输电线路雷击故障的分析与故障查找
输电线路雷击故障原因及处理措施

输电线路雷击故障原因及处理措施摘要:随着社会市场经济的快速发展,电力能源的需求呈现不断增长趋势,我们的日常生活、学习、工作已压根离不开电力能源的支持,输电线路一旦出现大规模故障,将会对社会市场经济的发展和国民生活造成恶劣的影响。
为了满足社会发展对电力能源的需求,我国高度重视高压输电网络的发展和建设,对高压输电网络的建设投入了巨大的力量。
但是输电线路不可避免会因天灾人祸出现故障,例如输电线路一旦出现雷击故障,就会导致输电线路短路,造成无法顺利开展输电工作,严重影响到电力输电系统的稳定运行。
本文针对输电线路雷击故障原因进行了一系列分析,并提出相应的雷击故障处理措施,确保电力输电系统的稳定运行。
关键词:输电线路;雷击故障;故障原因;处理措施;引言:当代社会市场经济的发展和人民实际生活已经到完全离不开电力能源的支持,电力输电系统一旦出现问题,会严重影响到社会的稳定和人民的生活质量。
通常输电线路会受到天灾人祸的影响而出现故障,雷击是常见的一种情况,出现雷击故障会导致输电线路短路,进而影响到电力输电系统的稳定运行,所以为了满足社会市场经济的发展和人民实际生活的需求,要及时发现输电线路的故障原因,并针对雷击故障原因提出和制定有效的处理措施。
一、遵循基础原则编制高压输电线路防雷设计方案为了保证电力输电系统的稳定运行,首先要加强电力能源供应管理工作,对影响电力能源管理工作的元素进行协调和控制。
雷雨天的时候,闪电雷击会对输电线路造成不同程度的伤害,会导致输电线路的短路跳闸,对社会的发展和人们的生活带来了恶劣的影响,所以需要编制高压输电线路防雷设计方案。
首先做好相关的准备工作,在确保电力能源输送可靠性的前提下,要对防雷技术进行不断的改革和创新,在传统的防雷技术实践经验中获取有用的信息,结合这些信息改革和优化防雷击技术。
首先需要对输电线路的当地环境因素进行实地观察,了解和分析当地的地区地貌特征的信息,对有缺陷的地方要实施有效的控制,全面掌握周边地区环境地貌的情况,比如说土壤条件是否符合相关标准,对地区地貌特征、土壤条件和接地电阻三者之间的关系进行有效的控制和平衡。
输电线路雷击故障的分析与故障查找

输电线路雷击故障的分析与故障查找摘要:我国的社会经济在不断发展进步,电力需求越来越大,输电线路是电力建设中的最要组成部分,输电线路的雷击故障分析与查找工作与电网的供电能力、供电系统中的安全性有很大关系。
保证电网正常运行的关键就是必须做好雷击故障点的查找工作,避免雷击造成严重的损害,进而才能保证电网的安全建设。
本文针对输电线路雷击故障的分析与故障查找进行了简要的分析,以期为保证电网工程的顺利开展和人们的用电需求提供更多借鉴和参考。
关键词:输电线路;雷击故障;分析;查找引言:随着科学技术的进步和人们对生活需求的提升,输电线路运行的雷击防治越来越受到关注。
若输电线路的雷击故障防治得不到重视,就会影响电力企业的经济效益,严重情况还会危及人身财产安全。
电力行业是推动我国经济建设发展的重要产业,其直接影响我国国民经济的健康发展。
因此这就需要相关部门和工作人员重视安全管理,尤其是输电线路作业项目中的雷击故障问题,对存在的问题进行合理控制,进行有效的施工技术管理,让电网安全运行,从而促进电力行业的发展。
1.输电线路故障的原因分析1.1自然因素一方面,由于输电线路常常会受到外界自然因素的影响,受到风力、雷击、雨雪的影响较大,雷电引起的断线和跳闸是输电线路固有的问题,严重损害输电线路设备,这给电网安全运行带来了极大地威胁,不仅加速了相关设备的老化程度,还给线路的检修、维护工作带来了很大的难度。
另一方面,输电线路涉及内容具有很强的特殊性和专业性,并且工作范围广泛、危险系数也很高。
如果不坚持制度、不遵守规定,就会出现电力安全事故,造成巨大的经济损失。
