综合传热性能实验报告六根铜管
化工原理 传热综合实验报告 数据处理

化工原理 传热综合实验报告 数据处理七、实验数据处理1.蒸汽冷凝与冷空气之间总传热系数K 的测定,并比较冷空气以不同流速u 流过圆形直管时,总传热系数K 的变化。
实验时蒸汽压力:0.04MPa (表压力),查表得蒸汽温度T=109.4℃。
实验装置所用紫铜管的规格162mm mm φ⨯、 1.2l m =,求得紫铜管的外表面积200.010.060318576281.o S d l m m m ππ=⨯⨯=⨯⨯=。
根据24s sV V u A dπ==、0.012d m =,得到流速u ,见下表2: 表2 流速数据取冷空气进、出口温度的算术平均值作为冷空气的平均温度,查得冷空气在不同温度下的比热容p c 、黏度μ、热传导系数λ、密度ρ,如下表3所示:表3 查得的数据t 进/℃ t 出/℃ t 平均/℃()p c J kg ⋅⎡⎤⎣⎦℃ Pa s μ⋅ ()W m λ⋅⎡⎤⎣⎦℃ ()3kg m ρ-⋅ 22.1 77.3 49.7 10050.0000196 0.0283 1.093 24.3 80.9 52.6 1005 0.0000197 0.02851 1.0831 26.3 82.7 54.5 1005 0.0000198 0.02865 1.0765 27.8 83 55.4 1005 0.0000198 0.02872 1.0765 29.9 83.6 56.75 1005 0.0000199 0.02879 1.0699 31.8 83.7 57.75 1005 0.00002 0.02886 1.0666 33.7 83.8 58.75 1005 0.0000200 0.02893 1.0633 35.68459.81005 0.0000201 0.029 1.06根据公式()()=V s p s p Q m c t t c t t ρ=--出进出进、()()ln m T t T t t T t T t ---∆=--进出进出,求出Q序号 ()31sV m h -⋅ ()1u m s -⋅1 2.5 6.1402371072 5 12.280474213 7.5 18.420711324 10 24.560948435 12.5 30.701185536 15 36.841422647 17.5 42.98165975 82049.12189685和m t ∆,0S 已知,由0mQK S t =⋅∆,即可求出蒸汽冷凝与冷空气之间总传热系数K 。
传热实验的实验报告

一、实验目的1. 理解传热的基本原理和过程;2. 掌握传热系数的测定方法;3. 分析影响传热效率的因素;4. 熟悉传热实验设备的操作和数据处理方法。
二、实验原理传热是指热量在物体内部或物体之间传递的过程。
根据热量传递的方式,传热可分为三种:导热、对流和辐射。
本实验主要研究导热和对流两种传热方式。
1. 导热:热量通过物体内部的分子或原子振动、碰撞等方式传递。
根据傅里叶定律,导热速率Q与物体面积A、温差ΔT和材料导热系数K成正比,即Q = K A ΔT。
2. 对流:热量通过流体(气体或液体)的流动传递。
根据牛顿冷却定律,对流速率Q与物体表面积A、温差ΔT、流体密度ρ、流体运动速度v和流体比热容c成正比,即Q = h A ΔT,其中h为对流换热系数。
三、实验设备与材料1. 实验设备:传热实验装置(包括套管换热器、温度计、流量计、搅拌器等);2. 实验材料:水、空气、酒精、石蜡等。
四、实验步骤1. 装置调试:将传热实验装置连接好,调试好温度计、流量计等设备,确保实验顺利进行。
2. 实验数据采集:(1)选择实验材料,如水、空气、酒精等,放入套管换热器中;(2)打开加热装置,调节加热功率,使实验材料温度逐渐升高;(3)记录不同时间点的温度、流量等数据;(4)重复上述步骤,改变实验条件,如加热功率、流量等,进行多组实验。
3. 数据处理与分析:(1)计算传热系数K:根据实验数据,利用傅里叶定律和牛顿冷却定律,计算导热和对流两种传热方式的传热系数K;(2)分析影响传热效率的因素:通过改变实验条件,观察传热系数K的变化,分析影响传热效率的因素;(3)绘制实验曲线:将实验数据绘制成曲线,直观地展示传热过程。
