎡⎦⎥⎤0,14.10.(2019·聊城模拟)已知函数f (x )在R 上单调递增,若∃x 0∈R ,f (|x 0+1|)≤f (log 2a -|x 0+2|),则实数a 的取值范围是( A )A .[2,+∞)B .[4,+∞)C .[8,+∞)D .(0,2]解析:∵函数f (x )在R 上单调递增, ∴∃x 0∈R ,f (|x 0+1|)≤f (log 2a -|x 0+2|), 等价为∃x 0∈R ,|x 0+1|≤log 2a -|x 0+2|成立,即|x +1|+|x +2|≤log 2a 有解, ∵|x +1|+|x +2|≥|x +2-x -1|=1, ∴log 2a ≥1,即a ≥2.11.已知命题p :若平面α⊥平面β,平面γ⊥平面β,则有平面α∥平面γ.命题q :在空间中,对于三条不同的直线a ,b ,c ,若a ⊥b ,b ⊥c ,则a ∥c .对以上两个命题,有以下命题:①p ∧q 为真;②p ∨q 为假;③p ∨q 为真;④(綈p )∨(綈q )为假. 其中,正确的是②__.(填序号)解析:命题p 是假命题,这是因为α与γ也可能相交;命题q 也是假命题,这两条直线也可能异面,相交.12.(2019·郑州质量预测)已知函数f (x )=x +4x ,g (x )=2x +a ,若∀x 1∈⎣⎢⎡⎦⎥⎤12,1,∃x 2∈[2,3],使得f (x 1)≤g (x 2),则实数a 的取值范围是⎣⎢⎡⎭⎪⎫12,+∞ . 解析:依题意知f (x )max ≤g (x )max . ∵f (x )=x +4x 在⎣⎢⎡⎦⎥⎤12,1上是减函数,∴f (x )max =f ⎝ ⎛⎭⎪⎫12=172.又g (x )=2x +a 在[2,3]上是增函数, ∴g (x )max =8+a ,因此172≤8+a ,则a ≥12.13.已知命题p :∀x ∈R ,不等式ax 2+22x +1<0解集为空集,命题q :f (x )=(2a -5)x 在R 上满足f ′(x )<0,若命题p ∧(綈q )是真命题,则实数a 的取值范围是( D )A.⎣⎢⎡⎦⎥⎤52,3 B .[3,+∞)C .[2,3]D.⎣⎢⎡⎦⎥⎤2,52∪[3,+∞) 解析:命题p :∀x ∈R ,不等式ax 2+22x +1<0解集为空集,a =0时,不满足题意.当a ≠0时,必须满足:⎩⎪⎨⎪⎧a >0,Δ=(22)2-4a ≤0,解得a ≥2. 命题q :f (x )=(2a -5)x 在R 上满足f ′(x )<0, 可得函数f (x )在R 上单调递减, ∴0<2a -5<1,解得52<a <3. ∵命题p ∧(綈q )是真命题, ∴p 为真命题,q 为假命题.∴⎩⎨⎧a ≥2,a ≤52或a ≥3,解得2≤a ≤52或a ≥3,则实数a 的取值范围是[3,+∞)∪⎣⎢⎡⎦⎥⎤2,52.故选D. 14.(2019·河北衡水中学联考)已知函数f (x )=2sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,φ∈⎣⎢⎡⎦⎥⎤π2,π的部分图象如图所示,其中|MN |=52,记命题p :f (x )=2sin ⎝ ⎛⎭⎪⎫π3x +5π6,命题q :将f (x )的图象向右平移π6个单位,得到函数y =2sin ⎝⎛⎭⎪⎫π3x +2π3的图象,则以下判断正确的是( D )A .p ∧q 为真B .p ∨q 为假C .(綈p )∨q 为真D .p ∧(綈q )为真解析:由|MN |=52,可得 ⎝ ⎛⎭⎪⎫π2ω2+22=52,解得ω=π3,因为f (0)=1, 所以sin φ=12.又φ∈⎣⎢⎡⎦⎥⎤π2,π,所以φ=5π6,所以f (x )=2sin ⎝ ⎛⎭⎪⎫π3x +5π6. 故p 为真命题.将f (x )图象上所有的点向右平移π6个单位,得到 f ⎝⎛⎭⎪⎫x -π6=2sin ⎝ ⎛⎭⎪⎫π3x +5π6-π218的图象, 故q 为假命题.所以p ∧q 为假,p ∨q 为真,(綈p )∨q 为假,p ∧(綈q )为真,故选D.15.(2019·沈阳模拟)已知函数f (x )=ln(1+x )-ln(1-x ),给出以下四个命题:①∀x ∈(-1,1),有f (-x )=-f (x );②∀x 1,x 2∈(-1,1)且x 1≠x 2,有f (x 1)-f (x 2)x 1-x 2>0;③∀x 1,x 2∈(0,1),有f ⎝ ⎛⎭⎪⎫x 1+x 22≤f (x 1)+f (x 2)2; ④∀x ∈(-1,1),|f (x )|≥2|x |. 其中所有真命题的序号是( D ) A .①② B .③④ C .①②③D .①②③④解析:对于①,∵f (x )=ln(1+x )-ln(1-x ),且其定义域为(-1,1),∴f (-x )=ln(1-x )-ln(1+x )=-[ln(1+x )-ln(1-x )]=-f (x ),即∀x ∈(-1,1),有f (-x )=-f (x ),故①是真命题;对于②,∵x ∈(-1,1),由f ′(x )=11+x +11-x =21-x 2≥2>0,可知f (x )在区间(-1,1)上单调递增,即∀x 1,x 2∈(-1,1)且x 1≠x 2,有f (x 1)-f (x 2)x 1-x 2>0,故②是真命题;对于③,∵f ′(x )=21-x 2在(0,1)上单调递增,∴∀x 1,x 2∈(0,1),有f ⎝ ⎛⎭⎪⎫x 1+x 22≤f (x 1)+f (x 2)2, 故③是真命题;对于④,设g (x )=f (x )-2x ,则当x ∈(0,1)时,g ′(x )=f ′(x )-2≥0, ∴g (x )在(0,1)上单调递增,∴当x ∈(0,1)时,g (x )>g (0),即f (x )>2x ,由奇函数性质可知,∀x ∈(-1,1),|f (x )|≥2|x |,故④是真命题,故选D.16.已知命题p :∃x 0∈R ,e x 0-mx 0=0,命题q :∀x ∈R ,x 2+mx +1≥0,若p ∨(綈q )为假命题,则实数m 的取值范围是[0,2]__.解析:若p ∨(綈q )为假命题,则p 假q 真.由e x -mx =0,可得m =exx ,x ≠0,设f (x )=e xx ,x ≠0,则f ′(x )=x e x -e x x 2=(x -1)e x x 2,当x >1时,f ′(x )>0,函数f (x )=e xx 在(1,+∞)上是单调递增函数;当0<x <1或x <0时,f ′(x )<0,函数f (x )=e xx 在(0,1)和(-∞,0)上是单调递减函数,所以当x =1时,函数取得极小值f (1)=e ,所以函数f (x )=e xx 的值域是(-∞,0)∪[e ,+∞),由p 是假命题,可得0≤m <e.当命题q 为真命题时,有Δ=m 2-4≤0,即-2≤m ≤2. 所以当p ∨(綈q )为假命题时,m 的取值范围是0≤m ≤2.。

