污水处理厂提升泵房结构图05
水污染课程设计----污水处理厂AAO工艺设计(含全套图纸)

《水污染控制工程》课程设计学院:专业:XX:学号:指导老师:目录引言41设计任务及设计资料5 1.1设计任务与内容51.2设计原始资料51.2.1城市气象资料51.2.2地质资料51.2.3设计规模51.2.4进出水水质62、设计说明书6 2.1去除率的计算62.1.1溶解性BOD的去除率65的去除率:72.1.2 CODr2.1.3.SS的去除率:72.1.4.总氮的去除率:72.1.5.磷酸盐的去除率82.2城市污水处理工艺选择82.3、污水厂总平面图的布置92.4、处理构筑物设计流量(二级)92.5、污水处理构筑物设计92.5.1.中格栅和提升泵房(两者合建在一起)9 2.5.2、沉沙池102.5.3、厌氧池112.5.4、缺氧池112.5.5、好氧曝气池112.5.6、二沉池122.6、污泥处理构筑物的设计计算122.6.1污泥泵房122.6.2污泥浓缩池122.7、污水厂平面,高程布置132.7.1平面布置132.7.2管线布置132.7.3 高程布置143 污水厂设计计算书14 3.1污水处理构筑物设计计算143.1.1泵前中格栅143.1.2污水提升泵房163.1.3、泵后细格栅173.1.3、沉砂池183.1.4、厌氧池203.1.5、缺氧池计算203.1.6、好氧曝气池的设计计算213.1.8、二沉池283.2 污泥处理部分构筑物计算313.2.1污泥浓缩池设计计算:313.3、高程计算363.3.1污水处理部分高程计算:363.3.2高程图见CAD图363.3.3污水处理厂工艺流程图与总平面布置图36参考文献37XX市污水处理厂A/A/O工艺设计作者:闫赛红,指导教师:孙丰霞(XX农业大学资源与环境学院)【摘要】随着社会进步,人们对于城市污水的处理的要求愈加严格。
除了基本的去除污水中BOD和SS的要求外,通常还要求脱氮除磷,以保护水体环境。
本设计即采用了众多脱氮除磷工艺中较为经济合理的AAO工艺对进入污水厂的污水进行处理。
污水厂提标过程中提升泵房设置

污水厂提标过程中提升泵房设置生活污水处理厂提标改造过程中,必然涉及到工艺流程改动。
在此过程中,需要增设中间提升泵房。
在CAST工艺中,后续提标改造构筑物中间提升泵房设置需要考虑CAST出水水量冲击负荷以及水位关系,酌情考虑泵房容积设置以及泵的选取。
以佛山三水区某水厂为例,中间提升泵房需要在满足规范规定的前提下,满足CAST出水水量负荷,中间提升泵房容积调大,底板升高等措施来应对。
标签:提标;中间提升泵房;水量冲击负荷;容积为了响应国家号召以及佛山地区水质要求提高,佛山区域污水处理厂进行整体提标改造工程当中。
生活污水处理厂提标改造过程,必然涉及工艺流程地更改,其中中间提升泵房成为了至关重要的一环。
现在我们以佛山市三水区某污水处理厂为例,探究CAST工艺提标改造过程中中间提升泵房的设置情况。
1、水厂提标概况佛山市三水区某污水处理厂,现状一期工程(Q=5万m3/d)和扩建工程(Q=5万m3/d)均采用CAST工艺,现状出水水质标准及提标出水水质标准如下:我们以水厂一期工程为例,厂区一期工程处理水量为5万m3/d,CAST池分为四组,四格运行。
提标过程中,校核CAST池对于常规污染物COD、BOD 等的处理效果:原CAST池各反应区停留时间为,生物选择区停留时间2.1h,主反应区停留时间9.88h。
为保证提标后出水指标,需将CAST池各反应区停留时间均延长。
工程设计技术方案为增加一组CAST池,由四组变为五组,整体处理流量不变,新增CAST池利用现状池体厌氧区,新增缺氧区与好氧区。
相应CAST 池反应区停留时间调整为:生物选择区停留时间2.1h,主反应区停留时间12.35h。
CAST池增加一组之后,整体处理规模保持5万m3/d没变,池容增加,相应每格池子满水水位降低。
为了满足后续提标改造需求,需要增设中间提升泵房。
中间提升泵房选泵依据为厂区设计规模,泵房集水池容积根据大泵的流量及现场实际情况进行调配。
2、中间提升泵房设置情况及分析2.1CAST池出水水量分析根据污水厂厂区CAST池出水流量监测进行统计分析,绘制的趋势图如下:从表中我们可以看出,单格CAST池出水不是按照平均流量出水,而是在17min左右出水70%左右。
泰安市第二污水处理厂扩建及升级改造工程施工组织设计.doc

