高等数学电子教案:10-3(1)

合集下载

高等数学电子教案:10-5

高等数学电子教案:10-5
一、基本概念
观察以下曲面的侧 (假设曲面是光滑的)
曲面分上侧和下侧
曲面分内侧和外侧
曲面的分类: 1.双侧曲面; 2.单侧曲面.

型 双 侧
n


典型单侧曲面: 莫比乌斯带
播放
曲面法向量的指向决定曲面的侧.
决定了侧的曲面称为有向曲面.
曲面的投影问题: 在有向曲面Σ上取一小块
曲面 S, S在xoy面上的投影(S)xy为
n
R( x,
y,
z)dxdy
lim
0
i 1
R( i
,i
,
i
)( Si
) xy
被积函数
积分曲面
类似可定义
n
P(
x,
y,
z)dydz
lim0i 1P ( i,i,
i
)( Si
)
yz
n
Q( x,
y, z)dzdx
lim
0
i
1
Q(
i
,
i
,
i
)(
Si
)
zx
存在条件: 当P( x, y, z),Q( x, y, z), R( x, y, z)在有向光滑曲 面Σ上连续时,对坐标的曲面积分存在. 组合形式:
P( x, y, z)dydz Q( x, y, z)dzdx R( x, y, z)dxdy
物理意义:
P( x, y, z)dydz Q( x, y, z)dzdx R( x, y, z)dxdy
性质:
1. Pdydz Qdzdx Rdxdy 1 2
Pdydz Qdzdx Rdxdy Pdydz Qdzdx Rdxdy
Dxy

高等数学教案word版

高等数学教案word版

高等数学教案word版篇一:高等数学上册教案篇二:《高等数学》教案《高等数学》授课教案第一讲高等数学学习介绍、函数了解新数学认识观,掌握基本初等函数的图像及性质;熟练复合函数的分解。

函数概念、性质(分段函数)—基本初等函数—初等函数—例子(定义域、函数的分解与复合、分段函数的图像)授课提要:前言:本讲首先是《高等数学》的学习介绍,其次是对中学学过的函数进行复习总结(函数本质上是指变量间相依关系的数学模型,是事物普遍联系的定量反映。

高等数学主要以函数作为研究对象,因此必须对函数的概念、图像及性质有深刻的理解)。

一、新教程序言1、为什么要重视数学学习(1)文化基础——数学是一种文化,它的准确性、严格性、应用广泛性,是现代社会文明的重要思维特征,是促进社会物质文明和精神文明的重要力量;(2)开发大脑——数学是思维训练的体操,对于训练和开发我们的大脑(左脑)有全面的作用;(3)知识技术——数学知识是学习自然科学和社会科学的基础,是我们生活和工作的一种能力和技术;(4)智慧开发——数学学习的目的是培养人的思维能力,这种能力为人的一生提供持续发展的动力。

2、对数学的新认识(1)新数学观——数学是一门特殊的科学,它为自然科学和社会科学提供思想和方法,是推动人类进步的重要力量;(2)新数学教育观——数学教育(学习)的目的:数学精神和数学思想方法,培养人的科学文化素质,包括发展人的思维能力和创新能力。