【人教版】红对勾2020届高考一轮数学(理)复习:课时作业27

课时作业34 数列的综合应用1.已知数列{a n }为等差数列,且满足OA →=a 3OB →+a 2 015OC →,其中点A ,B ,C 在一条直线上,点O 为直线AB 外一点,记数列{a n }的前n 项和为S n ,则S 2 017的值为( A )A.2 0172 B .2 017 C .2 018 D .2 015解析:因为点A ,B ,C 在一条直线上,所以a 3+a 2 015=1,则S 2 017=2 017(a 1+a 2 017)2=2 017(a 3+a 2 015)2=2 0172,故选A. 2.某制药厂打算投入一条新的生产线,但需要经环保部门审批同意方可投入生产.已知该生产线连续生产n 年的累计产量为f (n )=13(n +1)(n +2)(2n +3)吨,但如果年产量超过130吨,将会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限是( C )A .5年B .6年C .7年D .8年解析:由题意知第一年产量为a 1=13×2×3×5=10; 以后各年产量分别为a n =f (n )-f (n -1)=13(n +1)(n +2)(2n +3)-13n ·(n +1)·(2n +1)=2(n +1)2(n ∈N *), 令2(n +1)2≤130,所以1≤n ≤65-1, 所以1≤n ≤7.故最长的生产期限为7年.3.定义:若数列{a n }对任意的正整数n ,都有|a n +1|+|a n |=d (d 为常数),则称{a n }为“绝对和数列”,d 叫作“绝对公和”.在“绝对和数列”{a n }中,a 1=2,绝对公和为3,则其前2 017项的和S 2 017的最小值为( C )A .-2 017B .-3 014C .-3 022D .3 032解析:依题意,要使其前2 017项的和S 2 017的值最小,只需每一项都取最小值即可.因为|a n +1|+|a n |=3,所以有-a 3-a 2=-a 5-a 4=…=-a 2 017-a 2 016=3,即a 3+a 2=a 5+a 4=…=a 2 017+a 2 016=-3,所以S 2 017的最小值为2+2 017-12×(-3)=-3 022,故选C. 4.设等比数列{a n }的公比为q ,其前n 项之积为T n ,并且满足条件:a 1>1,a 2 015a 2 016>1,a 2 015-1a 2 016-1<0.给出下列结论:(1)0<q <1;(2)a 2015a 2 017-1>0;(3)T 2 016的值是T n 中最大的;(4)使T n >1成立的最大自然数等于4 030.其中正确的结论为( C )A .(1)(3)B .(2)(3)C .(1)(4)D .(2)(4)解析:由a 2 015-1a 2 016-1<0可知a 2 015<1或a 2 016<1.如果a 2 015<1,那么a 2 016>1, 若a 2 015<0,则q <0;又∵a 2 016=a 1q 2 015,∴a 2 016应与a 1异号, 即a 2 016<0,这与假设矛盾,故q >0.若q ≥1,则a 2 015>1且a 2 016>1,与推出的结论矛盾,故0<q <1,故(1)正确.又a 2 015a 2 017=a 22 016<1,故(2)错误.由结论(1)可知a 2 015>1,a 2 016<1,故数列从第 2 016项开始小于1,则T 2 015最大,故(3)错误.由结论(1)可知数列从第2 016项开始小于1,而T n =a 1a 2a 3…a n ,故当T n =(a 2 015)n 时,求得T n >1对应的自然数为4 030,故(4)正确.5.(2019·太原模拟)已知数列{a n }中,a 1=0,a n -a n -1-1=2(n -1)(n ∈N *,n ≥2),若数列{b n }满足b n =n ·a n +1+1·⎝ ⎛⎭⎪⎫811n -1,则数列{b n }的最大项为第 6 项.解析:由a 1=0,且a n -a n -1-1=2(n -1)(n ∈N *,n ≥2),得a n-a n -1=2n -1(n ≥2),则a 2-a 1=2×2-1,a 3-a 2=2×3-1,a 4-a 3=2×4-1,…,a n -a n -1=2n -1(n ≥2),以上各式累加得a n =2(2+3+…+n )-(n -1)=2×(n +2)(n -1)2-n +1=n 2-1(n ≥2),当n =1时,上式仍成立,所以b n =n ·a n +1+1·⎝ ⎛⎭⎪⎫811n -1=n ·(n +1)2·⎝ ⎛⎭⎪⎫811n -1=(n 2+n )·⎝ ⎛⎭⎪⎫811n -1(n ∈N *). 由⎩⎪⎨⎪⎧b n ≥b n -1,b n ≥b n +1,得 ⎩⎪⎨⎪⎧(n 2+n )·⎝ ⎛⎭⎪⎫811n -1≥(n 2-n )·⎝⎛⎭⎪⎫811n -2,(n 2+n )·⎝ ⎛⎭⎪⎫811n -1≥(n 2+3n +2)·⎝ ⎛⎭⎪⎫811n,解得163≤n ≤193.因为n ∈N *,所以n =6, 所以数列{b n }的最大项为第6项.6.将正整数12分解成两个正整数的乘积有1×12,2×6,3×4三种,其中3×4是这三种分解中两数差的绝对值最小的,我们称3×4为12的最佳分解.当p ×q (p ≤q 且p ,q ∈N *)是正整数n 的最佳分解时,我们定义函数f (n )=q -p ,例如f (12)=4-3=1,数列{f (3n )}的前100项和为 350-1 .解析:当n 为偶数时,f (3n)=0;当n 为奇数时,f (3n)=3n +12-3n -12,因此数列{f (3n )}的前100项和为31-30+32-31+…+350-349=350-1.7.(2019·长沙、南昌联考)已知数列{a n }的前n 项和为S n ,且满足:a 1=1,a n >0,a 2n +1=4S n +4n +1(n ∈N *),若不等式4n 2-8n +3<(5-m )2n ·a n 对任意的n ∈N *恒成立,则整数m 的最大值为( B )A .3B .4C .5D .6解析:当n ≥2时,⎩⎪⎨⎪⎧a 2n +1=4S n +4n +1,a 2n =4S n -1+4(n -1)+1,两式相减得a 2n +1-a 2n =4a n +4, 即a 2n +1=a 2n +4a n +4=(a n +2)2,又a n >0,所以a n +1=a n +2(n ≥2). 