第2章 简单线性回归模型
第二章(简单线性回归模型)2-4答案(最新整理)

i2 2一、判断题2.4 回归系数的区间估计和假设检验1. 如果零假设 H 0:B 2=0,在显著性水平 5%下不被拒绝,则认为 B 2 一定是 0。
(F )2. k 的置信度为(1 -)的置信区间指真实参数落入该区间的概率是(1 -)。
(F)3.假设检验为单侧检验还是双侧检验本质上取决于备择假设的形式。
(F )4.回归系数的显著性检验是用来检验解释变量对被解释变量有无显著解释能力的检验。
(T )二、单项选择题1. 对回归模型Y i = 0 + 1 X i + u i 进行检验时,通常假定u i 服从(C )。
A . N (0,2)B . t (n - 2)C . N (0,2)D . t (n )2. 用一组有 30 个观测值的样本估计模型Y i = 0 + 1 X i + u i ,在 0.05 的显著性水平下对1的显著性作t 检验,则1显著地不等于零的条件是其统计量t 大于( D )。
A . t 0.05 (30)B . t 0.025 (30))C . t 0.05 (28)D . t 0.025 (28)ˆ - 3. 回归模型Y =+ X + u 中,关于检验 H := 0 所用的统计量11, 下i1ii1列说法正确的是( D )。
A. 服从(2C .服从(2 n - 2) n - 1)B. 服从t (n - 1)D .服从t (n - 2)4. 用一组有 30 个观测值的样本估计模型 y t = b 0 + b 1x 1t + b 2x 2t + u t 后,在 0.05 的显著性水平上对b 1 的显著性作t 检验,则b 1 显著地不等于零的条件是其统计量t 大于等于( C ) A. t 0.05 (30) B. t 0.025 (28) C. t 0.025 (27) D. F 0.025 (1,28)三、简答题1. 当给定后,回归系数2的置信区间是什么样的? ⎡ ˆ ˆ ⎤答:总体方差已知时,置信区间为⎢2 - z ,2 + z ⎥ ;总体方差 未知 ⎢ ∑ x 2 ∑ x 2 ⎥ ⎣i i ⎦∑e2则使用ˆ 2=in - 2估计2:①样本容量充分大时,统计量仍服从正态,则置信区间为Var (ˆ ) 1∑ ix2 ∑ i x 2 ⎥ 22⎡ ˆ ˆ ˆ ˆ ⎤ ⎢2 - z ,2 + z ⎥ ;②样本容量较小时,统计量服从 t 分布,则置信区 ⎢ ∑ x 2 ∑ x 2 ⎥ ⎣i i ⎦⎡ 间为 ⎢ˆ2 - tˆ,ˆ2 + tˆ⎤ 。
伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第2章 简单回归模型【圣才出品】

第2章简单回归模型2.1复习笔记一、简单回归模型的定义1.简单线性回归模型一个简单的方程是:01y x uββ=++假定方程在所关注的总体中成立,它便定义了一个简单线性回归模型。
因为它把两个变量x 和y 联系起来,所以又把它称为两变量或者双变量线性回归模型。
变量u 称为误差项或者干扰项,表示除x 之外其他影响y 的因素。
1β就是y 与x 的关系式中的斜率参数,表示在其他条件不变的情况下,x 变化一个单位y 平均变化。
0β被称为截距参数,在一般的模型中除非有很强的理论依据说明模型没有截距项,否则一般情况下都要带上截距项。
2.回归术语表2-1简单回归的术语3.零条件均值假定(1)零条件均值u 的平均值与x 值无关。
可以把它写作:()()|E u x E u =当方程成立时,就说u 的均值独立于x。
(2)零条件均值假定的意义①零条件均值假定给出1β的另一种非常有用的解释。
以x 为条件取期望值,并利用()|0E u x =,便得到:()01|E y x xββ=+方程表明,总体回归函数(PRF)()|E y x 是x 的一个线性函数,线性意味着x 变化一个单位,将使y 的期望值改变1β。
对任何给定的x 值,y 的分布都以()|E y x 为中心。
1β就是斜率参数。
②给定零条件均值假定()|0E u x =,把方程中的y 看成两个部分是比较有用的。
一部分是表示()|E y x 的01x ββ+,被称为y 的系统部分,即由x 解释的那一部分,另一个部分是被称为非系统部分的u,即不能由x 解释的那一部分。
二、普通最小二乘法的推导1.最小二乘估计值从总体中找一个样本。
令(){} 1 i i x y i n =,:,…,表示从总体中抽取的一个容量为n 的随机样本。
01i i iy x u ββ=++在总体中,u 与x 不相关。