(3)新数学素质教育观——数学教育(学习)的意义:通过“数学素质”而培养人的“一般素质”。

[见教材“序言”]二、函数概念1、函数定义:变量间的一种对应关系(单值对应)。

(用变化的观点定义函数),记:y?f(x)(说明表达式的含义)(1)定义域:自变量的取值集合(D)。

(2)值域:函数值的集合,即{yy?f(x),x?D}。

例1、求函数y?ln(1?x2)的定义域?2、函数的图像:设函数y?f(x)的定义域为D,则点集{(x,y)y?f(x),x?D} 就构成函数的图像。

《高等数学电子教案》课件

《高等数学电子教案》课件

《高等数学电子教案》PPT课件第一章:函数与极限1.1 函数的概念与性质教学目标:理解函数的概念,掌握函数的性质,了解函数的图像。

教学内容:函数的定义,函数的性质,函数的图像。

1.2 极限的概念与性质教学目标:理解极限的概念,掌握极限的性质,学会求极限。

教学内容:极限的定义,极限的性质,极限的求法。

第二章:导数与微分2.1 导数的概念与性质教学目标:理解导数的概念,掌握导数的性质,学会求导数。

教学内容:导数的定义,导数的性质,求导数的方法。

2.2 微分的概念与性质教学目标:理解微分的概念,掌握微分的性质,学会求微分。

教学内容:微分的定义,微分的性质,求微分的方法。

第三章:积分与微分方程3.1 不定积分的概念与性质教学目标:理解不定积分的概念,掌握不定积分的性质,学会求不定积分。

教学内容:不定积分的定义,不定积分的性质,求不定积分的方法。

3.2 定积分的概念与性质教学目标:理解定积分的概念,掌握定积分的性质,学会求定积分。

教学内容:定积分的定义,定积分的性质,求定积分的方法。

第四章:向量与线性方程组4.1 向量的概念与性质教学目标:理解向量的概念,掌握向量的性质,学会求向量的运算。

教学内容:向量的定义,向量的性质,向量的运算。

4.2 线性方程组的概念与性质教学目标:理解线性方程组的概念,掌握线性方程组的性质,学会解线性方程组。

教学内容:线性方程组的定义,线性方程组的性质,解线性方程组的方法。

第五章:矩阵与行列式5.1 矩阵的概念与性质教学目标:理解矩阵的概念,掌握矩阵的性质,学会求矩阵的运算。

教学内容:矩阵的定义,矩阵的性质,矩阵的运算。

5.2 行列式的概念与性质教学目标:理解行列式的概念,掌握行列式的性质,学会求行列式的值。

教学内容:行列式的定义,行列式的性质,求行列式的方法。

第六章:级数与泰勒公式6.1 级数的概念与性质教学目标:理解级数的概念,掌握级数的性质,学会求级数的收敛性。

教学内容:级数的定义,级数的性质,求级数的收敛性。

高等数学电子教案

高等数学电子教案

高等数学电子教案第一章:函数与极限1.1 函数的概念与性质定义:函数是一种规则,将一个非空数集(定义域)中的每一个元素对应到另一个非空数集(值域)中的唯一元素。

函数的性质:单调性、奇偶性、周期性等。

1.2 极限的概念极限的定义:当自变量x趋近于某个值a时,函数f(x)趋近于某个确定的值L,称f(x)当x趋近于a时的极限为L,记作:lim(x→a)f(x)=L。