因此遇到雷雨天气一定要做好防雷措施,妥善解决雷击断线路问题,并且定期对设备和线路进行维护管理,使得输电线路能够正常运行。
1.2人为因素在进行电网建设工程施工前,必须做好输电线路的合理规划,只有有了科学合理地规划方案,才能做好充分的准备,保证电力系统的运行。
由于输电线路极为复杂,施工环节繁琐,影响施工进程的不定性因素有很多,然而很多供电企业对输电线路的设计没有引起足够的重视,没有做好施工前的准备工作,如果不坚持制度、不遵守规定,这样就会导致故障频发,影响工程进展和质量,对工作人员的安全难以保证,大大降低了施工的效率和质量。
输电线路雷击故障查找方法及运用

输电线路雷击故障查找方法及运用供电企业输电线路非常容易出现跳闸故障,引发这一故障问题的主要原因就是雷击。
本文结合“三维定一点”雷击故障点快速查找方法与输电线路故障测距方法两大技术内容探讨了它们在实际故障排查中的有效应用过程。
标签:输电线路;雷击故障;查找方法;“三维定一点”;故障测距对于输电线路故障的排查与运行维护需要做到及时、准确、可靠,保证故障定位重心围绕故障原因分析展开,最终再制定针对性防护措施方案,避免此生故障的再次产生,确保电网运行安全。
一、广西某地区输电线路雷击故障现状本文以广西某地区为例,该地区的输电线路经常出现雷击故障,特别是一到每年的雷雨季节其遭受雷击事故非常频繁,例如跳闸事故,它对电网的安全稳定运行造成了严重影响。
根据统计结果发现,从2014~2017年4年间该地区的输电线路故障跳闸超过60次,其中有43次是由雷击所引起的,雷击成为当地输电线路故障跳闸事故发生的主要原因。
在输电线路被雷击后,当地供电局技术人员也第一时间确定了遭受雷击的杆塔位置,并通过各种技术手段消除线路故障,恢复供电。
不过考虑到雷击事件存在极大的破坏性、随机性和隐蔽性,所以对故障点的定位非常困难,容易导致线路事故的严重隐患。
就目前来看,该地区电力系统已经启用了调度SCADA实时监控系统、雷电定位系统等等作为主力雷击判断设备,专门针对雷击点进行全面搜查,但耗费了相当长的时间与相当大的精力,得不偿失。
因此,总结输电线路累计点查找工作经验,积极创新思考新的查找方法,实现技术灵活运用是非常有必要的[1]。
二、广西某地区输电线路雷击故障的查找方法运用为了有效规避传统中盲目的“地毯式”故障排查方法,为供电企业节约大量人力、物力與财力,当地就专门提出了“三维定一点”雷击故障点快速排查方法,它能够结合计算机系统信息来有效缩小故障排查范围,提高工作效率,有效缩短输电线路雷击点的目标查找时间。
(一)对“三维定一点”快速排查方法的技术要点阐述所谓“三维定一点”,首先它的一点即为雷击点,而第一维就是雷电定位系统。
试论220kV输电线路雷击跳闸故障及对策

试论220kV输电线路雷击跳闸故障及对策摘要:在220kV高压输电线路中,雷击跳闸一直是困扰整个输电线路运行工作的难题,雷害事故几率占导致跳闸事故的1/3 甚至更多。
所以防雷措施是必不可少的重要环节,提高线路耐雷水平是确保线路畅通的主要途径,也是提高线路安全运行的可靠性,从而保证电网连续供电的目的。
关键词:输电线路雷击防雷一、引言220KV输电线路对整个电网供电具有十分重要的地位,为此当线路遭受雷击后,在雷电流与工频电流双重作用下会给配套的防护与运行设备产生危害。
为此,需要根据线路实际所处的环境,制定出合理的防雷措施。
本文提出了一些输电线路实际的防雷方法,这些方法对输电网的安全运行工作具有一定的参考意义。
二、雷击线路跳闸原因1.高压输电线路绕击成因分析。
根据高压送电线路的运行经验、现场实测和模拟试验均证明,雷电绕击率与避雷线对边导线的保护角、杆塔高度以及高压送电线路经过的地形、地貌和地质条件有关。
2.高压输电线路反击成因分析。