对a 2n +1=4S n +4n +1,令n =1,可得a 22=4a 1+4+1=9,所以a 2=3,则a 2-a 1=2,所以数列{a n }是以1为首项,2为公差的等差数列, 故a n =2n -1.因为4n 2-8n +3=(2n -1)(2n -3),n ∈N *,2n -1>0,所以不等式4n 2-8n +3<(5-m )·2n·a n 等价于5-m >2n -32n .记b n =2n -32n ,则b n +1b n=2n -12n +12n -32n =2n -14n -6,当n ≥3时,b n +1b n <1,又b 1=-12,b 2=14,b 3=38, 所以(b n )max =b 3=38. 故5-m >38,得m <378,所以整数m的最大值为4.8.(2019·南昌调研)已知正项数列{a n}的前n项和为S n,∀n∈N*,2S n=a2n+a n.令b n=1a n a n+1+a n+1a n,设{b n}的前n项和为T n,则在T1,T2,T3,…,T100中有理数的个数为9.解析:∵2S n=a2n+a n,①∴2S n+1=a2n+1+a n+1,②②-①,得2a n+1=a2n+1+a n+1-a2n-a n,a2n+1-a2n-a n+1-a n=0,(a n+1+a n)(a n+1-a n-1)=0.又∵{a n}为正项数列,∴a n+1-a n-1=0,即a n+1-a n=1.在2S n=a2n+a n中,令n=1,可得a1=1.∴数列{a n}是以1为首项,1为公差的等差数列.∴a n=n,∴b n=1n n+1+(n+1)n=(n+1)n-n n+1[n n+1+(n+1)n][(n+1)n-n n+1 ]=(n+1)n-n n+1n(n+1)=1n-1n+1,∴T n=1-12+12-13+…+1n-1-1n+1n-1n+1=1-1n+1,要使T n为有理数,只需1n+1为有理数,令n+1=t2,∵1≤n≤100,∴n=3,8,15,24,35,48,63,80,99,共9个数.∴T1,T2,T3,…,T100中有理数的个数为9.9.(2019·福建漳州模拟)已知数列{a n}满足na n-(n+1)·a n-1=2n2+2n (n =2,3,4,…),a 1=6.(1)求证:⎩⎨⎧⎭⎬⎫a n n +1为等差数列,并求出{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,求证:S n <512.解:(1)证明:由na n -(n +1)a n -1=2n 2+2n (n =2,3,4,…),a 1=6,可得a n n +1-a n -1n =2,a 11+1=3,则⎩⎨⎧⎭⎬⎫a n n +1是首项为3,公差为2的等差数列,可得a nn +1=3+2(n -1)=2n +1,则a n =(n +1)(2n +1)(n ∈N *).(2)证明:由1(n +1)(2n +1)<12n (n +1)=12⎝ ⎛⎭⎪⎫1n -1n +1,可得数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和S n =1a 1+1a 2+…+1a n≤16+12×⎝ ⎛⎭⎪⎫12-13+13-14+…+1n -1n +1=16+12⎝ ⎛⎭⎪⎫12-1n +1<16+14=512, 即S n <512.10.已知函数f (x )=⎝ ⎛⎭⎪⎫sin x2+cos x 22-1cos 2x2-sin 2x2,函数y =f (x )-3在(0,+∞)上的零点按从小到大的顺序构成数列{a n }(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =3πa n(4n 2-1)(3n -2),求数列{b n }的前n 项和S n .解:(1)f (x )=⎝ ⎛⎭⎪⎫sin x2+cos x 22-1cos 2x 2-sin 2x 2=sin xcos x=tan x ,由tan x =3及x >0得x =k π+π3(k ∈N ),数列{a n }是首项a 1=π3,公差d =π的等差数列,所以a n =π3+(n -1)π=n π-2π3.(2)b n =3πa n(4n 2-1)(3n -2)=1(2n -1)(2n +1)=12⎝⎛⎭⎪⎫12n -1-12n +1. S n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1.11.已知{a n }是公差不为0的等差数列,{b n }是等比数列,且a 1=b 1=1,a 2=b 2,a 5=b 3.(1)求数列{a n },{b n }的通项公式;(2)记S n =a 1b 1+a 2b 2+…+a nb n,是否存在m ∈N *,使得S m ≥3成立,若存在,求出m ,若不存在,请说明理由.解:(1)设数列{a n }的公差为d (d ≠0),数列{b n }的公比为q ,则由题意知⎩⎪⎨⎪⎧1+d =1·q ,1·q 2=1+4d ,∴d =0或d =2,∵d ≠0,∴d =2,q =3,∴a n =2n -1,b n =3n -1. (2)由(1)可知,S n =a 1b 1+a 2b 2+…+a n b n =11+331+532+…+2n -33n -2+2n -13n -1,13S n =131+332+533+…+2n -33n -1+2n -13n ,两式相减得,23S n =1+231+232+…+23n -1-2n -13n=1+23×1-⎝ ⎛⎭⎪⎫13n -11-13-2n -13n =2-2n +23n <2,∴S n <3.故不存在m ∈N *,使得S m ≥3成立.12.(2019·河南洛阳模拟)已知等差数列{a n }的公差d ≠0,且a 3=5,a 1,a 2,a 5成等比数列.(1)求数列{a n }的通项公式;(2)设b n =1a 2n +4n -2,S n是数列{b n }的前n 项和.若对任意正整数n ,不等式2S n +(-1)n +1·a >0恒成立,求实数a 的取值范围.解:(1)因为a 3=5,a 1,a 2,a 5成等比数列,所以⎩⎪⎨⎪⎧a 1+2d =5,(a 1+d )2=a 1(a 1+4d ),解得a 1=1,d =2, 所以数列{a n }的通项公式为a n =2n -1. (2)因为b n =1a 2n +4n -2=1(2n -1)2+4n -2=14n 2-1=1(2n -1)(2n +1) =12⎝ ⎛⎭⎪⎫12n -1-12n +1, 所以S n =b 1+b 2+…+b n=12⎝ ⎛⎭⎪⎫1-13+12⎝ ⎛⎭⎪⎫13-15+…+12⎝ ⎛⎭⎪⎫12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1, 依题意,对任意正整数n ,不等式1-12n +1+(-1)n +1a >0,当n 为奇数时,1-12n +1+(-1)n +1a >0即a >-1+12n +1,所以a >-23;当n 为偶数时,1-12n +1+(-1)n +1a >0即a <1-12n +1,所以a<45.所以实数a 的取值范围是⎝ ⎛⎭⎪⎫-23,45.。