因此有:()()()0cov 0E u x u E xu ===,和用可观测变量x 和y 以及未知参数0β和1β表示为:()010E y x ββ--=()010E x y x ββ--=⎡⎤⎣⎦得到()0111ˆˆ0ni ii y x n ββ=--=∑和()0111ˆˆ0ni i ii x y x n ββ=--=∑这两个方程可用来解出0ˆβ和1ˆβ01ˆˆy x ββ=+则01ˆˆy x ββ=-一旦得到斜率估计值1ˆβ,则有:()111ˆˆ0niiii x y y x x ββ=⎡⎤---=⎣⎦∑整理后便得到:()()111ˆnniii i i i x yy x x x β==-=-∑∑根据求和运算的基本性质,有:()()211n ni i i i i x x x x x ==-=-∑∑()()()11nniii i i i x yy x x y y==-=--∑∑因此,只要有()21nii x x =->∑估计的斜率就为:()()()1121ˆnii i ni i xx y yx x β==--=-∑∑所给出的估计值称为0β和1β的普通最小二乘(OLS)估计值。
(完整版)第二章(简单线性回归模型)2-2答案

2.2 简单线性回归模型参数的估计一、判断题1.使用普通最小二乘法估计模型时,所选择的回归线使得所有观察值的残差和达到最小。
(F)2.随机扰动项和残差项是一回事。
(F )3.在任何情况下OLS 估计量都是待估参数的最优线性无偏估计。
(F )4.满足基本假设条件下,随机误差项i μ服从正态分布,但被解释变量Y 不一定服从正态分 布。
( F )5.如果观测值i X 近似相等,也不会影响回归系数的估计量。
( F )二、单项选择题1.设样本回归模型为i 01i i ˆˆY =X +e ββ+,则普通最小二乘法确定的iˆβ的公式中,错误的是( D )。
A .()()()i i 12i X X Y -Y ˆX X β--∑∑= B .()i i i i 122i i n X Y -X Y ˆn X -X β∑∑∑∑∑=C .i i 122iX Y -nXY ˆX -nX β∑∑= D .i i i i 12x n X Y -X Y ˆβσ∑∑∑= 2.以Y 表示实际观测值,ˆY 表示回归估计值,则普通最小二乘法估计参数的准则是使( D )。
A .i i ˆY Y 0∑(-)=B .2i i ˆY Y 0∑(-)=C .i i ˆY Y ∑(-)=最小D .2i i ˆY Y ∑(-)=最小 3.设Y 表示实际观测值,ˆY 表示OLS 估计回归值,则下列哪项成立( D )。
A .ˆYY = B .ˆY Y = C .ˆY Y = D .ˆY Y = 4.用OLS 估计经典线性模型i 01i i Y X u ββ+=+,则样本回归直线通过点( D )。
A .X Y (,)B . ˆX Y (,)C .ˆX Y (,)D .X Y (,) 5.以Y 表示实际观测值,ˆY表示OLS 估计回归值,则用OLS 得到的样本回归直线i 01iˆˆˆY X ββ+=满足( A )。
A .i i ˆY Y 0∑(-)=B .2i i Y Y 0∑(-)= C . 2i i ˆY Y 0∑(-)= D .2i i ˆY Y 0∑(-)=6.按经典假设,线性回归模型中的解释变量应是非随机变量,且( A )。
第二章简单线性回归模型

4000
2037 2210 2325 2419 2522 2665 2799 2887 2913 3038 3167 3310 3510
2754
4500
2277 2388 2526 2681 2887 3050 3189 3353 3534 3710 3834
3039
5000 5500
2469 2924 2889 3338 3090 3650 3156 3802 3300 4087 3321 4298 3654 4312 3842 4413 4074 4165
Yi 与 E(Yi Xi )不应有偏差。若偏
差u i 存在,说明还有其他影响因素。
Xi
X
u i实际代表了排除在模型以外的所有因素对 Y 的影
响。 u i
◆性质 是其期望为 0 有一定分布的随机变量
重要性:随机扰动项的性质决定着计量经济分析结19
果的性质和计量经济方法的选择
引入随机扰动项 u i 的原因
特点:
●总体相关系数只反映总体两个变量 X 和 Y 的线性相关程度 ●对于特定的总体来说,X 和 Y 的数值是既定的,总体相关系
数 是客观存在的特定数值。
●总体的两个变量 X 和 Y的全部数值通常不可能直接观测,所
以总体相关系数一般是未知的。
7
X和Y的样本线性相关系数:
如果只知道 X 和 Y 的样本观测值,则X和Y的样本线性
计量经济学
第二章 一元线性回归模型