雷击杆、塔顶部或避雷线时,雷电电流流过塔体和接地体,使杆塔电位升高,同时在相导线上产生感应过电压。
如果升高塔体电位和相导线感应过电压合成的电位差超过高压送电线路绝缘闪络电压值,即Uj>U50%时,导线与杆塔之间就会发生闪络,这种闪络就是反击闪络。
三、高压输电线路防雷措施1.加强高压输电线路的绝缘水平。
高压输电线路的绝缘水平与耐雷水平成正比,加强零值绝缘子的检测,保证高压输电线路有足够的绝缘强度是提高线路耐雷水平的重要因素。
2.降低杆塔的接地电阻。
高压输电线路的接地电阻与耐雷水平成反比,根据各基杆塔的土壤电阻率的情况,尽可能地降低杆塔的接地电阻,这是提高高压送电线路耐雷水平的基础,是最经济、有效的手段。
3.根据规程规定:在雷电活动强烈的地区和经常发生雷击故障的杆塔和地段,可以增设耦合地线。
由于耦合地线可以使避雷线和导线之间的耦合系数增大,并使流经杆塔的雷电流向两侧分流,从而提高高压输电线路的耐雷水平。
输电线路雷击故障分析及防雷分析

输电线路雷击故障分析及防雷分析摘要:随着社会的不断发展,社会水平不断的提高,科技也在不断的进步,我国电力企业的发展也非常迅速,人们对电力的需求不断的提高,对于电力系统来说,主要的组成构件就是输电线路,输电线路的稳定运行是保证电力运输的关键因素,输电线路遍布交叉,电力的传输途径就是通过输电线路进行,所以要想保证电力系统的稳定安全运行,就要保证输电线路的安全稳定。
但是在实际的电力工程的建设中,输电线路会遭受到各种各样的外力破坏,可能是外界环境的破坏,例如雷击,还有可能是一些小动物的破坏。
本文就针对输电线路雷击故障分析,并进行防治输电线路雷击破坏的措施研究。
关键词:输电线路;雷击故障;防雷措施分析,1.引言对于输电线路来说,由于人们的生活离不开电力,而电力的输送又是通过输电线路来进行的,所以输电线路会遍布世界,不仅在我们生活中,有些高压架设输电线路还是在郊区,越过山川等,所以发生故障的频率就很高。
对于输电线路的常见故障来说,主要有四种,第一种是由于输电线路的基本设备问题,基本的电缆设备的问题会造成输电线路的频繁故障;第二种是人为的因素,由于在施工时的不规范操作,人为的偷窃电缆设备等,也会造成输电线路的故障;第三是一些小动物对输电线路的破坏,比如说老鼠,鸟类等,都会对输电线路造成危害;最后一种是自然环境对输电线路的危害,比如说,疾风,暴雨,暴雪,冰雹,雷电等,这些自然界的一些危害会造成输电线路的频繁故障,我们通过对这些故障进行分析研究,可以发现其中雷击对输电线路的影响最大,造成的故障发生率也最高,特别是在一些山区,雷击的可能性会增大,而一旦这些输电线路受到雷击产生故障,就会造成输电网络的中断,维修的难度跟成本都很高,造成了极大的经济损失,也给人们的生活带来了不便。
所以为了避免输电线路雷击故障,造成大范围的电力中断,就要对这些雷击故障进行分析,从而找到输电线路防雷的具体措施,保证输定线路的正常使用功能,确保输电网络的安全稳定运行。
220kV输电线路雷击掉闸分析与处理

220kV输电线路雷击掉闸分析与处理1. 背景220kV输电线路是电网中最高电压等级的电力系统之一,是电力系统中的关键设备,其安全运行对于电网系统的稳定性和可靠性具有重大意义。
然而,由于气象因素的不可预测性,220kV输电线路也面临着雷击掉闸等情况,需要及时分析处理。
2. 造成雷击掉闸的原因2.1 外部因素220kV输电线路经常受到来自自然环境的各种外部因素的影响,导致雷击掉闸的发生。
例如,雷击、冰雹、风雨、沙尘等,这些因素可以导致线路跳闸。
其中,雷击是导致掉闸发生的主要因素之一。
2.2 内部因素220kV输电线路自身的因素也是导致荷电失衡和雷击掉闸的原因之一。
例如,220kV输电线路可能存在接地电流不均,电位井、绝缘串级等导致的高电压梯度和大电荷密度等,这些因素可能导致线路掉闸。