《精品》人教版红对勾2020届高考一轮数学(理)复习课时作业1

课时作业1集合及其运算1.(2019·莱州一中模拟)已知集合A={x∈N|x2+2x-3≤0},B={C|C⊆A},则集合B中元素的个数为(C)A.2 B.3C.4 D.5解析:A={x∈N|(x+3)(x-1)≤0}={x∈N|-3≤x≤1}={0,1},共有22=4个子集,因此集合B中元素的个数为4,选C.2.(2018·浙江卷)已知全集U={1,2,3,4,5},A={1,3},则∁U A=(C)A.∅B.{1,3}C.{2,4,5} D.{1,2,3,4,5}解析:∵U={1,2,3,4,5},A={1,3},∴∁U A={2,4,5}.3.(2019·湖北四地七校联考)若集合M={x||x|≤1},N={y|y=x2,|x|≤1},则(D)A.M=N B.M⊆NC.M∩N=∅D.N⊆M解析:因为M={x||x|≤1},所以M={x|-1≤x≤1},因为N={y|y =x2,|x|≤1},所以N={y|0≤y≤1},所以N⊆M,故选D.4.(2019·湖南长沙长郡中学月考)已知集合A={0},B={-1,0,1},若A⊆C⊆B,则符合条件的集合C的个数为(C)A.1 B.2C.4 D.8解析:由题意得,含有元素0且是集合B的子集的集合有{0},{0,-1},{0,1},{0,-1,1},即符合条件的集合C共有4个,故选C.5.(2014·新课标Ⅰ)已知集合A={x|x2-2x-3≥0},B={x|-2≤x <2},则A∩B=(A)A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)解析:由不等式x 2-2x -3≥0,解得x ≥3或x ≤-1,因此集合A ={x |x ≤-1或x ≥3},又集合B ={x |-2≤x <2},所以A ∩B ={x |-2≤x ≤-1},故选A.6.(2019·湖北黄冈调研)已知函数f (x )=11-x 2的定义域为M ,g (x )=ln(1-x )的定义域为N ,则M ∪(∁R N )=( A )A .{x |x >-1}B .{x |x ≥1}C .∅D .{x |-1<x <1}解析:依题意得M ={x |-1<x <1},N ={x |x <1},∁R N ={x |x ≥1},所以M ∪(∁R N )={x |x >-1}.7.(2019·广东省际名校联考)已知集合A ={x |x 2-x -2<0},B ={y |y =e x ,x <ln3},则A ∪B =( A )A .(-1,3)B .(-1,0)C .(0,2)D .(2,3) 解析:因为A ={x |-1<x <2},B ={y |0<y <3},所以A ∪B =(-1,3).8.(2019·广州质检)已知集合A ={x |2x 2-7x +3<0},B ={x ∈Z |lg x <1},则阴影部分所表示的集合的元素个数为( B )A .1B .2C .3D .4解析:∵A ={x |2x 2-7x +3<0}=⎝ ⎛⎭⎪⎫12,3,B ={x ∈Z |lg x <1}={1,2,3,4,5,6,7,8,9},∴阴影部分表示的集合是A ∩B ={1,2},有2个元素.9.(2019·河北“五个一”名校联盟质检)已知全集U ={1,2,3,4,5,6,7},集合A ={1,3,7},B ={x |x =log 2(a +1),a ∈A },则(∁U A )∩(∁U B )=(C )A .{1,3}B .{5,6}C .{4,5,6}D .{4,5,6,7}解析:A ={1,3,7},B ={x |x =log 2(a +1),a ∈A }={1,2,3},又U ={1,2,3,4,5,6,7},∴∁U A ={2,4,5,6},∁U B ={4,5,6,7},∴(∁U A )∩(∁U B )={4,5,6}.10.设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉Q },如果P ={x |log 2x <1},Q ={x ||x -2|<1},那么P -Q =( B )A .{x |0<x <1}B .{x |0<x ≤1}C .{x |1≤x <2}D .{x |2≤x <3}解析:由log 2x <1,得0<x <2,所以P ={x |0<x <2};由|x -2|<1,得1<x <3,所以Q ={x |1<x <3},由题意,得P -Q ={x |0<x ≤1}.11.设全集为R ,集合A ={x |x 2-9<0},B ={x |-1<x ≤5},则A ∩(∁R B )={x |-3<x ≤-1}__.解析:由题意知,A ={x |x 2-9<0}={x |-3<x <3}, ∵B ={x |-1<x ≤5},∴∁R B ={x |x ≤-1或x >5}.∴A ∩(∁R B )={x |-3<x <3}∩{x |x ≤-1或x >5}={x |-3<x ≤-1}.12.(2019·淮北模拟改编)已知集合U =R ,集合M ={x |x +2a ≥0},N ={x |log 2(x -1)<1},若集合M ∩(∁U N )={x |x =1或x ≥3},那么a 的取值为-12 .解析:由log 2(x -1)<1,得1<x <3,则N =(1,3), ∴∁U N ={x |x ≤1或x ≥3}.又M ={x |x +2a ≥0}=[-2a ,+∞), M ∩(∁U N )={x |x =1或x ≥3},∴-2a =1,解得a =-12.13.如图所示的Venn 图中,A ,B 是非空集合,定义集合A #B 为阴影部分表示的集合.若x ,y ∈R ,A ={x |y =2x -x 2},B ={y |y =3x ,x >0},则A #B 为( D )A .