读《小学数学与数学思想方法》心得体会
小学数学教育心得体会(5篇)

小学数学教育心得体会(5篇)这一学期的拓展课是“高中数学思想学习的方法好研究”。
老师最少的题量为我们分析讲解最典型和常见的题型,帮助我们摆脱题海之苦,提高数学成绩。
通过本学期拓展课的学习,我能大概了解、掌握了部分的高中数学的学习方法。
多层次、多角度、多交叉、多广度,深度上对知识加以拓展和提高,并且能在平日学习数学的过程中有所拓宽和发展,对课堂内容知识的归纳,总结,梳理等方面有进步,培养了自己对数学学习的兴趣好良好的习惯。
在学习到解决数学问题的方法和思路的同时,对一些在课堂上或是平时不懂、迷惑的地方进行探讨,更好地加强了对知识点的理解和应用。
例如数学思想中的“分类讨论”,“函数数学在不等式中的应用”,“参数问题”等有了深一步的研究好拓展,便于让我在今后的数学学习中加以应用和解答。
臂如:①对于参数问题的学习,我们通过学习不同的例题,通过研究、分析得到解决这一问题的主要方法与途径,分离参数,变换主元等常用的解题方法。
②对分类讨论这一问题的研究:引起分类讨论的原因主要是由于存在不确定的元素及公式,概念的分类……,并研究了基本步骤等等。
总之进入高中以后,数学学习的方法好内容都有了很大转变,题目的难易程度也比以前有了很大的提高,及时消化吸收新知识,复习巩固旧知识也成了我的困扰。
但通过此次学习,我发现数学学习其实是有径可循。
对于一些问题要予以归纳总结,并作一些相配套的练习,以达到巩固效果。
一学期来,我收获了很多,尤其在学习方法上有了系统的概念,能够更好地高中的数学学习。
通过数学教学使我深深体会到,以往的数学教学是把传承知识作为主要目的,这种理念已远远不能适应当今社会的发展,尤其是知识更新周期日益缩短的现代社会,学生强烈的求知欲、主动探索的精神、终身学习的愿望要比其获得有限的知识更有价值。
为了适应新世纪的发展,真正进行素质教育,切实培养学生的创新素质,我们必须让教学活起来。
教法要活,学法更要活。
要做到这一点,就需要我们为学生构建开放的学习模式。
读王永春老师的《小学数学与数学思想方法》有感

读王永春的《小学数学与数学思想方法》有感这学期我读了王永春老师的《小学数学与数学思想方法》一书,感觉收获很多,对数学教学又有了一些新的见识。
《小学数学与数学思想方法》这本书分成两部分,第一部分是对小学常见的数学思想方法的详细阐述,第二部分是一些教材中数学思想方法案例解读。
通过对这本书的阅读,使我对教学中常见的思想方法有了更加明确的认识,具有实践指导意义。
下面,我来谈一谈我的读书心得。
一、通过阅读,对数学思想方法有了新的认识。
数学思想方法并不是简单的概念和技能,而是用于解决数学问题时的方法和手段,对解决数学问题起到了非常重要的作用。
其次,数学思想方法是有层次的,有高低层次之分,每个高层次的数学思想方法下又演变出一些低层次的数学思想。
二、数学思想方法的渗透有利于提高学生思维通过对学生数学思想方法的渗透,尤其是在学生动手操作的过程中渗透数学思想,不仅有利于解决当前的数学问题,而且对思维水平的提高起着非常重要的作用,为今后的学习打下良好的基础。
低年级学生由于思维水平有限,数学学习中大多学生是借助生活经验中的直观感受来进行理解、学习的。
比如本书中提到:在认识10~20各数的教学中,借助小棒、计数器等学具进行教学。
把概念性的知识通过学具,让学生直观的来发现探索。
根据已学知识,先利用小棒,动手操作,摆出11:一个10和一个1,用小棒摆好后教授如何在计数器上表示,从而理解11中的两个“1”意义是不同的,体现十进制的计数原理。
从学生动手操作摆小棒到计数器的表示,学生经历十进制的计数原理的抽象过程,渗透了抽象思想,同时也培养学生的抽象思维能力。
通过对数的理解,为今后学习进位加法也打下了良好的基础。
三、如何渗透数学思想方法对于低年级学生而言,其生活经验有限,在数学学习的过程中难以联系实际,导致在学习数学知识以及数学方法时受到一定的束缚。
首先,适时渗透数学思想。
我们会发现一个现象,教材中经常存在例题简单而习题难的问题,原因可能有两种,一是习题确实难了,二是学生不会知识的迁移,没有知识迁移的能力,仅仅只是老师教什么会什么。