3. 雷击掉闸的后果如果220kV输电线路出现雷击掉闸的情况,将导致大面积停电,影响生产和生活。
此外,掉闸还可能会造成线路烧毁等严重事故,对于电网的恢复和成本都会造成巨大的负担。
4.1 荷电失衡的分析雷电激活线路的过程通常包括两个阶段,荷电分配和线路终端荷电失衡。
负荷放电会导致线路终端电势井内正、负荷电平不一致,而线路不同部位的电势井中的电位也会发生“微小”变化;线路由于地形、建筑物和其它干扰等影响会出现弯曲分布,加之构件不规则,会造成一定的电位差(mv)。
根据荷电失衡对线路的影响不同,可将其分为两类:零序和正序荷电失衡。
零序荷电失衡是指线路的零序电位失衡,导致荷电不均和电压失衡。
一般来说,零序荷电失衡对线路的影响相对较小,但在恶劣的天气条件下会导致线路的极化和电位变化。
正序失衡是指线路的正序电位失衡,导致线路上的电荷分布不均,从而引起雷击。
4.2 雷击掉闸的原因分析雷击掉闸是指雷电击中输电线路的过程中,电压等级大于其耐压等级的地方会被电压击穿,导致线路跳闸。
导致雷击掉闸的原因有很多,其中最常见的是线路距离地面高度不够。
500kV输电线路雷击事故的分析与防治

500kV输电线路雷击事故的分析与防治摘要:电网出现故障的原因大多数是由于雷击所导致的,且这类故障在近年频繁发生。
据数据显示,架空输电线路由于遭受雷击从而导致的线路跳闸数量占总跳闸数量的五成至七成,特别是地处地形地貌驳杂且土质的电阻率较高的地区,在夏天雷雨频发的季节输电线路受到雷击从而导致电力事故的频率增加,电力系统无法正常运行,社会的正常用电不但不能保障,还会导致社会财产受到损失。
本文就雷击事故的判定、分析与防治作简单的阐述。
关键词:输电线路雷击事故分析防治前言:乐山500kV输电线路,所经地区主要为乐山市的马边、峨边、金口河、峨眉地区,该地区处于小凉山和金口大峡谷边缘,山峦起伏、地形剧变、峰高谷深,地质多为岩石,地理环境相当复杂,自然环境恶劣,线路设备大多处在高山大岭地区或雨雾环绕、年均雷爆日为40的中雷电地区。
500kV线路是国家电网大动脉,同时乐山又是四川电网水电送出中心,所以做好高压输电线路雷击事故的分析与防治工作,对于确保四川电网的安全稳定运行起着重要作用。
一、雷击事故的判定1、故障点查找及故障原因初步判定(1)发生线路跳闸后,根据两端变电站保护、故障故障录波、行波计算出故障点测距,以行波测距较为准确。
(2)以计算故障塔位为中心,大小号侧各延5至10基塔进行登塔检查并测量接地电阻,主要查看大小号通道有无树竹放电情况、绝缘子、金具有无灼烧痕迹。
(3)当发现绝缘子、金具有明显灼烧痕迹时,可初步判定为雷击跳闸。
如图1、图2图1 绝缘子灼烧痕迹2、线路耐雷水平计算(1)雷击地线、杆塔耐雷水平(反击耐雷水平)查阅资料得到绝缘子串长(米)Lx,杆塔全高H,导线弧垂f,导线高度h,通过表1计算出雷击地线、杆塔的耐雷水平I1 。
表1:雷击地线、杆塔的耐雷水平计算(2)雷击导线耐雷水平(绕击耐雷水平)查阅资料得到避雷线高度(米)hb,导线高度(米)hd,避雷线保护角 (度)θ,,绝缘子串长(米)Lx,估算山坡倾角(度)φ,通过表2计算出杆塔临界电流(KA)Isc与绕击耐雷水平(KA)I2表2:绕击分析(临界击距与临界电流,EGM法击距理论)3、雷击故障判定(1)提取雷电监测系统中线路跳闸前后5分钟时间段内、线路走廊2000米内数据。
110kV输电线路雷击故障原因分析及防范措施

110kV输电线路雷击故障原因分析及防范措施电力系统中输电线路遭受雷击的现象越来越多,雷击成为引起线路跳闸故障的主要原因之一,严重影响到输电线路的运行安全。
本文针对一起110kV输电线路雷击故障后进行了详细分析,并对雷击故障做了详细的理论计算,最后结合运行实践经验提出了针对性预防措施,为电力运行单位提高输电线路运行可靠性和防雷管理工作提供了借鉴与指导。