{x |0<x <2}B .{x |1<x ≤2}C .{x |0≤x ≤1或x ≥2}D .{x |0≤x ≤1或x >2}解析:因为A ={x |0≤x ≤2},B ={y |y >1},A ∪B ={x |x ≥0},A ∩B ={x |1<x ≤2},所以A #B =∁A ∪B (A ∩B )={x |0≤x ≤1或x >2},故选D.14.设平面点集A =⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪(y -x )⎝ ⎛⎭⎪⎫y -1x ≥0,B ={(x ,y )|(x -1)2+(y -1)2≤1},则A ∩B 所表示的平面图形的面积为( D )A.34π B.35π C.47πD.π2解析:不等式(y -x )·⎝⎛⎭⎪⎫y -1x ≥0可化为⎩⎨⎧y -x ≥0,y -1x ≥0或⎩⎨⎧y -x ≤0,y -1x ≤0.集合B 表示圆(x -1)2+(y -1)2=1上以及圆内部的点所构成的集合,A ∩B 所表示的平面区域如图所示.曲线y =1x ,圆(x -1)2+(y -1)2=1均关于直线y =x 对称,所以阴影部分占圆面积的一半,即为π2.15.(2019·沈阳模拟)已知集合A ={x ∈N |x 2-2x -3≤0},B ={1,3},定义集合A ,B 之间的运算“*”:A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },则A *B 中的所有元素之和为( D )A .15B .16C .20D .21解析:由x 2-2x -3≤0,得(x +1)(x -3)≤0,又x ∈N ,故集合A ={0,1,2,3}. ∵A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },∴A *B 中的元素有0+1=1,0+3=3,1+1=2,1+3=4,2+1=3(舍去),2+3=5,3+1=4(舍去),3+3=6,∴A *B ={1,2,3,4,5,6}, ∴A *B 中的所有元素之和为21.16.设集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ m ≤x ≤m +34,N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪n -13≤x ≤n ,且M ,N 都是集合{x |0≤x ≤1}的子集,如果把b -a 叫做集合{x |a ≤x ≤b }的“长度”,那么集合M ∩N 的“长度”的最小值是112 .解析:由已知,可得⎩⎨⎧m ≥0,m +34≤1,即0≤m ≤14;⎩⎨⎧n -13≥0,n ≤1,即13≤n ≤1,当集合M ∩N 的长度取最小值时,M 与N 应分别在区间[0,1]的左、右两端.取m 的最小值0,n 的最大值1,可得M =⎣⎢⎡⎦⎥⎤0,34,N =⎣⎢⎡⎦⎥⎤23,1,所以M ∩N =⎣⎢⎡⎦⎥⎤0,34∩⎣⎢⎡⎦⎥⎤23,1=⎣⎢⎡⎦⎥⎤23,34,此时集合M ∩N 的“长度”的最小值为34-23=112.。

【人教版】2020届高考一轮数学(理)复习:课时作业 (12)

课时作业12 函数模型及其应用1.已知正方形ABCD 的边长为4,动点P 从B 点开始沿折线BCDA 向A 点运动.设点P 运动的路程为x ,△ABP 的面积为S ,则函数S =f (x )的图象是( D )解析:依题意知当0≤x ≤4时,f (x )=2x ;当4<x ≤8时,f (x )=8;当8<x ≤12时,f (x )=24-2x ,观察四个选项知D 项符合要求. 2.在某种新型材料的研制中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是( B )A.y =2x -2 B .y =2(x 2-1) C .y =log 2x D .y =log 12x 解析:由题中表可知函数在(0,+∞)上是增函数,且y 的变化随x 的增大而增大的越来越快,分析选项可知B 符合,故选B. 3.我们定义函数y =[x ]([x ]表示不大于x 的最大整数)为“下整函数”;定义y ={x }({x }表示不小于x 的最小整数)为“上整函数”;例如[4.3]=4,[5]=5;{4.3}=5,{5}=5.某停车场收费标准为每小时2元,即不超过1小时(包括1小时)收费2元,超过一小时,不超过2小时(包括2小时)收费4元,以此类推.若李刚停车时间为x 小时,则李刚应付费为(单位:元)( C ) A .2[x +1] B .2([x ]+1)C .2{x }D .{2x } 解析:如x =1时,应付费2元,此时2[x +1]=4,2([x ]+1)=4,排除A 、B ;当x =0.5时,付费为2元,此时{2x }=1,排除D ,故选C. 4.(2019·福建质检)当生物死亡后,其体内原有的碳14的含量大约每经过5 730年衰减为原来的一半,这个时间称为“半衰期”.当死亡生物体内的碳14含量不足死亡前的千分之一时,用一般的放射性探测器就测不到了.若某死亡生物体内的碳14用一般的放射性探测器探测不到,则它经过的“半衰期”个数至少是( C ) A .8 B .9 C .10 D .11 解析:设死亡生物体内原有的碳14含量为1,则经过n (n ∈N *)个“半衰期”后的含量为⎝ ⎛⎭⎪⎫12n ,由⎝ ⎛⎭⎪⎫12n <11 000得n ≥10.所以,若探测不到碳14含量,则至少经过了10个“半衰期”.故选C. 5.(2019·贵州遵义模拟)某企业为节能减排,用9万元购进一台新设备用于生产,第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加3万元.该设备每年生产的收入均为21万元.设该设备使用了n (n ∈N *)年后,盈利总额达到最大值(盈利总额等于总收入减去总成本),则n 等于( B ) A .6 B .7 C .8 D .7或8 解析:盈利总额为21n -9-⎣⎢⎡⎦⎥⎤2n +12×n (n -1)×3=-32n 2+412n -9.因为其对应的函数的图象的对称轴方程为n =416.所以当n =7时取最大值,即盈利总额达到最大值,故选B. 6.已知每生产100克饼干的原材料加工费为1.8元.某食品加工厂对饼干采用两种包装,包装费用、销售价格如下表所示:①买小包装实惠;②买大包装实惠;③卖3小包比卖1大包盈利多;④卖1大包比卖3小包盈利多.A.①③B.①④C.②③D.