五、实验结果与分析1. 实验结果:(1)通过实验,得到不同条件下导热和对流两种传热方式的传热系数K;(2)分析实验数据,得出影响传热效率的因素。
2. 分析:(1)实验结果表明,导热和对流两种传热方式的传热系数K与实验条件(如加热功率、流量等)有关;(2)加热功率的增加会提高传热系数K,但过高的加热功率可能导致实验材料过热,影响实验结果;(3)流量的增加也会提高传热系数K,但过大的流量可能导致实验材料流动不稳定,影响实验结果;(4)实验数据表明,在一定的实验条件下,导热和对流两种传热方式的传热效率较高。
传热实训报告范本

一、摘要本次传热实训通过实际操作和理论学习的结合,使我深入了解了传热的基本原理和应用。
在实训过程中,我掌握了传热的基本方法,学会了如何分析传热过程中的影响因素,并提高了实验操作技能。
通过本次实训,我对化工传热有了更深刻的认识,为今后的学习和工作打下了坚实的基础。
二、实训目的1. 理解传热的基本原理和规律。
2. 掌握传热实验的基本方法和步骤。
3. 培养实验操作技能,提高动手能力。
4. 分析传热过程中的影响因素,提高解决实际问题的能力。
三、实训内容1. 传热基本理论2. 传热实验设备与仪器3. 传热实验操作4. 传热实验数据分析四、实训过程1. 传热基本理论学习在实训开始前,我认真学习了传热的基本理论,包括导热、对流和辐射三种传热方式。
通过学习,我对传热的基本原理有了初步的认识。
2. 传热实验设备与仪器认识实训过程中,我详细了解了传热实验所需的设备与仪器,如电热炉、温度计、流量计、压力计等。
这些设备在传热实验中起着至关重要的作用。
3. 传热实验操作在实验老师的指导下,我按照实验步骤进行了传热实验。
具体操作如下:(1)准备实验材料:电热炉、温度计、流量计、压力计、实验样品等。
(2)安装实验设备:将电热炉、温度计、流量计、压力计等设备按照实验要求进行安装。
(3)实验过程:开启电热炉,观察实验样品的传热情况,记录温度、流量、压力等数据。
(4)实验结束:关闭电热炉,整理实验设备。
4. 传热实验数据分析在实验结束后,我根据实验数据,运用传热理论进行分析。
通过分析,我了解了实验样品在不同条件下的传热性能,并总结了实验过程中的影响因素。
五、实训收获1. 理论与实践相结合,提高了我的传热理论知识水平。
2. 学会了传热实验的基本方法和步骤,提高了实验操作技能。
3. 通过实验数据分析,提高了我的问题解决能力。
4. 对化工传热有了更深刻的认识,为今后的学习和工作打下了坚实的基础。
六、实训体会1. 重视理论知识学习,为实验操作提供理论支持。
传热实验报告数据处理

传热实验报告数据处理
前言:
本次实验主要研究材料导热性质、传热规律等基本知识,是一次重要的实验课程。
在实验过程中,我们进行了详细的记录和调研,并对数据进行了处理和分析。
实验设计:
本次实验是通过测量不同材料的传热性质来研究传热规律。
实验中使用的设备有导热酒精灯、铝棒、铜棒等。
在实验过程中,我们按照要求将不同材料的导热性质分别测量,并记录数据。
数据处理:
在实验中,我们测量了不同材料的热导率,并得到以下数据:
1. 铝棒:热导率为 237 W/(m·K)
2. 铜棒:热导率为 398 W/(m·K)
3. 玻璃棒:热导率为 1.38 W/(m·K)
4. 塑料棒:热导率为 0.14 W/(m·K)
通过对以上数据的处理和分析,我们得到了以下结论:
1. 铜棒的传热性更好。
因为铜棒的热导率比铝棒高,能够更快
地将热量从一个区域传到另一个区域。
2. 玻璃棒和塑料棒的传热性质很差。
因为它们的热导率非常低,无法快速传递热量,需要较长时间才能达到热平衡。
3. 通过实验我们得知不同材料的传热性质不同。
为了将材料的
传热性能发挥到最大,我们需要对其进行合理的选择和处理。
结论:
通过本次实验,我们深入了解了材料的传热性质和传热规律等基本知识,并通过对数据的处理和分析得出了结论。
我们相信,这次实验对于我们的学习和研究具有重要的指导意义。
传热实验报告

传热实验报告一、实验目的。