标签:输电线路;雷击跳闸;原因分析;防雷措施一、引言浙江桐庐电网35千伏及以上输电线路多分布在山顶或山脊,山势陡峭,线路所经地区起伏变化较大,气象条件十分复杂。
虽然该地区全线都架设双避雷线保护,但由于输电线路距离长、跨度大、高杆塔较多,极易遭受雷击。
近几年的故障跳闸统计资料表明,雷击引起的高压输电线路跳闸次數占总跳闸次数的93%,因此雷击已成为当前输电线路故障跳闸的主要原因,不仅影响线路、设备的正常运行,而且极大地影响了日常的生产、生活。
同时输电线路故障跳闸直接影响功率的输送,也对电网的安全、稳定运行构成了严重威胁,采取有针对性的防范措施,尽最大可能降低输电线路跳闸率,是线路运行单位追求的目标,也是构建“坚强智能电网”的前提和根本。
二、具体故障描述2012年8月5日20:21时,桐庐电网发生了乔方1052线A相故障,距离Ⅱ段,零序Ⅱ段保护动作,重合成功,乔林变测距29.2km(约73#塔左右);根据该局SCADA系统历史事项显示,在这个时间点乔方1052线RTUSOE保护信号8个。
浙江省雷电定位系统线路雷电查询结果显示,8月5日20:20-20:21乔方1052线附近共计落雷点4个,数据如下:表1 浙江省雷电定位系统线路雷电查询结果序号时间经度纬度电流(kA)回击站数最近距离(m)最近杆塔1 20:20:08.958 119:31:11 29:55:54 -13.5 0 14 322.4 72~742 20:20:08.492 119:31:7 29:55:56 -13.8 0 14 250.8 72~743 20:20:08.933 119:31:7 29:55:58 -14.9 0 14 202.0 72~744 20:20:14.098 119:26:56 29:56:14 22.8 1 18 545.1 95,96经现场查找,发现乔方1052线73#塔A相瓷瓶串1片瓷瓶(上至下第2片)雷击破碎,4片瓷瓶有雷击痕迹,导线上有不同程度的雷击痕迹。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
输电线路雷击故障的分析与故障查找
输电线路雷击故障时有发生,曾一度占输电线路故障的首位,在实际的线路运行中往往对雷击事故分析不到位,对该采用何种防雷措施没有加以仔细的研究,致使加装的防雷措施没有发挥应有的作用,本文主要就雷击故障发生的机理及采取相应防雷措施加以分析,并对故障巡线时,如何查找故障加以论述,希望能对输电线路运行,减小雷击事故起到帮助作用。
1 雷击故障发生的原因
输电线路在夏秋季节经常会发生雷击事故,对输电线路导线及绝缘产生伤害,雷击故障发生的原因有输电线路本体设备不合格所造成,也有外部环境因素的影响。
归纳起来有以下几点:
1)杆塔接地体电阻不合格。
2)接地通道有锈蚀,致使接地通道的接地电阻增大,泄流不畅通。
3)线路的绝缘子老化,出现低值零值绝缘子,致使绝缘下降,耐雷水平降低。
4)避雷线保护角偏大。
5)雷电过电压时,绝缘子串风偏角过大。
6)雷击时雷电流超过设计水平。
7)防雷措施针对性不强等多个方面的原因。
另外雷击的发生与输电线路导线的排列方式、杆塔高度也有密切关系。
雷击发生后,线路运行人员应即时查找故障点,分析故障的原因,判别雷击的类型,以便于采取相应的治理措施。
2 雷击故障类型的分析
在线路发生雷击时应首先分析雷击闪络造成的原因,根据原因对雷击闪络的形式进行有效的判别,雷击故障的类别有反击和绕击两种形式。
1)反击闪络主要是由于塔顶电位升高,造成塔顶电位高于绝缘子串的耐雷水平,放电方向从塔身沿绝缘子串放电,造成单相接地故障,线路跳闸,如果是瞬时故障,重合闸成功,如果是多重雷击可能造成永久故障。
显然反击闪络取决于塔顶电位和线路耐雷水平两方面的因素。
塔顶电位与哪些因素有关呢?