②④解析:买小包装时每克费用为3100元,买大包装时每克费用为8.4300=2.8100元,而3100>2.8100,所以买大包装实惠,卖3小包的利润为3×(3-1.8-0.5)=2.1(元),卖1大包的利润是8.4-1.8×3-0.7=2.3(元),而2.3>2.1,所以卖1大包盈利多,故选D.7.如图,矩形ABCD的周长为8,设AB=x(1≤x≤3),线段MN 的两端点在矩形的边上滑动,且MN=1,当N沿A→D→C→B→A在矩形的边上滑动一周时,线段MN的中点P所形成的轨迹为G,记G 围成的区域的面积为y,则函数y=f(x)的图象大致为(D)解析:由题意可知点P 的轨迹为图中虚线所示,其中四个角均是半径为12的扇形.因为矩形ABCD 的周长为8,AB =x , 则AD =8-2x 2=4-x , 所以y =x (4-x )-π4=-(x -2)2+4-π4(1≤x ≤3), 显然该函数的图象是二次函数图象的一部分, 且当x =2时,y =4-π4∈(3,4),故选D. 8.为了响应政府推进“菜篮子”工程建设的号召,某经销商投资60万元建了一个蔬菜生产基地.第一年支出各种费用8万元,以后每年支出的费用比上一年多2万元,每年销售蔬菜的收入为26万元.设f (n )表示前n 年的纯利润(f (n )=前n 年的总收入-前n 年的总费用支出-投资额),则从第 5 年开始盈利. 解析:由题知f (n )=26n -⎣⎢⎡⎦⎥⎤8n +n (n -1)2×2-60=-n 2+19n -60. 令f (n )>0,即-n 2+19n -60>0, 解得4<n <15,所以从第5年开始盈利. 9.西北某羊皮手套公司准备投入适当的广告费对其生产的产品进行促销.在一年内,根据预算得羊皮手套的年利润L 万元与广告费x 万元之间的函数解析式为L =512-⎝ ⎛⎭⎪⎫x 2+8x (x >0).则当年广告费投入 4 万元时,该公司的年利润最大.解析:由题意得L =512-⎝ ⎛⎭⎪⎫x 2+8x ≤512-2x 2·8x =21.5, 当且仅当x 2=8x ,即x =4时等号成立. 此时L 取得最大值21.5. 故当年广告费投入4万元时,该公司的年利润最大. 10.某商品在近30天内每件的销售价格P (元)与时间t (天)之间的函数关系式为P =⎩⎪⎨⎪⎧ t +20,0<t <25,t ∈N ,-t +100,25≤t ≤30,t ∈N ,且该商品的日销售量Q (件)与时间t (天)之间的函数关系式为Q =-t +40(0<t ≤30,t ∈N ),则这种商品日销售金额最大的一天是30天中的第 25 天. 解析:设日销售金额为W (t )元,则W (t )=P ·Q =⎩⎪⎨⎪⎧ (t +20)(-t +40),0<t <25,t ∈N ,(-t +100)(-t +40),25≤t ≤30,t ∈N . 令f (t )=(t +20)(-t +40)=-t 2+20t +800(0<t <25,t ∈N ),易知f (t )max =f (10)=900,令g (t )=(-t +100)(-t +40)=t 2-140t +4 000(25≤t ≤30,t ∈N ),易知g (t )max =g (25)=1 125.综上,当t =25,即第25天时,日销售金额W (t )最大. 11.某景区提供自行车出租,该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x (元)只取整数,并且要求租自行车一日的总收入必须高于这一日的管理费用,用y (元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后得到的部分). (1)求函数y =f (x )的解析式; (2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多? 解:(1)当x ≤6时,y =50x -115, 令50x -115>0,解得x >2.3,∵x 为整数,∴3≤x ≤6,x ∈Z . 当x >6时,y =[50-3(x -6)]x -115=-3x 2+68x -115. 令-3x 2+68x -115>0,有3x 2-68x +115<0, 结合x 为整数得6<x ≤20,x ∈Z . ∴y =⎩⎪⎨⎪⎧ 50x -115(3≤x ≤6,x ∈Z ),-3x 2+68x -115(6<x ≤20,x ∈Z ). (2)对于y =50x -115(3≤x ≤6,x ∈Z ), 显然当x =6时,y max =185; 对于y =-3x 2+68x -115=-3·⎝ ⎛⎭⎪⎫x -3432+8113(6<x ≤20,x ∈Z ),当x =11时,y max =270. ∵270>185,∴当每辆自行车的日租金定为11元时,才能使一日的净收入最多. 12.(2019·山东德州模拟)某地自来水苯超标,当地自来水公司对水质检测后,决定在水中投放一种药剂来净化水质.已知每投放质量为m 的药剂后,经过x 天该药剂在水中释放的浓度y (毫克/升)满足y =mf (x ),其中f (x )=⎩⎨⎧ x 225+2,0<x ≤5,x +192x -2,x >5.当药剂在水中的浓度不低于5(毫克/升)时称为有效净化;当药剂在水中的浓度不低于5(毫克/升)且不高于10(毫克/升)时称为最佳净化. (1)如果投放的药剂的质量为m =5,试问自来水达到有效净化总共可持续几天? (2)如果投放的药剂质量为m ,为了使在9天(从投放药剂算起包括9天)之内的自来水达到最佳净化,试确定应该投放的药剂质量m 的最小值.解:(1)当m =5时,y =⎩⎨⎧ x 25+10,0<x ≤5,5x +952x -2,x >5. 当0<x ≤5时,x 25+10>10,显然符合题意; 当x >5时,由5x +952x -2≥5,解得5<x ≤21. 综上,0<x ≤21,所以自来水达到有效净化总共可持续21天. (2)y =mf (x )=⎩⎨⎧ mx 225+2m ,0<x ≤5,m (x +19)2x -2,x >5. 当0<x ≤5时,y =mx 225+2m 在区间(0,5]上单调递增, 所以2m <y ≤3m ; 当x >5时,y ′=-40m (2x -2)2<0, 所以函数y =m (x +19)2x -2在(5,9]上单调递减, 所以7m 4≤y <3m .综上可知7m 4≤y ≤3m . 为使5≤y ≤10恒成立,只要⎩⎨⎧ 7m 4≥5,3m ≤10, 解得207≤m ≤103, 所以应该投放的药剂质量m 的最小值为207. 13.