极限的性质:保号性、传递性、夹逼性等。

1.3 极限的计算极限的基本计算方法:代数法、几何法、泰勒公式等。

极限的运算法则:加减法、乘除法、复合函数的极限等。

1.4 无穷小与无穷大无穷小的概念:当自变量x趋近于某个值a时,如果函数f(x)趋近于0,称f(x)为无穷小。

无穷大的概念:当自变量x趋近于某个值a时,如果函数f(x)趋近于正无穷或负无穷,称f(x)为无穷大。

第二章:导数与微分2.1 导数的定义导数的定义:函数f(x)在点x处的导数,记作f'(x)或df/dx,表示函数在该点的瞬时变化率。

导数的几何意义:函数图像在某点处的切线斜率。

2.2 导数的计算基本导数公式:常数函数、幂函数、指数函数、对数函数等的导数。

导数的运算法则:和差法、乘法法、链式法则等。

2.3 微分的概念与计算微分的定义:函数f(x)在点x处的微小变化量,记作df(x)。

微分的计算:微分的基本公式df(x)=f'(x)dx,以及微分的运算法则。

2.4 微分方程的概念与解法微分方程的定义:含有未知函数及其导数的方程。

微分方程的解法:分离变量法、积分因子法等。

第三章:积分与面积3.1 不定积分的概念与计算不定积分的定义:函数f(x)的不定积分,记作∫f(x)dx,表示f(x)与x轴之间区域的面积。

基本积分公式:幂函数、指数函数、对数函数等的不定积分。

3.2 定积分的概念与计算定积分的定义:函数f(x)在区间[a,b]上的定积分,记作∫[a,b]f(x)dx,表示f(x)在[a,b]区间上的累积面积。

高等数学电子教案

高等数学电子教案

高等数学电子教案第一章:函数与极限1.1 函数的概念与性质定义:函数是一种关系,将一个集合(定义域)中的每个元素对应到另一个集合(值域)中的一个元素。

函数的性质:单调性、连续性、奇偶性、周期性等。

1.2 极限的概念极限的定义:当自变量x趋近于某个值a时,函数f(x)趋近于某个值L,称f(x)当x趋近于a时的极限为L,记作lim(x→a)f(x)=L。

极限的性质:保号性、保不等式性、夹逼定理等。

1.3 极限的计算极限的基本计算方法:代入法、因式分解法、有理化法等。

无穷小与无穷大的概念:无穷小是指绝对值趋近于0的量,无穷大是指绝对值趋近于无穷的量。

1.4 极限的应用函数的连续性:如果函数在某一点的极限值等于该点的函数值,称该函数在这一点连续。

导数的概念:函数在某一点的导数表示函数在该点的切线斜率。

第二章:微积分基本定理2.1 导数的定义与计算导数的定义:函数在某一点的导数表示函数在该点的切线斜率,记作f'(x)。

导数的计算:基本导数公式、导数的四则运算法则等。

2.2 微分的概念与计算微分的定义:微分表示函数在某一点的切线与x轴的交点横坐标的差值,记作df(x)。

微分的计算:微分的基本公式、微分的四则运算法则等。

2.3 积分的概念与计算积分的定义:积分表示函数图像与x轴之间区域的面积,记作∫f(x)dx。

积分的计算:基本积分公式、积分的换元法、分部积分法等。

2.4 微积分基本定理微积分基本定理的定义:微积分基本定理是微分与积分之间的关系,即导数的不定积分是原函数,积分的反函数是原函数的导数。

第三章:微分方程3.1 微分方程的定义与分类微分方程的定义:微分方程是含有未知函数及其导数的等式。

微分方程的分类:常微分方程、偏微分方程等。

3.2 常微分方程的解法常微分方程的解法:分离变量法、积分因子法、变量替换法等。

3.3 微分方程的应用微分方程在物理、工程等领域的应用,例如描述物体运动、电路方程等。

第四章:级数4.1 级数的概念与性质级数的定义:级数是由无穷多个数按照一定的规律相加的序列,记作∑an。

高等数学电子教案(大专版)

高等数学电子教案(大专版)

高等数学电子教案(大专版)《高等数学》教案第一讲函数与极限1.函数的定义设有两个变量x ,y 。

对任意的x ∈D ,存在一定规律f ,使得y 有唯一确定的值与之对应,则y 叫x 的函数。

记作y=f(x),x ∈D 。

其中x 叫自变量,y 叫因变量。

函数两要素:对应法则、定义域,而函数的值域一般称为派生要素。

例1:设f(x+1)=2x 2+3x-1,求f(x).解:设x+1=t 得x=t-1,则f(t)=2(t-1)2+3(t-1)-1=2t 2-t-2∴f(x)=2x 2 – x – 2定义域:使函数有意义的自变量的集合。