原创]《小学数学与数学思想方法》读书心得
![原创]《小学数学与数学思想方法》读书心得](https://img.taocdn.com/s3/m/45b39d14c1c708a1294a449c.png)
原创]《小学数学与数学思想方法》读书心得近段时间有幸拜读了王永春先生的这本书,看起来很朴实,但是很有用,现结合自己的教学梳理以下几点心得体会来分享:1、通过看目录,我知道了数学思想是有层次的,较高层次的基本思想有三个:(1)抽象思想,包括符号思想、分类思想、集合思想、对应思想、有限与无限思想、变中有不变思想;(2)推理思想,包括公理化思想、归纳推理、类比推理、演绎推理、化归思想、变换思想、数形结合思想、代换思想、逐步逼近的思想;(3)模型思想,包括简化思想、量化思想、方程思想、函数思想、优化思想、随机思想和统计思想。
2、通过看内容,意识到自己关于数学思想方法的专业知识方面的欠缺,平时教什么就练什么,缺少对数学思想方法的抽象概括。
比如第5页上写的,在教学10的认识时,多数教师会结合计数器、点子图、小棒等直观教具让学生认识到9添1是10,然后再进一步学习10的组成及加减法;没有引导学生思考:10与前面学习的0~9这些数有什么不同?这里实际上隐含一个非常重要的思想方法--数学抽象,抽象出了伟大的十进位值制计数,缺少了层次上的上升。
3、对于概念、公式、法则、定理的教学中,除了要重视概念的形成过程,还要重视法则、性质、公式、定律等的探索、归纳过程。
只有这样才能理解概念,解决问题。
4、明确了在整理和复习、总复习中体现数学思想方法。
每个单元后的整理和复习、全册书后的总复习,不是简单地复习知识、巩固技能,更是思想方法的总结和提升。
如二年级学习了乘法口诀后,在进行整理和复习时,不仅仅是复习乘法口诀、整理口诀表、熟背乘法口诀;还应进一步进行提炼。
可引导学生思考:每一列算式有几个数?哪些数不变?哪些数在变?是如何变化的?你发现了什么?你能用一种简便的方式表达出来吗?5、在第二章抽象思想中P14,认识到直观操作的重要性,但他们都是教学的手段而非目的,不能为了操作而操作,要在适当的时机进行适度的数学抽象。
6、在第三章归纳推理中,针对目前教学的四年级知识点中极容易出现错误的运算律教学及除法可以采用归纳法,上升到了理论,正好可以用到。
《小学数学思想方法解读及教学案例》读后感

《小学数学思想方法解读及教学案例》读后感《小学数学思想方法解读及教学案例》是王永春教授主编的。
这本书是《小学数学与数学思想方法》一书的读后感、一线教师的解读和教学案例研究。
相对于单纯的数学思想方法而言,读起来更容易理论结合实际,更容易理解其中的一些道理。
书中从数学思想方法简介、与抽象有关的数学思想、与推理有关的数学思想、与模型有关的数学思想、其他数学思想方法和小学数学教学案例六章节进行阐述的。
认真阅读此书,不但让我对数学学科中蕴含的数学思想有了一个系统的认识,也让我在教学中如何渗透、把握数学思想有了新的思考和收获。
在平时的备课研讨中,我们常常说要研讨教材,要研究教材中体现的数学思想,要能够在教学中渗透数学思想方法。
可在教学中,常常是会出现这样的现象:明明觉得自己讲得很明白,学生就是听不懂,或者说就是不明白老师的意思是什么。
还有的时候,学生本来还是有些明白的,结果我们讲着讲着学生就更加糊涂了。
比如说吧:长方形的周长,学生最容易理解的是哪种方法?当然是两个长加两个宽,可在教学的时候,我们一直强调的是(长+宽)×2,结果有的孩子就糊涂了,在解决问题的时候硬套公式,一旦遇到稍有变式的题目,学生就会出现错误,不知道该怎么进行思考解决的现象。
出现这样问题的原因就在于我们在教学中没有较好的渗透数学思想方法,没有真正的认识到数学的学习关键要培养学生的数学思维,学生学到的只是一个个知识点,没有真正掌握数学学习的本质。
阅读了“数学思想导引,让套公式变成长智慧”,有些豁然开朗的感觉。
一是在数学教学中,每一种数学思想都不是独立存在的,而是与其他的数学思想紧密融合在一起。