(2019·嘉定模拟)某市环保研究所对市中心每天环境中放射性污染情况进行调查研究后发现,一天中环境综合放射性污染指数f (x)与时刻x (时)的关系为f (x )=⎪⎪⎪⎪⎪⎪x x 2+1-a +2a +23,x ∈[0,24],其中a 是与气象有关的参数,且a ∈⎣⎢⎡⎦⎥⎤0,12.如果以每天f (x )的最大值为当天的环境综合放射性污染指数,并记为M (a ),若规定当M (a )≤2时为环境综合放射性污染指数不超标,则该市中心的环境综合放射性污染指数不超标时,a 的取值范围为( B ) A.⎣⎢⎡⎦⎥⎤0,14 B.⎣⎢⎡⎦⎥⎤0,49 C.⎣⎢⎡⎦⎥⎤14,49 D.⎣⎢⎡⎦⎥⎤49,12 解析:设t =x x 2+1,当x ≠0时,可得t =1x +1x ∈⎝ ⎛⎦⎥⎤0,12,当x =0时,t =0,因而f (x )=g (t )=|t -a |+2a +23=⎩⎪⎨⎪⎧ -t +3a +23,0≤t ≤a ,t +a +23,a <t ≤12,从而有g (0)=3a +23,g ⎝ ⎛⎭⎪⎫12=a +76,g (0)-g ⎝ ⎛⎭⎪⎫12=2⎝ ⎛⎭⎪⎫a -14, 因而M (a )=⎩⎪⎨⎪⎧ g ⎝ ⎛⎭⎪⎫12,0≤a ≤14,g (0),14<a ≤12, 即M (a )=⎩⎪⎨⎪⎧ a +76,0≤a ≤14,3a +23,14<a ≤12,当0≤a ≤14时,M (a )<2,当14<a ≤49时,M (a )≤2,当49<a ≤12时,M (a )>2,所以该市中心的环境综合放射性污染指数不超标时,a 的取值范围为⎣⎢⎡⎦⎥⎤0,49. 14.一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x (x ∈N *)件.当x ≤20时,年销售总收入为(33x -x 2)万元;当x >20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y 万元,则y (万元)与x (件)的函数关系式为 y =⎩⎪⎨⎪⎧ -x 2+32x -100,0<x ≤20,160-x ,x >20 (x ∈N *) ,该工厂的年产量为 16 件时,所得年利润最大.(年利润=年销售总收入-年总投资) 解析:当x ≤20时,y =(33x -x 2)-x -100=-x 2+32x -100; 当x >20时,y =260-100-x =160-x . 故y =⎩⎪⎨⎪⎧ -x 2+32x -100,0<x ≤20,160-x ,x >20(x ∈N *). 当0<x ≤20时,y =-x 2+32x -100=-(x -16)2+156, 当x =16时,y max =156. 当x >20时,160-x <140, 故x =16时取得最大年利润. 15.(2019·潍坊模拟)某地西红柿从2月1日开始上市,通过市场调查,得到西红柿种植成本Q (单位:元/100 kg)与上市时间t (单位:天)的数据如下表:Q 与上市时间t 的变化关系:Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t . 利用你选取的函数,求得: (1)西红柿种植成本最低时的上市天数是 120 ; (2)最低种植成本是 80 (元/100 kg). 解析:根据表中数据可知函数不单调, 所以Q =at 2+bt +c ,且开口向上, 对称轴t =-b 2a =60+1802=120,代入数据⎩⎪⎨⎪⎧ 3 600a +60b +c =116,10 000a +100b +c =84,32 400a +180b +c =116,解得⎩⎪⎨⎪⎧ b =-2.4,c =224,a =0.01. 所以西红柿种植成本最低时的上市天数是120,最低种植成本是14 400a +120b +c =14 400×0.01+120×(-2.4)+224=80(元/100 kg). 16.(2019·西安质检)我国加入WTO 后,根据达成的协议,若干年内某产品的关税与市场供应量P 的关系近似满足:y =P (x )=2(1-kt )(x -b )2(其中t 为关税的税率,且t ∈⎣⎢⎡⎭⎪⎫0,12,x 为市场价格,b ,k 为正常数),当t =18时的市场供应量曲线如图: (1)根据图象求b ,k 的值; (2)若市场需求量为Q ,它近似满足Q (x )=.当P =Q 时的市场价格称为市场平衡价格.为使市场平衡价格控制在不低于9元的范围内,求税率t 的最小值. 解:(1)由图象知函数图象过(5,1),(7,2). 解得⎩⎪⎨⎪⎧ k =6,b =5. (2)当P =Q 时,2(1-6t )(x -5)2=211-x 2,【人教版】红对勾2020届高考一轮数学(理)复习:课时作业则(1-6t)(x-5)2=11-x2,所以1-6t=11-x2(x-5)2=12·22-x(x-5)2=12·⎣⎢⎡⎦⎥⎤17(x-5)2-1x-5.令m=1x-5(x≥9),m∈⎝⎛⎦⎥⎤0,14.设f(m)=17m2-m,m∈⎝⎛⎦⎥⎤0,14,对称轴为m=134,所以f(m)max=f⎝⎛⎭⎪⎫14=1316,所以,当m=14,即x=9时,1-6t取得最大值为12×1316,则1-6t≤12×1316,解得t≥19192,所以税率的最小值为19192.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时作业29 数系的扩充与复数的引入
1.(2019·安徽马鞍山模拟)已知复数z 满足z i =3+4i ,则复数z 在复平面内对应的点位于( D )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
解析:由z i =3+4i ,得z =3+4i i =(3+4i )(-i )-i 2
=4-3i ,∴复数z
在复平面内对应的点的坐标为(4,-3),该点位于第四象限,故选D.
2.(2019·山西康杰中学、临汾一中等五校联考)设复数z =-2+i ,则复数z +1
z 的虚部为( A )
A.45
B.45i
C.65
D.65i
解析:z +1z =-2+i +-2-i 4+1=-2-25+⎝ ⎛⎭⎪⎫1-15i =-125+4
5i.
3.(2019·安徽安庆模拟)已知复数z 满足:(2+i)z =1-i ,其中i 是虚数单位,则z 的共轭复数为( B )
A.15-3
5i B.15+35i C.1
3-i
D.13+i
解析:由(2+i)z =1-i ,得z =1-i 2+i =(1-i )(2-i )(2+i )(2-i )=15-3
5i ,∴z =
15+3
5i ,故选B.