1
未来我国旅游需求将快速增长,根据中国政府所制定的 远景目标,到2020年,中国入境旅游人数将达到2.1亿人 次;国际旅游外汇收入580亿美元,国内旅游收入2500亿 美元。到2020年,中国旅游业总收入将超过3000亿美元, 相当于国内生产总值的8%至11%。
庞浩 计量经济学2第二章 简单线性回归模型

三、总体回归函数
总体回归函数(population regression function,简称PRF): 将总体被解释变量Y的条件均值表现为解释 变量X的函数。
E (Y | X i ) f ( X i )
当总体回归函数是线性形式时,
总体回归函数的条件 期望表示方式
E (Y | X i ) f ( X i ) 1 2 X i
22
四、随机扰动项u
(一)定义 各个被解释变量的个别值与相应的条件均值的 偏差,被称为随机扰动项,或随机干扰项 (stochastic disturbance),或随机误差项 (stochastic error), 用u表示。它可正可 负,是一个随机变量。
ui Yi E (Y | X i ) Yi E (Y | X i ) ui Yi 1 2 X i ui
消费 支出 Y
932
1259 1448 1651 2298 2289 2365 2488 2856 3150
25
Y
SRF1 SRF2
X
26
样本一
Y vs. X 3500 3000 2500 2000 1500 1000 500 0 1000 2000 3000 4000 5000 6000 X 3500 3000 2500 2000 1500 1000 500 0
4
(二)相关关系的种类
⒈按涉及变量的多少分为 单相关 多重(复)相关
相 关 关 系 的 种 类
⒉按表现形式的不同分为
线性相关
非线性相关 正相关 负相关 完全相关
⒊单相关时,按相关关系的方 向不同分为
4.按相关程度的不同分为
Hale Waihona Puke 不完全相关 不相关5
第二章 经典线性回归模型

它表明,对于n个时期t =1,2,…,n,该模型成立。
6
更一般的形式为:
Yi xi ui
i 1,2,...,n
(2.4)
即模型对X和Y的n对观测值(i=1,2,…,n)成立。 (2.3)式一般用于观测值为时间序列的情形,在横 截面数据的情形,通常采用(2.4) 式。
7
例2.1 城镇居民家庭人均消费方程 根据凯恩斯的绝对收入消费理论,在其它 条件不变的情况下,消费与可支配收入同方向变 动,即消费曲线的斜率为正。根据中国2006年31 个省市的城镇居民家庭平均每人全年可支配收入 income(单位:元)和城镇居民家庭平均每人全年 消费性支出consume的数据(单位:元),画出散 点图如下:
(6)各解释变量之间不存在严格的线性关系。
上述假设条件可用矩阵表示为以下四个条件:
18
A1. E(u)=0 A2. E (uu) 2 I n
由于
u1 u2 uu u1 u2 ... u n
2
u12 u1u2 ...... u1un 2 u2u1 u2 ...... u2un ... un ................................. 2 unu1 unu2 ...... un
8
15,000 14,000 13,000 12,000
CONSUME
11,000 10,000 9,000 8,000 7,000 6,000 8,000
12,000
16,000 INCOME
20,000
24,000
从图中看出,两变量之间呈线性关系,可建立城镇居 民家庭人均消费方程如下:
C o n su m e * In c o m e u
(完整版)第二章(简单线性回归模型)2-5答案

2.5 回归模型预测一、判断题1.fY ˆ是对个别值f Y 的点估计。
(F ) 2.预测区间的宽窄只与样本容量n 有关。
(F )3.fY ˆ对个别值f Y 的预测只受随机扰动项的影响。
(F ) 4.一般情况下,平均值的预测区间比个别值的预测区间宽。
(F )5.用回归模型进行预测时,预测普通情况和极端情况的精度是一样的。
(F )二、单项选择题1.某一特定的X 水平上,总体Y 分布的离散度越大,即2σ越大,则( A )。
A .预测区间越宽,精度越低B .预测区间越宽,预测误差越小C 预测区间越窄,精度越高D .预测区间越窄,预测误差越大2.在缩小参数估计量的置信区间时,我们通常不采用下面的那一项措施(D )。