作为数学教师,我们要对数学中的思想和方法有一个全面系统的认识和掌握,才能够在教学中发掘数学知识中的数学思想方法,并在教学过程中灵活的渗透,发展学生的数学思维能力。
二是在教学中,我们要对每一个问题进行深入的思考,发现渗透在题目中的数学思想方法,不能一味的为解题而解题,让学生只会机械的套公式,不能灵活的进行思考。
读《小学数学与数学思想方法》心得体会

读《小学数学与数学思想方法》心得体会;(以下内容希望对您又所帮助!)一、教学进一步的升华;读《小学数学与数学思想方法》,对数学老师是一次思想和教学的提升,让我们能够明白数学的本质是什么?做为一名小学数学老师,我们究竟该进行怎样的教学?王教授告诉我们当面对新一轮课程改革,我们需要转变观念,逐步培养重视数学思想的意识,同时又需要在数学的专业素养上的提高自己,这;样才能更好地落实“四基”目标。
这也让我们明白不能纯粹地教会学生一些知识,一些解决问题的技巧,更重要的是关注学生的思维,帮助学生初步地学会数学思想。
全书分为上篇和下篇两部分,上篇主要阐述与小学数学有关的数学思想方法,下篇是义务教育人教版小学数学中的数学思想方法案例解读。
本书思想脉络清晰,上篇主要帮助教师认识数学思想方法,具有理论指导意义,下篇旨在通过生动形象的案例,让教师感悟如何传授数学思想,具有实践指导意义。
二、我和大家一起分享我学习第二节“数学思想方法的教学”的心得;此书读过之后,我发现王教授阐述二年级下册《表内除法(一)》的教学过程,回想起自己所教的还是发现自己有很多不足,我只顾教学生数学方法,忽略传授数学思想,例如从文中了解到除法在教学的过程中分五个模块让学生经历除法概念的形成过程做了很多铺垫,如设计参观科技园准备分食物的大情境,如图1-3,通过例1把6块糖果分成3份理解平均分,通过例2和例3体验平均分有两种实际情况及平均分的过程、方法与结果,再通过例4把12个竹笋平均分成4盘引出除法、除号的概念,最后通过例5把20个竹笋每4个放一盘引出被除数、除数和商的概念。
整个教学过程非常丰富,有观察、操作、演示、语言表达、画图、书写、符号特征、思考等多种活动,学生在已有的生活经验和积累的活动经验的基础上,逐步抽象出除法,初步理解除法的概念。
再通过适当的练习和利用乘法口诀求商,进一步理解除法的概念。
在这教学过程中,只有引导学生感受从直观操作的具体情境中抽象出除法概念的抽象思想,认识用除法符号表达的具有简洁性的符号化思想,体会用实物、图形帮助理解除法的具有直观性的数形结合思想,体会再出发中商随着被除数、除数的变化而变化的函数思想。
数学思想方法理论学习的心得体会(通用15篇)

数学思想方法理论学习的心得体会数学思想方法理论学习的心得体会(通用15篇)我们得到了一些心得体会以后,写心得体会是一个不错的选择,这么做可以让我们不断思考不断进步。
是不是无从下笔、没有头绪?以下是小编为大家收集的数学思想方法理论学习的心得体会,仅供参考,欢迎大家阅读。
数学思想方法理论学习的心得体会篇120xx年10月,我有幸成为田老师“省能手工作站”中的成员。
在田老师的带领下,我们团队积极开展活动,首先确立了第一个研讨主题—————“关于小学数学思想方法在课堂中的渗透”。
为了更好的开展课题研究活动,我们首先收集了许多资料、文献,进行基础理论学习,为后面的研究实践奠定良好的基础。
通过一次又一次的学习、交流,让我对数学思维能力培养的重要性和小学阶段常用的数学思维方法有了更新、更深刻的认识。
数学思维能力是数学能力的核心,是我们运用数学知识分析和解决问题能力的前提。
但数学思维能力的形成需要一个漫长过程,是离不开一节节数学课的积淀的。
我想,作为一名数学老师,在课堂上不仅仅要传授数学知识,更重要的是渗透数学思想方法,培养孩子创新独立能力,这样才能有助于学生形成良好的思维习惯和品质,使其终生受益。
一、注重独立思考当我们遇到新问题的时候,首先要给予学生独立思考判断的空间。
如:这个问题中已经给出的条件是什么,要干什么?需要用到哪些知识,怎么来解决比较合理等等。
当学生的思维判断有困难时,我们进行适当的点拨,或跟他们合作进行研究来解决。
在这样的过程中,学生的思维力会得到训练和提高。