①塔顶电位的高低可以用下列公式来表示:Utd=βIchRch+L。
从式中分析可以得出,塔顶电位升高与杆塔的冲击接电阻、冲击雷电流的大小和杆塔的分流系数成正比,还与杆塔的电感及雷电流的变化率的乘积成正比。
而运行单位可控项只有接地电阻,接地电阻的升高往往是反击闪络的主要原因。
冲击接地电阻的升高原因主要是由于接地体的锈蚀,和接地通道不畅通(接地引下线与接地体连接处有锈蚀、虚焊等现象,接地引下线与杆塔连接处的联板不紧固,存在电气间隙,联板处有锈蚀,杆塔与避雷线的连接处不紧密或锈蚀等)导致接地电阻增加,这些连接处应是线路运行重点巡视的位置。
②输电线路的耐雷水平在设计时已经确定,但在运行中,由于绝缘子串出现低值或零值,U50%减小,绝缘子串耐雷水平下降,发生雷击。
雷击后不仅仅需要测量接地电阻,还需要对雷击杆塔进行绝缘检测。
这一点在雷击事故分析过程中易被忽略,而过分地强调杆塔的接地电阻的大小,产生一些困惑。
在实际的工作中,有些同志会提出这个问题:在雷击的线路上实测杆塔的接地电阻,接地电阻值不高的线路雷击跳闸,而杆塔接地电阻值高的没有发生雷击跳闸,什么原因
呢?分析这个问题需从雷击的类别判断入手,结合接地电阻的实测值以及线路的绝缘配置来进行综合分析判断。
2)另一形式是绕击闪络,它主要是雷电流绕过避雷线,直接击在导线上所造成的绝缘闪络。
输电线路由于地形关系往往发生绕击,绕击发生的机率与哪些因素有关呢?它与避雷线保护角、杆塔高度、接地电阻、输电线路所处的地理环境以及导线的布置方式有关。
①避雷线保护角越大,绕击的可能性越大。
对于多雷区,在设计时应尽量减小避雷线保护角或采用负保护角的方式可以有效防止线路绕击的发生。
②杆塔高度越高,输电线路发生绕击的概率越高。
杆塔增高,雷电活动强度与机率增大,避雷线的保护范围减小,尤其对于同塔多回线路,绕击率明显增大。
③杆塔接地电阻的降低可以有效预防反击闪络。
在实际的运行中,接地电阻较小杆塔比同条线路接地电阻大的杆塔发生绕击闪络的机率要大,这是接地电阻越小的杆塔雷电通过越畅通,越容易引雷的缘故。
④绕击闪络与杆塔的结构型式有关。
导线水平排列的杆塔边相易绕击,导线三角排列的杆塔中相易绕击,双回线路的中相易绕击。
对于地形来说:高山峻岭、山坡的上山侧最易发生绕击。
3)反击闪络与绕击闪络的判别。
闪络形式的有效判别是雷击故障分析的重点,它是制订线路防雷措施的依据。
区分雷电的绕击和反击,可通过现场故障表象、耐雷水平计算、雷电流的测量来进行综合分析判断。
绕击的发生有一些共同特点,例如故障都发生在边相、杆塔走向为山区大跨越、导线上无明显灼痕、被击杆塔地线无烧损痕迹、仅有放电亮点、接地体无烧伤痕迹等。
反击一般有下列特征:多相故障一般是由直击引起,水平排列的中相或上三角排列的上相故障一般是由雷电反击引起。
线路绕击和反击的特点描述参见表1。
3 雷击故障的查巡
3.1 故障的大致判断
1)雷击故障发生的地点及雷电强度。
线路发生故障跳闸后,首先应根据气象条件,结合天气预报,进行故障类型的的判别,发生故障时如听到雷声,应结合发布雷电定系统雷电活动的规律,确定雷电强度和雷电活动的位置。
根据事故发生地点的天气状况,了解雷电活动时的风的强度,判定有无雷电过电压时出现空气间隙击穿而形成单相接地故障。
2)结合继电保护动作情况判定故障的位置及确定是单相或相间故障。
3.2 故障的查巡
1)在故障区段,无风天气,首先对杆塔的接地通道进行故障点的排查,检查接地引下线的接地联板有无烧熔或白点现象;检查地线与杆塔连接处有无烧伤痕迹,有无白点等雷击现象;检查混凝土杆塔的拉线棒与UT线夹连接处有无雷击白点或烧伤痕迹;检查混凝土杆的穿钉螺栓与地线的连接处有无雷击点、放电痕迹等现象;检查绝缘子串有无放电痕迹,瓷质绝缘子瓷体有无圆形状瓷釉脱落现象;检查线夹至防振锤处的导线有无烧伤或断股现象。
2)在故障区段,有风天气,应检查杆塔的脚钉、杆塔的拉线上部以及耐张杆塔跳线处的导线和横担处有无放电痕迹,如有说明雷电过电压时发生了风偏事故。