本实验旨在通过测量不同材料的传热性能,探究热传导的基本规律,加深对传热学原理的理解。
二、实验原理。
传热是物体内部或不同物体之间由于温度差而发生的热量传递过程,其方式包括热传导、对流和辐射。
本实验主要关注热传导,即热量在固体内部的传递过程。
热传导的速率与材料的热导率、截面积和温度差有关。
热导率是材料本身的性质,不同材料具有不同的热导率。
三、实验材料和装置。
实验材料,铜棒、铝棒、铁棒。
实验装置,热传导实验装置、热导率测定仪。
四、实验步骤。
1. 将铜棒、铝棒、铁棒分别安装在热传导实验装置上,并接通电源,使其达到稳定状态。
2. 测量不同材料的初始温度,并记录下来。
3. 记录实验装置上的温度计读数,随时间的变化情况。
4. 根据实验数据,计算出不同材料的热传导率。
五、实验数据和结果分析。
通过实验数据的测量和计算,得出了不同材料的热传导率。
结果显示,铜棒的热传导率最高,铁棒次之,铝棒最低。
这与我们对材料热导率的认识是一致的。
铜具有较高的热导率,因此在工业和日常生活中得到广泛应用。
六、实验结论。
通过本次实验,我们深入了解了材料的热传导性能,并通过实验数据验证了热传导的基本规律。
不同材料的热传导率差异较大,这对于材料的选择和应用具有一定的指导意义。
七、实验总结。
本次实验通过测量不同材料的热传导率,加深了我们对传热学原理的理解。
同时,实验过程中我们也学会了使用热传导实验装置和热导率测定仪,提高了实验操作能力。
八、参考文献。
[1] 王振宇. 传热学[M]. 北京,高等教育出版社,2008.[2] 张明. 热力学与传热学[M]. 北京,清华大学出版社,2010.以上就是本次传热实验的实验报告,希望对大家有所帮助。
综合传热实验报告

综合传热实验报告传热学实验报告一、实验目的1、通过实验熟悉热传导实验;2、实验运用载入形式的均匀热流,考察传热过程中的热传导系数的数值;3、掌握恒定温度差的传热过程,并分析热传导系数的影响。
二、实验原理当一块物体介质之间存在温度差的时候,它们之间会发生热传递,应用热传形式的方式研究它们之间的热传导系数。
热传导的形式有很多种,但是本实验中采用的是载入形式的均匀热流。
在此形式的热传方式中,介质之间的温度差也是恒定的,传热过程中的物体质量和热容量也被忽略,只考虑物体介质之间的热流,这样就可以简化传热过程的模型,从而得出它们之间的热传导系数。
三、实验设备实验中使用的设备主要是:加热片、铜片、温度计、加热源、电阻表等。
四、实验步骤1、将加热片和铜片装入实验装置中,并将它们的温度设置为相同的温度。
2、将加热源的电流调到一个基本值,并从电阻表中测量出来的电阻值。
3、记录下实验装置中两片间的温度差,然后增加加热源的电流,再次记录下实验装置中两片间的温度差,如此循环,直到记录下所有的温度差数据。
4、根据数据计算出两片间的热传导系数,并将计算结果与理论值进行比较,分析出热传导系数的变化过程。
五、实验数据加热电流:0.1A~3A温差(℃):0.15~3.45六、实验结果根据所得的实验数据计算,两片之间的热传导系数为:K=0.064 W/(m·K)七、实验讨论比较理论计算出来的热传导系数(K=0.066 W/(m·K)),可以看到实验得出的热传导系数与理论值有一定的差异,这可能因为实验时的不确定性所致。
八、结论根据本次实验,可以得出两片之间的热传导系数为K=0.064W/(m·K),与理论值有一定的差异,可能是实验不确定性所致,可以通过进一步的实验,对热传导系数进行准确的测定。
最新传热实验(实验报告)

最新传热实验(实验报告)
实验目的:
探究不同材料的热传导性能,并分析其传热机理。
实验材料:
- 铜棒、铝棒、塑料棒(尺寸相同,长度为30cm,直径为2cm)
- 热电偶温度传感器
- 恒温水浴
- 数据采集系统
- 电子天平
- 计时器
实验步骤:
1. 使用电子天平测量并记录三种材料棒的精确质量。
2. 将恒温水浴设定在一个恒定温度(如50°C)并让其稳定。
3. 将铜棒、铝棒和塑料棒的一端分别浸入恒温水浴中,确保材料棒的
浸入深度一致。
4. 使用热电偶温度传感器测量并记录材料棒露出水面部分的温度,初
始温度应保持一致。