第一章总体概述1.1 工程概况1.1.1 工程内容泰安市第二污水处理厂扩建及升级改造工程,主要新建构筑物:粗格栅及提升泵房、细格栅及曝气沉砂池、多段多级AO生物池、综合泵房、二沉池、鼓风机房、脱水机房等。
1.1.2 工程特点及重点、难点分析⑴工程施工特点①单体工程多,分布范围广本工程施工作业点多,占地面积大,除各单体分散布置外各类配套设施(包括各类管线、工艺生产设备、电气仪表、动力照明、道路绿化)穿插其中,大部分分部分项工程的作业面相对独立,因此需合理布置完善施工道路及生产的临时设施系统。
②土建和安装工程工序交错,立体交叉作业。
工程施工中所涉及的专业多。
如土建部分有:基础、结构、屋面、装修等。
每个专业和单项施工任务均必须做好充分的施工配合,编制详细的施工方案精心施工,才能保证每个专业和专业之间交叉施工的正常开展。
③施工场地特殊由于工程所在地为原有农田,给现场的临设布置、机械进退场、材料的运输、现场排水、基坑边坡保护等方面工作带来了难度,同时使场内短期内难以形成完善的场内排水系统和交通网络体系,须强化管理。
④室外作业多,受天气影响较大工程施工需跨越冬、雨季,工艺流程中的单体工程和大部分构筑物安装也为敞开式,特别是管道室外敷设施工时,管沟内的安全防护措施和排水措施的实施效果易随季节和气候的变化而变化,应加强计划调度管理。
⑵工程重点、难点池体抗渗要求高工程中的水工池体构筑物,必须具备良好的抗渗漏性,设计中池体构筑物采用结构自防水,池体变形缝处采用橡胶止水带,如何保证工程中池体混凝土和防水变形缝的施工质量是施工的难点之一。
另外池体预留洞和预埋套管较多,确保预埋套管的标高、坐标、和套管与混凝土结合质量也是工程施工的重点。
1.2 施工组织总体设想本工程将作为我单位的重点工程,项目管理将严格按照合同承诺及本企业ISO9001质量标准,ISO14001环境标准、OHSMS18000职业安全与健康标准程序进行全过程控制,以实现以下管理目标。
城市污水处理厂污水提升泵站自动化控制系统