二、强调实践操作在学生的学习过程中,我们要创设有利于质疑、探究的情境,让学生在独立学习的基础上学会与他人合作。
同时,引导学生主动参与、乐于探索、勤于动手、学思结合,把抽象的知识具体化、形象化,从中感受认识、理解、掌握知识,在解决问题的过程中提高思维能力。
三、提倡逆向思维课堂的40分钟是有限的,但学生的思维方向不能是单一的。
这就要求我们在教学设计是,充分研读教材、整合资源,同时把握顺向、逆向这两条思维主线,通过“观察、实验、比较、归纳、猜想、推理、反思”等活动,优化思维品质,提高思维能力,培养创新精神和实践能力。
小学数学教学心得体会(通用14篇)

小学数学教学心得体会(通用14篇)小学数学教学心得体会篇1许多专家都认为:一个学生素质的高低最为重要的标志是看他能否通过数学学习形成一定的思想方法,并运用它们去解决数学问题以及日常生活问题。
而我在多年的数学教学经验中,也得出一个类似的结论:对大多数学生而言,领悟数学思想方法比具体的数学知识更加重要,因为前者更具有普遍性,在他们未来的生活和工作中能派到用处。
教师在日常教学中要适时渗透数学思想方法,对进一步深化数学课堂教学极其重要,这样可避免“题海战”,减轻学生学习负担,提高学生数学能力,更是培养学生创新意识的必要条件。
一、数学教学中的基本思想在数学领域中数学思想方法不计其数,每一种数学思想方法都闪烁着人类智慧的火花。
但小学生的年龄特点决定有些数学思想方法他们不易接受,而且要想把那么多的数学思想方法都渗透给学生也不现实。
因此,应该有选择地渗透一些数学思想方法。
1.数形结合思想方法。
数和形是数学研究的两个主要对象,两者既有区别又有联系,一方面,抽象的数学概念和复杂的数量关系,借助图形使之形象化、直观化、简单化;另一方面,复杂的几何形体可以用简单的数量关系来表示。
在数学教学中,由数想形,以形助数的数形结合思想,具有可以使问题直观呈现的优点,有利于加深学生对知识的识记和理解;在解答数学问题时,数形结合,有利于学生分析题中数量之间的关系,丰富表象,引发联想,启迪思维,拓宽思路,迅速找到解决问题的方法,从而提高分析问题和解决问题的能力。
抓住数形结合思想教学,不仅能够提高学生数形转化能力,还可以提高学生迁移思维能力。
2.集合思想方法。
集合是数学的重要理论和解题工具。
小学数学教材中蕴涵着大量的集合思想,集合的思想和概念渗透于数学教学和各个阶段,在新课程实施的过程中,集合思想在小学数学教学中的渗透愈来愈广泛,其体现形式愈来愈丰富多彩。
因此,在实施素质教育的过程中,不仅仅向学生传授知识,而且要把含在教材中的集合思想有意识地对学生进行渗透,这样有利于培养学生的抽象概括能力,有利于提高学生分析和解决问题的能力。
《小学数学与数学思想方法》读后感

《小学数学与数学思想方法》读后感
《小学数学与数学思想方法》是一本介绍小学数学教学方法和数学思维培养的书籍。
在阅读了这本书后,我深受启发和感受到了许多新的教学理念和方法。
首先,这本书提倡了以问题为核心的教学方式。
它强调了通过解决问题来引导学生进行探究和思考的重要性。
传统的数学教学往往强调记忆和应用公式,而这本书提出了通过问题解决来培养学生的数学思维能力。
这种教学方式能够激发学生的兴趣,提高他们的思维能力和创造力。
其次,这本书介绍了许多具体的教学方法和活动。
例如,它讲解了如何设计有趣的问题和活动,如何引导学生进行探究和思考,以及如何培养学生的数学思维能力。
这些方法和活动很实用,能够帮助教师在教学中更好地引导学生,激发他们的学习动力和思考能力。
另外,这本书还强调了数学思维的培养。
它介绍了一些培养学生数学思维的方法和技巧。
例如,通过数学游戏、数学拓展活动和数学思维训练等方式,帮助学生培养数学思维能力,提高他们的问题解决能力和创造力。
总的来说,这本书对我来说是一本很有启发的教育著作。
它让我重新审视了数学教学的方式和方法,提高了我的教学水平和教学效果。
通过阅读这本书,我学到了很多新的知识和经验,对数学教学有了更深入的理解和认识。
我相信,这本书对每一位数学教师和对数学教育感兴趣的人都会有很大的帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