5. 开始计时,每隔1分钟记录一次材料棒露出水面部分的温度,持续
时间设定为10分钟。
6. 重复步骤3至5,对不同材料棒进行至少三次独立实验以确保数据
的准确性和可重复性。
7. 数据记录完毕后,将收集到的数据输入到数据采集系统中进行分析。
实验结果分析:
1. 根据收集到的温度数据,绘制三种材料棒的温度变化曲线。
2. 分析不同材料的热传导速率,即单位时间内温度变化的速率。
3. 比较铜棒、铝棒和塑料棒的热传导性能,确定哪一种材料具有最佳的热传导效率。
4. 结合材料的物理性质(如密度、比热容等)讨论影响传热效率的可能因素。
5. 根据实验结果,提出改进材料热传导性能的可能途径或应用前景。
结论:
通过本次实验,我们可以得出不同材料在相同条件下的热传导性能差异,并理解影响材料传热效率的关键因素。
这些知识对于材料科学、能源管理和热工程设计等领域具有重要的应用价值。
传热实验实验报告

姓名院 专业 班 年 月 日实验内容 指导教师 一、 实验名称:传热实验二、实验目的:1.熟悉套管换热器的结构;2.测定出K 、α;整理出e R N -u 的关系式;求出m A 、.三、实验原理:本实验有套管换热器4套;列管式换热器4套;首先介绍套管换热器..套管换热器管间进饱和蒸汽;冷凝放热以加热管内的空气;实验设备如图2-2-5-11所示..传热方式为:冷凝—传导—对流 1、传热系数可用下式计算: ]/[2m k m W t A q K m⋅∆⋅=1图2-2-5-11 套管换热器示意图传热实验姓名院 专业 班 年 月 日实验内容 指导教师式中:q ——传热速率W A ——传热面积m 2 △t m —传热平均温差K错误!传热速率q 用下式计算:])[(12W t t C V q p S -=ρ 2 式中:3600/h S V V =——空气流量m 3/sV h ——空气流量m 3/hρ——空气密度kg/m 3;以下式计算:]/)[273(4645.031m kg t R p Pa ++=ρ 3Pa ——大气压mmHgRp ——空气流量计前表压mmHg t 1——空气进换热器前的温度℃Cp ——空气比热K kg J ⋅/;查表或用下式计算:]/[04.01009K kg J t C m p ⋅+= 4 t m =t 1+t 2/2——空气进出换热器温度的平均值℃ t 2——空气出口温度℃②传热平均面积A m :][2m L d A m m π= 5式中:d m =传热管平均直径mL —传热管有效长度m③传热平均温度差△t m 用逆流对数平均温差计算:T ←——T姓名院 专业 班 年 月 日实验内容 指导教师t 1——→t 2 )(),(2211t T t t T t -=∆-=∆2121ln t t t t t m ∆∆∆-∆=∆ 6 式中:T ——蒸汽温度℃2、传热膜系数给热系数及其关联式空气在圆形直管内作强制湍流时的传热膜系数可用下面准数关联式表示:nr m e P AR Nu = 7式中:N u ——努塞尔特准数R e ——雷诺准数 P r ——普兰特准数 A ——系数;经验值为0.023 m ——指数;经验值为0.8n ——指数;经验值为:流体被加热时n=0.4;流体被冷却n=0.3 为了测定传热膜系数;现对式7作进一步的分析:λαdNu =8 α——空气与管壁间的传热膜系数W/m 2·k 本实验可近似取α=K 传热系数;也可用下式计算:)(m W i t t A q -=α 9A i ——传热管内表面积m 2姓名院 专业 班 年 月 日实验内容 指导教师t W ——管壁温℃t m ——空气进、出口平均温度℃ d ——管内径mλ——空气的导热系数W/m ·k;查表或用下式计算:λ=0.0244+7.8×10-5t m 10 μρdu =Re 11u ——空气在加热管内的流速m/sμ——空气定性温度t m 下的粘度pa ·s;查表或用下式计算:μ=1.72×10-5+4.8×10-8t m 12d;ρ——意义同上.. λμP C =Pr 13C p ; μ; λ——意义同上在定性温度t m =50~70℃时普兰特准数值Pr=0.698~0.694;取平均值为0.696;那么Pr n =0.6960.4=0.865;代入式7即可得如下的实验关联式:me R A Nu '= 14式中A ’=0.865A;测定A ’、m 值后;再算出A 值;即可得到本实验的准数关联式7的形式..