A.增大样本容量nB. 预测普通情形而非极端情形C.提高模型的拟合优度D.提高样本观测值的分散度三、多项选择题1.计量经济预测的条件是(ABC )A .模型设定的关系式不变B .所估计的参数不变C.解释变量在预测期的取值已作出预测 D .没有对解释变量在预测期的取值进行过预测 E .无条件2.对被解释变量的预测可以分为(ABC )A.被解释变量平均值的点预测B.被解释变量平均值的区间预测C.被解释变量的个别值预测D.解释变量预测期取值的预测四、简答题1.为什么要对被解释变量的平均值以及个别值进行区间预测?答:由于抽样波动的存在,用样本估计出的被解释变量的平均值fY ˆ与总体真实平均值()f f X Y E 之间存在误差,并不总是相等。
而用fY ˆ对个别值f Y 进行预测时,除了上述提到的误差,还受随机扰动项的影响,使得总体真实平均值()f f X Y E 并不等于个别值f Y 。
一般而言,个别值的预测区间比平均值的预测区间更宽。
2.分别写出()f f X Y E 和f Y 的置信度为α-1的预测区间。
答:()f f X Y E :()⎪⎪⎪⎭⎫ ⎝⎛-+±∑22f 2f i x X X n 1t Y σαˆˆ;f Y :()⎪⎪⎪⎭⎫ ⎝⎛-++±∑22f 2f i x X X n 11t Y σαˆˆ。
最新第二章(简单线性回归模型)2-1答案

2.1回归分析与回归函数一、判断题1. 总体回归直线是解释变量取各给定值时被解释变量条件期望的轨迹。
(T )2. 线性回归是指解释变量和被解释变量之间呈现线性关系。
( F )3. 随机变量的条件期望与非条件期望是一回事。
(F )4、总体回归函数给出了对应于每一个自变量的因变量的值。
(F )二、单项选择题1.变量之间的关系可以分为两大类,它们是( A )。
A .函数关系与相关关系B .线性相关关系和非线性相关关系C .正相关关系和负相关关系D .简单相关关系和复杂相关关系2.相关关系是指( D )。
A .变量间的非独立关系B .变量间的因果关系C .变量间的函数关系D .变量间不确定性的依存关系3.进行相关分析时的两个变量( A )。
A .都是随机变量B .都不是随机变量C .一个是随机变量,一个不是随机变量D .随机的或非随机都可以4.回归分析中定义的( B )。
A.解释变量和被解释变量都是随机变量B.解释变量为非随机变量,被解释变量为随机变量C.解释变量和被解释变量都为非随机变量D.解释变量为随机变量,被解释变量为非随机变量5.表示x 和y 之间真实线性关系的总体回归模型是( C )。
A .01ˆˆˆt t Y X ββ=+B .01()t t E Y X ββ=+C .01t t t Y X u ββ=++D .01t t Y X ββ=+6.一元线性样本回归直线可以表示为( C )A .i i X Y u i 10++=ββ B. i 10X )(Y E i ββ+=C. i i e X Y ++=∧∧i 10ββ D. i 10X i Y ββ+=∧7.对于i 01i i ˆˆY =X +e ββ+,以ˆσ表示估计标准误差,r 表示相关系数,则有( D)。
A .ˆ0r=1σ=时,B .ˆ0r=-1σ=时,C .ˆ0r=0σ=时,D .ˆ0r=1r=-1σ=时,或8.相关系数r 的取值范围是( D )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 简单线性回归模型
第二章 简单线性回归模型
本章主要讨论:
●回归分析与回归函数 ●简单线性回归模型参数的估计 ●拟合优度的度量 ●回归系数的区间估计和假设检验 ●回归模型预测
2
第一节 回归分析与回归方程
本节基本内容:
●回归与相关 ●总体回归函数 ●随机扰动项 ●样本回归函数
3
一、回归与相关
简单相关 多重相关(复相关)
● 从变量相关关系的表现形式看
线性相关——散布图接近一条直线 非线性相关——散布图接近一条曲线
● 从变量相关关系变化的方向看
正相关——变量同方向变化,同增同减 负相关——变量反方向变化,一增一减 不相关
6
3.相关程度的度量—相关系数
总体线性相关系数:
Cov( X ,Y )
X 和 Y 分别是变量 X 和 Y 样本值的平均值
7
使用相关系数时应注意
● X 和 Y都是相互对称的随机变量
● 线性相关系数只反映变量间的线性相关程度,不 能说明非 线性相关关系
● 样本相关系数是总体相关系数的样本估计值,由 于抽样波动,样本相关系数是个随机变量,其统 计显著性有待检验
● 相关系数只能反映线性相关程度,不能确定因果 关系,不能说明相关关系具体接近哪条直线
E(Y Xi ) 与之对应,
代表这些 Y 的条件期
望的点的轨迹所形成
的直线或曲线,称为
回归线。
Xi
X
11
回归线与回归函数