4.(2019·福建龙岩模拟)已知复数z 满足(1+2i)z =-3+4i ,则|z |
=( C )
A. 2 B .5 C. 5 D.5
2
解析:∵(1+2i)z =-3+4i ,∴|1+2i|·|z |=|-3+4i|, 则|z |=(-3)2+4212+2
2= 5.故选C. 5.(2019·山西四校联考)i 是虚数单位,若2+i 1+i =a +b i(a ,b ∈R ),
则lg(a +b )的值是( C )
A .-2
B .-1
C .0 D.1
2
解析:∵(2+i )(1-i )(1+i )(1-i )=3-i 2=32-1
2i =a +b i ,
∴⎩⎪⎨⎪⎧
a =32,
b =-12,
∴lg(a +b )=lg1=0.
6.(2019·河南濮阳模拟)计算⎝ ⎛⎭⎪⎫1+i 1-i 2 017+⎝ ⎛⎭
⎪⎫1-i 1+i 2 017
=( B ) A .-2i B .0 C .2i
D .2
解析:∵1+i 1-i =(1+i )2(1+i )(1-i )=2i
2=i ,1-i 1+i
=-i ,
∴⎝ ⎛⎭⎪⎫1+i 1-i 2 017+⎝ ⎛⎭
⎪⎫1-i 1+i 2 017=(i 4)504·i +[(-i)4]504·(-i)=i -i =0,故选B.
7.(2019·枣庄模拟)设z 1,z 2是复数,则下列命题中的假命题是( D )
A .若|z 1-z 2|=0,则z 1=z 2
B .若z 1=z 2,则z 1=z 2
C .若|z 1|=|z 2|,则z 1·z 1=z 2·z 2
D .若|z 1|=|z 2|,则z 21=z 2
2
解析:A 中,|z 1-z 2|=0,则z 1=z 2,故z 1=z 2,成立.B 中,z 1
=z 2,则z 1=z 2成立.C 中,|z 1|=|z 2|,则|z 1|2=|z 2|2,即z 1z 1=z 2z 2,C 正确.D 不一定成立,如z 1=1+3i ,z 2=2,则|z 1|=2=|z 2|,但z 21=
-2+23i ,z 22=4,z 21≠z 2
2.
8.(2019·河南百校联盟模拟)已知复数z 的共轭复数为z ,若
⎝ ⎛⎭
⎪⎪
⎫3z 2+z 2(1-22i)=5-2i(i 为虚数单位),则在复平面内,复数z 对应的点位于( A )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
解析:依题意,设z =a +b i(a ,b ∈R ),
则3z 2+z
2=2a +b i ,故2a +b i =5-2i 1-22i
=1+2i ,
故a =1
2,b =2,则在复平面内,复数z 对应的点为⎝ ⎛⎭
⎪⎫12,2,位
于第一象限.
9.(2018·天津卷)i 是虚数单位,复数6+7i
1+2i =4-i__.
解析:6+7i 1+2i =(6+7i )(1-2i )(1+2i )(1-2i )
=20-5i 5=4-i.
10.若3+b i 1-i =a +b i(a ,b 为实数,i 为虚数单位),则a +b =3__.
解析:3+b i 1-i
=(3+b i )(1+i )2=12[(3-b )+(3+b )i]=3-b 2+3+b 2i.∴⎩⎨⎧
a =3-
b 2,
b =3+b 2,
解得⎩
⎪⎨⎪⎧
a =0,
b =3.∴a +b =3.
11.若1-i(i 是虚数单位)是关于x 的方程x 2+2px +q =0(p ,q ∈R )的一个解,则p +q =1__.
解析:依题意得(1-i)2+2p (1-i)+q =(2p +q )-2(p +1)i =0,即
⎩⎪⎨⎪⎧ 2p +q =0,p +1=0,解得⎩⎪⎨⎪⎧
p =-1,q =2,
所以p +q =1. 12.已知复数z =x +y i(x ,y ∈R ),且|z -2|=3,则y
x 的最大值为3 .
解析:∵|z -2|=(x -2)2+y 2=3,∴(x -2)2+y 2=3.由图可知⎝ ⎛⎭


y x max
=31= 3.
13.欧拉公式e i x =cos x +isin x (i 为虚数单位)是由瑞士著名数学家欧拉发明的,将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,e 2i 表示的复数在复平面中位于( B )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
解析:e 2i
=cos2+isin2,由于π
2<2<π,因此cos2<0,sin2>0,
点(cos2,sin2)在第二象限,故选B.
14.(2019·武汉调研)已知i 是虚数单位,若复数z =i 3
a +2i
在复平
面内对应的点在直线2x -y =0上,则实数a =( C )
A .1
B .-1
C .4
D .-4
解析:复数z =i 3a +2i =-i a +2i =-i (a -2i )a 2+4=-2a 2+4-a
a 2+4
i ,所以
复数z 在复平面内对应的点为⎝ ⎛⎭
⎪⎫-2a 2+4,-a a 2+4,所以-4
a 2+4+
a
a 2
+4
=0,解得a =4,故选C. 15.(2019·鹰潭模拟)“复数z =1sin θ+cos θ·i -1
2(其中i 是虚数单位)
是纯虚数”是“θ=π
6+2k π(k ∈Z )”的( B )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
解析:z =1sin θ+cos θ·i
-12=⎝ ⎛
⎭⎪⎫sin θ-12-icos θ,若z 为纯虚数,则
⎩⎨

sin θ-12=0,
cos θ≠0,
即θ=2k π+π6(k ∈Z )或θ=2k π+5
6π(k ∈Z ).故“复数z
=1sin θ+cos θ·i -12(其中i 是虚数单位)是纯虚数”是“θ=π
6+2k π(k ∈Z )”的必要不充分条件,故选B.
16.已知复数z 1=-1+2i ,z 2=1-i ,z 3=3-4i ,它们在复平面上对应的点分别为A ,B ,C .若OC →=λOA →+μOB →
(λ,μ∈R ),则λ+μ的值是1__.
解析:由条件得OC →=(3,-4),OA →=(-1,2),OB →
=(1,-1),根据OC →=λOA →+μOB →,
得(3,-4)=λ(-1,2)+μ(1,-1)=(-λ+μ,2λ-μ),
∴⎩⎪⎨⎪⎧ -λ+μ=3,2λ-μ=-4,解得⎩⎪⎨⎪⎧
λ=-1,μ=2,
∴λ+μ=1.。

相关文档
最新文档