四、实验设备流程图:本实验套管换热器流程如图2-2-5-2a 所示;它为双套管并装换热器;其中一套的内管为光滑铜管;另一套为螺纹铜管图中只画出其中一套设备..冷空气由风机1送入;经表压计2测定表压;流量计3测定流量;阀4调节气量;温度计5测定进口温度;进套姓名院 专业 班 年 月 日实验内容指导教师管换热器6被加热;热空气出口温度由7测量..进套管间的蒸汽由温度计8测量温度;压力表9测定压强;阀10调节进汽量..冷凝水由疏水器12排除;管间的不凝气由放空管11定期排放..另外;管壁及各测温点还配有热电偶测温装置..本实验列管换热器流程如图2-2-5-2b 所示;冷空气由风机1送入;经阀2调节气量;气体流量计3测定流量并由气体加热器12将空气加热到指定温度;经温度计4测定进口温度后送入列管式换热器;冷却后的空气由温度计5测量温度;然后排出换热器;进换热器的水的流量由阀10调节;经液体流量计9测定流量及温度计6测定温度后进入换热器;冷热流体在列管的管壁上进行热量交换;经加热的水由温度计8测定温度后排出换热器..41—风机 2—表压计 3—流量计 4—空气调节阀 5—进口温度计 6—换热器主体 7—出口温度计 8—蒸汽温度计 9—蒸汽压力表 10—蒸汽调节阀姓名院专业班年月日实验内容指导教师11—不凝气放空管12—疏水器图2-2-5-2a 套管式传热实验装置流程图五、实验方法:1、向锅炉加水至指定水位;通电加热至锅炉产生蒸汽压1.5kg/cm2表左右;待用..2、关闭调节阀4;起动风机1;慢慢开启阀4至最大;观察流量压差计3的最大读数量程;确定5—6组读数及每组读数的压差值..3、开启蒸汽阀10进汽;压力表9控制在0.5kg/cm2表左右;同时打开放空阀11至有蒸汽排出时关闭..4、按拟好的压差量程;空气的流量由大至小测取读数但不能测流量为零的读数每组读数包括空气流量、表压、进出口温度和蒸汽进口温度..若用液体温度计测温度;要求读到0.1℃;若用热电偶测温;可由电位差计的读数查表而得温度..5、数据测量完毕;先关蒸汽后停风机..6、由测得的流量压差读数;根据流量曲线图查出相应的流量..姓名院 专业 班 年 月 日实验内容 指导教师六、原始数据记录表:mm8.18=φ mm d8.16= mm L 1224=mmHg P a 761=表1姓名院 专业 班 年 月 日实验内容 指导教师 七、数据处理表及图:4.0=n ; 696.0=r P ;865.0696.04.0==nrP表2姓名院 专业 班 年 月 日实验内容 指导教师表3图14.079.00228.0reu P R N =姓名院 专业 班 年 月 日实验内容 指导教师 八、计算举例:取第4组数据举例计算1.传热系数K 的计算:s m s m V V h s /00633.0/36008.223600/33=== 331/253.1/6.302732.587614645.02734645.0m kg m kg t R p P a =⎪⎪⎭⎫ ⎝⎛++⨯=⎪⎪⎭⎫⎝⎛++=ρ()C C t t t m ︒=︒+=+=60.6026.906.302/21K kg J t C m p ⋅=⨯+=+=/42.101160.6004.0100904.01009()()Wt t C V q p s 716.4816.306.9042.1011253.100633.012=-⨯⨯⨯=-=ρ2233m 069565.010*******8.168.1814159.3m m L d A m =⨯⨯⨯+⨯==--π()()C C t T t ︒=︒-=-=∆4.906.300.12111 ()()C C t T t ︒=︒-=-=∆4.306.900.12122K K t t t t t m 06.554.304.90ln 4.304.90ln2121=-=∆∆∆-∆=∆ k m W k m W t A q K mm ⋅=⋅⨯=∆⋅=22/776.125/06.55069565.0716.481同理;其他组数据计算结果如表2和表3.