回归函数:应变量 Y 的条件期望 E(Y Xi ) 随解 释变量 X 的变化而有规律的变化,如果把 Y 的条件期望 E(Y Xi ) 表现为 X 的某种函数
E(Y Xi ) f ( Xi )
● Y 的条件分布
当解释变量 X 取某固定值时(条件),Y 的值不 确定,Y 的不同取值形成一定的分布,即Y 的条
件分布。
Y
● Y 的条件期望
对于X 的每一个取值, 对Y 所形成的分布确
定其期望或均值,称
为Y 的条件期望或条
件均值 E(Y Xi )
Xi
X
10
回归线与回归函数
●回归线:
对于每一个 X 的取值, Y 都有 Y 的条件期望
2388 2426 2488 2587 2650 2789 2853 2934 3110
1650 1900 2150 2400 2650
5000 2464 2589 2790 2856 2900 3021 3064 3142 3274
5500 2824 3038 3150 3201 3288 3399
Var( X )Var(Y )
其中:Var(X ) ——X 的方差;Var(Y ) ——Y的方差
Cov(X ,Y ) ——X和Y的协方差
样本线性相关系数:
XY
__
__
(Xi X )(Yi Y )
__
__
(Xi X )2 (Yi Y )2
其中:X
和
i
Y__i 分别是变量
X
和 Y 的样本观测值
2900 3150 13
二、总体回归函数(PRF)
1. 总体回归函数的概念
前提:假如已知所研究的经济现象的总体应变
量 Y 和解释变量 X 的每个观测值, 可以计算出总体 应变量 Y 的条件均值 E(Y Xi ) ,并将其表现为解释 变量 X 的某种函数
E(Y Xi ) = f (Xi )
这个函数称为总体回归函数(PRF)
均值 E(Y的X偏i )差为 , 显u然i 是随机变u i量,则有
ui Yi E(Yi Xi ) Yi 1 2 Xi
或 Yi 1 2 X i ui
•
ui
•
Xi X
15
3.如何理解总体回归函数
●实际的经济研究中总体回归函数通常是未知的, 只能根据经济理论和实践经验去设定。“计量” 的目的就是寻求PRF。
14
2.总体回归函数的表现形式
(1)条件均值表现形式 假如 Y的条件均值 E(Y 是X解i ) 释变量 的X线性函数,可表示为:
E(Yi Xi ) f (Xi ) 1 2 Xi
(2)个别值表现形式
Y
E(Y Xi ) Yi
对于一定的
X
,
i
的Y 各个别值
分Yi布
在 E(的Y 周Xi )围,若令各个 与条Y件i
计量经济学关心:变量间的因果关系及隐藏在随 机性后面的统计规律性,这有赖于回归分析方法
8
4. 回归分析
回归的古典意义: 高尔顿遗传学的回归概念 ( 父母身高与子女身高的关系)
回归的现代意义: 一个应变量对若干解释变量 依存关系 的研究
回归的目的(实质): 由固定的解释变量去 估计应变量的平均值
9
注意几个概念
1726 1786 1835 1885 1943 2037 2078 2179 2298 2316 2387 2498 2589
1874 1906 1068 2066 2185 2210 2289 2313 2398 2423 2453 2487 2586
2110 2225 2319 2321 2365 2398 2487 2513 2538 2567 2610 2710
1150
2000 1108 1201 1264 1310 1340 1400 1448 1489 1538 1600 1702
1400
每月家庭可支配收入X
2500 3000 1329 1632
3500 1842
4000 2037
4500 2275
1365 1410 1432 1520 1615 1650 1712 1778 1841 1886 1900 2012
这个函数称为回归函数。 回归函数分为:总体回归函数和样本回归函数
举例:假如已知100个家庭构成的总体。
12
例:100个家庭构成的总体 (单位:元)
1000 820 888 932
每 960 月 家 庭 消 费 支 出 Y
E(Y Xi ) 900
1500 962 1024 1121 1210 1259 1324
(对统计学的回顾) 1. 经济变量间的相互关系
◆确定性的函数关系 Y f (X )
◆不确定性的统计关系—相关关系
Y f (X ) (ε为随机变量)
◆没有关系
4
2.相关关系
◆ 相关关系的描述 相关关系最直观的描述方式——坐标图(散点图)
Y
•
••
•
• •
•
• •
•
X
5
◆相关关系的类型 ● 从涉及的变量数量看
●总体回归函数中Y与 X 的关系可是线性的,也可
是非线性的。 对线性回归模型的“线性”有两种解释
就变量而言是线性的