读《小学数学与数学思想方法》心得体会
读《小学数学与数学思想方法》心得体会
一、教学进一步的升华
读《小学数学与数学思想方法》,对数学老师是一次思想和教学的提升,让我们能够明白数学的本质是什么?做为一名小学数学老师,我们究竟该进行怎样的教学?王教授告诉我们当面对新一轮课程改革,我们需要转变观念,逐步培养重视数学思想的意识,同时又需要在数学的专业素养上的提高自己,这样才能更好地落实“四基”目标。
这也让我们明白不能纯粹地教会学生一些知识,一些解决问题的技巧,更重要的是关注学生的思维,帮助学生初步地学会数学思想。
全书分为上篇和下篇两部分,上篇主要阐述与小学数学有
关的数学思想方法,下篇是义务教育人教版小学数学中的数学思想方法案例解读。
本书思想脉络清晰,上篇主要帮助教师认识数学思想方法,具有理论指导意义,下篇旨在通过生动形象的案例,让教师感悟如何传授数学思想,具有实践指导意义。
二、我和大家一起分享我学习第二节“数学思想方法的教学”的心得
此书读过之后,我发现王教授阐述二年级下册《表内除法(一)》的教学过程,回想起自己所教的还是发现自己有很多不足,我只顾教学生数学方法,忽略传授数学思想,例如从文中了解到除法在教学的过程中分五个模块让学生经历除法概念的形成过程做了很多铺垫,如设计参观科技园准备分食物的大情境,如图1-3,通过例1把6块糖果分成3份理解平均分,通过例2和例3体验平均分有两种实际情况及平均分的过程、方法与结果,再通过例4把12个竹笋平均分成4盘引出除法、除号的概念,最后通过例5把20个竹笋每4个放一盘引出被除数、除数和商的概念。
整个教学过程非常丰富,有观察、操作、演示、语言表达、画图、书写、符号特征、思考等多种活动,学生在已有的生活经验和积累的活动经验的基础上,逐步抽象出除法,初步理解除法的概
念。
再通过适当的练习和利用乘法口诀求商,进一步理解除法的概念。
在这教学过程中,只有引导学生感受从直观操作的具体情境中抽象出除法概念的抽象思想,认识用除法符号表达的具有简洁性的符号化思想,体会用实物、图形帮助理解除法的具有直观性的数形结合思想,体会再出发中商随着被除数、除数的变化而变化的函数思想。
这让我明白在教学上也不能忽略传授思想方法,要不学生只“知其然不知其所以然”,所以在教学上只有不断地学习,才能不断的创新。
三、学习“分类思想”的体会
每个学生在日常中都具有一定的分类知识,如人群的分类、书籍的分类等,我们利用学生的这一认识基础,把生活中的分类迁移到数学中来,在教学中进行数学分类思想的渗透,挖掘教材提供的机会,把握渗透的契机。
这样学生们不仅仅能感受数学来源与生活,还能让每个学生轻松的学习。
如在人教版二年级上《数学广角—搭配(一)》的教学中,学生分类能力有着自己的发展趋势,从根据事物表面的非本质的特征,(如颜色,形状等)进行分类,发展到根据事物
的功用进行分类,发展到根据概念,即客观事物本质的特征进行分类。
第一次,引导学生将6个两位数分组,以交换数位数字为依据,2个一组,分成3组。
第二次“固定法”,通过学生的操作步骤,一个两位数,要拿两次卡片,将3个数字按照“拿”的动作分成两类。
固定一个数位,分层思考,不仅组间标准统一,组内标准也得到统一。
对分类方法和标准的思考,不断完善“顺序”。
“序”,从抽象变得形象可见。
分类标准的不同,6个两位数的排列顺序也不同,学生从开始的运用分类找“序”,到后面的运用分类理解“序”,创造“序”。
学生对“序”的理解,清晰明了,逐步走向深刻。
分类,有利于帮助学生概括,总结出规律性的东西,标准明确,层次清晰才能不重复,不遗漏,体现有序思考的全面性。
分类,加强学生思维的有序性和全面性,为三年级学习《排列与组合》奠定了良好的基础。
四、书是进步的阶梯
王教授的这本好书介绍的内容还很丰富,我还将继续不断深入认真地读下去,争取更多的收获,并在自己教学实践的过程中联系学过的理论知识,用这些理论知识指导自己的教学。
我想,只有教师对数学思想有了深刻的认识后,才能够
通过教学向学生传播数学思想,让学生感悟数学思想。
心得体会, 课程改革, 小学数学, 技巧, 教师。