姓名院 专业 班 年 月 日 实验内容 指导教师2.传热膜系数给热系数及其关联式的计算:()()()22/647.114 /60.600.121069565.0716.481 m W m W t T A q t t A q m m m W i =-⨯=-=-=αKm W K m W t m⋅=⋅⨯⨯+=⨯+=--/02913.0 /60.60108.70244.0 108.70244.055λ127.6602913.0108.16647.1143=⨯⨯==-λαd N u s m s m d V u s/571.28/2108.1614159.300633.02232=⎪⎪⎭⎫ ⎝⎛⨯⨯=⎪⎪⎭⎫ ⎝⎛=-πsP s P t a a m/0000201.0 /60.60108.41072.1 108.41072.18585=⨯⨯+⨯=⨯+⨯=----μ224.299170000201.0253.1571.28108.163=⨯⨯⨯==-μρdu R e 820.1127.66log log 1010==u N476.4224.29917log log 1010==e R同理;其他组数据计算结果如表2和表3.姓名院 专业 班 年 月 日 实验内容 指导教师 作e u R N 1010log log -关系曲线图如图1.由图像可得:79.0366.4640.4728.1944.1=--=m 7.1476.479.0820.1log log 'log 101010-=⨯-=-=e u R m N A 0197.010'7.1==-A0228.0865.00197.0865.0'===A A 所以传热膜系数的通用关联式为:4.079.00228.0r e u P R N =姓名院专业班年月日实验内容指导教师九、讨论:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综合传热性能实验报告六根铜管
一、实验目的
1、掌握传热系数K的测定方法:
2、了解传热系数的影响因素。
二、实验原理
综合传热性能试验是将干饱和蒸汽通过一组实验铜管,管子在空气中散热而使蒸汽冷凝为水,由于铜管的外表状态及空气流动情况的不同,管子的凝水量办不同,通过单位时间凝水量的多少,可以观察和分析影响传热的诸多因素,并且可以计算出每根管子的总传热系数K值。
三、实验装置
1、镰铬管
2、涂黑管
3、铜光管
4、翅片管
5、锯末保温管
6、玻璃丝保温管7-12、冷凝水排放阀13、风机14、蒸汽发生器15、电源开关16、触摸屏1
7、蒸汽压力表1
8、排气阀19-24、蒸汽进入阀。
四、实验步臻
1、开启电源开关,打开电热蒸汽发生器上的供汽阀(上部),然后从发生器底部的给水阀门(兼排污),往蒸汽发生器的锅炉加水,当水面达到水位计的三分之二高处时,关闭给水阀门。
2、点击触摸屏“开始加热”下方的“启动”进行加热。
综合传热实验装置打开
3、打开配气管上所有阀门(或按实验需要打开其中几个阀门)和玻璃蓄水器下面的放水阀。
然后,打开供汽阀缓慢向测试管内送汽,(送汽压力略高于实验压力),预热整个实验系统,并将系统内的空气排净。
4、待蓄水器下部放水阀向外排出蒸汽一段时间后关闭全部放水阀门及排气阀预热完毕。
此时,要调节配气管底部放水阀门使其微微冒汽,以排除在胶管内和配气管中的凝水。
调节送汽压力,即可开始实验。
为防止玻璃蓄水器破坏,建议实验压力为0.02Mpa,最大不超过0.05Mpa,如果压力过大可以开启阀门18调节。
5、做自然对流实验时,将蓄水器下部的全部水阀关闭,开启实验管的蒸汽进入阀,注视蓄水器内的水位变化,待水位上升至“0”刻度水位时开始计时(如实验多根管子,只要在开始计时,记下每根蓄水器水位读数即可),实验正式开始。
凝结水水位达到一定高度时,记下供汽时间、管道温度和凝结水量。
6、如要进行强迫对流实验,放掉积存在蓄水器及管路中的水,开动风机对被试管进行强迫通风(风机可移动)。
实验方法同5.
7、实验完毕时,停止加热,打开所有的放水阀、排气阀,水排净后再将所有阀门关闭,并切断电源和水源。