台工 控 机 通 过 组 态 软 件 “ 组态王 ” 与 西 门 子 主 机 通 信 ,接 收 主机 发 送 的 全 部泵 站 自控 数 据 , 进 行 数 据
处理并将数据实时显示在显示屏 ( 系统总结构 图见
图 1 ) 。
2 . 2 子 站
采用西 门子 s 7 -2 0 0 P L C实现泵 站 运行 自动
2 系统结构
Байду номын сангаас
2 . 1 主站( 控 制 中心 )
主站 自控 系 统采 用 西 门 子 s 7 -2 0 0系 列 的 C P U- -2 2 6 P L C做主机, 通过无线数传 电台以“ 轮询” 方式对 8 个子站实现远程数据采集与控制 , 并预留 个 通讯 端 口 , 将 来 与全 厂 中控 系 统 联接 。采 用 二
第3 2卷第 5期
Vol _ 32 No . 5
企 业 技 术 开 发
TECHNOL OGI CAL DEVELOPMENT OF ENTERPRI S E
2 0 1 3年 2月
Fe b. 2 01 3
城 市 污水 处 理厂 污水 提 升 泵 站 自动化 控 制 系统
何 志 平
控制 、 液位 、 流量等现场数据采集 , 并通过无线数传 电台与主站实现数据传输与远程控制。
2 . 3 通讯 方 式 的选 择
由于 8 个 污水 泵 站分 布 在 贫 磐湖 周 边 , 有 线 通
讯方式施工复杂 , 投 资成本 高 , 决定 采用无线通讯 方式 , 无线通讯有两种方案 : ①利用 公 网( 如 G P R S 、 C D MA、 电话 网 ) , 主要 优点是一次投资少 , 覆盖率广 。主要缺点是稳定性
污水处理构筑物设计计算

污水厂设计计算书第一章 污水处理构筑物设计计算一、泵前中格栅1.设计参数:设计流量Q=5×104m3/d=578.7L/s栅前流速v1=0.7m/s,过栅流速v2=0.9m/s栅条宽度s=0.01m,格栅间隙e=20mm栅前部分长度0.5m,格栅倾角α=60°单位栅渣量ω1=0.05m3栅渣/103m3污水2.设计计算(1)确定格栅前水深,根据最优水力断面公式计算得:栅前槽宽,则栅前水深(2)栅条间隙数(取n=48)(3)栅槽有效宽度B=s(n-1)+en=0.01(48-1)+0.02×48=1.43m (4)进水渠道渐宽部分长度(其中α1为进水渠展开角)(5)栅槽与出水渠道连接处的渐窄部分长度(6)过栅水头损失(h1)因栅条边为矩形截面,取k=3,则其中ε=β(s/e)4/3h0:计算水头损失k:系数,格栅受污物堵塞后,水头损失增加倍数,取k=3ε:阻力系数,与栅条断面形状有关,当为矩形断面时β=2.42(7)栅后槽总高度(H)取栅前渠道超高h2=0.3m,则栅前槽总高度H1=h+h2=0.64+0.3=0.94m栅后槽总高度H=h+h1+h2=0.64+0.103+0.3=1.04(8)格栅总长度L=L1+L2+0.5+1.0+0.77/tanα=0.206+0.103+0.5+1.0+0.77/tan60°=2.35m(9)每日栅渣量ω=Q平均日ω1==1.79m3/d>0.2m3/d所以宜采用机械格栅清渣(10)计算草图如下:▲二、污水提升泵房1.设计参数设计流量:Q=578.7L/s,泵房工程结构按远期流量设计2.泵房设计计算采用氧化沟工艺方案,污水处理系统简单,对于新建污水处理厂,工艺管线可以充分优化,故污水只考虑一次提升。
污水经提升后入旋流沉砂池,然后自流通过厌氧池、氧化沟、二沉池、砂滤池及接触池,最后由出水管道排入神仙沟。
各构筑物的水面标高和池底埋深见高程计算。
污水提升泵站系统工作原理图、作用

一体化预制泵站核心技术说明污水提升设备,是在城市用地日益紧张的前提下,城市的不断扩张和建设,迫使人们不断地向地下发展,随之而来的建筑物的污水排放也成为困扰人们生活的巨大问题,原有的地下建筑物污水排放设施由于技术落后、设备陈旧、不但故障率高,而且还要有专人定期进行清掏,对设备进行维修,也会给地下建筑物的设备造成极大的污染,因此,原有的设备早已不能适应人们日益发展需求。
污水提升泵站,卫生间专用污水提升器,该系列设备实现了污水的密闭排放,解决了地下建筑污水排放时的二次污染,采用污水和杂物分离技术,使得整个设备在运行过程中,实现了免清掏,同时该系列设备还有维修率低的优点,设备是现代社会消除地下建筑物污水排放二次环境污染的最佳选择。
设备特点1、不堵塞:由于采用了杂物和污水分离的技术,水泵叶轮不接触杂物,避免了泵的堵塞。
2、污水无倒灌:由于进水管采用双止位阀,增强了防止污水倒流的可靠性。
3、污水箱内无污物沉积:采用了箱底部旋流冲选,避免了污物的沉积。
4、水位检测可靠:水位检测控制灵敏,保证了水泵自动启停的可靠性;根据现场实际情况,以及用户的需求,可以在水位检测装置上加装自动调温设施,以免水位检测装置内部液体受温度的影响发生凝固的现象。
5、无污染:污水实现密闭储存和排放,污水不会外溢,无臭味,净化了周围环境。
6、免清掏:污水和杂物实现分离,外排时一起排出,真正实现免清掏。
7、提高建筑利用率:该系列产品占地面积小,节省地下室空间。
8、自动化控制运行:使用PLC自动控制技术的引入,可实现自动运行,故障报警提示等功能。
9、可自动杀菌消毒:根据用户不同场合的需求,可以进行自动杀菌消毒处理,达标后排放。
适合领域·各类建筑物地下室的污水排放;·地下室厨房及卫生间的污水排放;·地铁车站、地下通道的污水排放;·人防工程改建后的污水排放;·市区中、小型无人操作污水输送泵站;·地下商场、餐饮、浴池等服务场所的污水排放;·各类卫生机构污水排放的杀菌消毒处理和达标排放。
提升泵房设计计算及设备选型和厂区布置

提升泵房设计计算及设备选型和厂区布置2.3提升泵房设计计算本次设计运用SBR 法,对于小规模污水处理厂,可只考虑一次污水提升。
污水提升后进入沉砂池,然后进入SBR 池,消毒池。
设计流量Q max =0. 65m 3/s ,集水池最高水位为79.93m ,出水管提升至细格栅,出水管长度为5m ,细格栅水面标高为85.001m 。
泵站设在处理厂内,泵站的地面高程为81.50m 。
泵房形式:为运行方便,本次设计采用自灌式泵房,流量小于2m 3/s 。
(1)集水间的设计计算选择集水池与机器间合建式的圆形泵站,考虑3台水泵(2用一备),每台水泵的设计流量为:Q 1=Q max 0. 65==0. 325m 3/s 。
22集水间的容积计算: V 总=V 有效+V 死水采用一台泵最大流量是5min 的出水量设计,则集水池的容积为: V 有效=Q 1?t =0. 325?5?60=97. 5m 3 取集水池有效水深H =2m ,则集水池面积为:97. 5F ===48. 75m 2H 2死水容积为最低水位以下的容积:设吸水喇叭口距池底高度取0.5m ,最低水位距喇叭口0.5m 。
则: V 死水=48.75?1=48.75m 3V 总=V 有效+V 死水=48. 75+48. 75=97. 5m 3 集水池水位为:h 1=2+0. 5+0. 5=3mV 有效集水池总高为:H =h 1+h 2=3+0. 5=3. 5m (超高h 2取0.5m )(2)泵房机器间设计计算经过格栅的水头损失为0.07m①集水池正常工作水位与所需提升经常高水位之间的高差为:85. 001-(79. 93-3) =8. 071m ②出水管管线水头损失每一台泵单用一根出水管,其流量为Q max 0. 65Q 1===0. 325m 3/s ,选用管径为DN600mm ,的铸铁管,差22手册可得流速v =1. 33m /s (介于0.8~2.5m 之间),1000i=3.68。
中格栅井与污水提升泵房cad平面图设计(标注齐全)