因此,求函数定义域需注意以下几点:①分母不等于0 ②偶次根式被开方数大于或等于0 ③对数的真数大于0例2 求函数y=6—2x -x +arcsin712x -的定义域. 解:要使函数有定义,即有:1|712|062≤-≥--x x x ? 4323≤≤--≤≥x x x 或?4323≤≤-≤≤-x x 或于是,所求函数的定义域是:[-3,-2]Y [3,4].例3 判断以下函数是否是同一函数,为什么?(1)y=lnx 2与y=2lnx (2)ω=u 与y=x解(1)中两函数的定义域不同,因此不是相同的函数. (2)中两函数的对应法则和定义域均相同,因此是同一函数. 2. 初等函数(1)基本初等函数常数函数:y=c(c 为常数) 幂函数:y=μx (μ为常数)指数函数:y=xa (a>0,a ≠1,a 为常数) 对数函数:y=x a log (a>0,a ≠1,a 为常数)三角函数:y=sinx y=cosx y=tanx y=cotx y=secx y=cscx 反三角函数:y=arcsinx y=arccosx y=arctanx y=arccotx(2)复合函数设),(u f y =其)(x u ?=中,且)(x ?的值全部或部分落在)(u f 的定义域内,则称)]([x f y ?=为x 的复合函数,而u 称为中间变量.例4:若y=u ,u = sinx ,则其复合而成的函数为y=x sin ,要求u 必须≥0,∴sinx ≥0,x ∈[2k π,π+2k π]例5:分析下列复合函数的结构(1)y=2cotx (2)y=1sin 2+x e解:(1)y=u ,u=cosv ,v=2x(2)y=ue ,u=sinv ,v=t ,t=x 2+1例6:设f(x)=2x g(x)=x 2 求f[g(x)] g[f(x)]解:f[g(x)]=f(x 2)=(x 2)2=4x g[f(x)]=g(2x )=22x3. 极限(1)定义函数y=f(x),当自变量x 无限接近于某个目标时(一个数x 0,或+∞或—∞),因变量y 无限接近于一个确定的常数A ,则称函数f(x)以A 为极限。

《高等数学电子教案》课件

《高等数学电子教案》课件

《高等数学电子教案》课件一、第1章函数与极限1.1 函数的概念与性质定义域、值域、对应关系奇函数、偶函数、周期函数单调性、连续性、可导性1.2 极限的概念与性质极限的定义(洛必达法则)无穷小、无穷大、极限的存在性极限的运算法则、夹逼定理、单调有界定理二、第2章导数与微分2.1 导数的定义与计算导数的定义(极限比值法)基本导数公式、导数的运算法则高阶导数、隐函数求导、参数方程求导2.2 微分的作用与应用微分的定义、微分的运算法则微分在近似计算、物理应用等方面的作用微分方程的解法与应用三、第3章泰勒公式与不定积分3.1 泰勒公式的概念与计算泰勒公式的定义、泰勒级数常见函数的泰勒展开式泰勒公式在近似计算中的应用3.2 不定积分的概念与计算不定积分的定义、基本积分公式换元积分、分部积分积分在几何、物理等方面的应用四、第4章定积分与反常积分4.1 定积分的概念与计算定积分的定义、定积分的性质牛顿-莱布尼茨公式、定积分的换元法、分部积分法定积分在几何、物理等方面的应用4.2 反常积分的概念与计算反常积分的定义、无穷区间上的积分瑕点、解析延拓、魏尔斯特拉斯函数反常积分在实际应用中的意义五、第5章微分方程与线性微分方程组5.1 微分方程的概念与解法微分方程的定义、微分方程的解常微分方程、线性微分方程、非线性微分方程分离变量法、积分因子法、变量替换法5.2 线性微分方程组的概念与解法线性微分方程组的定义、解的结构高阶线性微分方程、齐次线性微分方程特解法、待定系数法、常数变易法六、第6章级数6.1 数项级数的概念与判别法数项级数的定义、收敛性与发散性收敛级数的性质、级数的收敛准则(比较检验、比值检验、根值检验)绝对收敛与条件收敛6.2 幂级数的概念与性质幂级数的定义、收敛半径、收敛区间幂级数的运算、泰勒级数与麦克劳林级数幂级数在函数逼近与数值计算中的应用七、第7章多元函数的极限与连续7.1 多元函数的概念与性质多元函数的定义、偏导数、全微分多元函数的单调性、连续性、可微性方向导数与梯度7.2 多元函数的极限与连续多元函数的极限定义、极限的存在性多元函数的连续性、无穷远点多元函数极限与单变量函数极限的对比八、第8章多元函数的导数与微分8.1 多元函数的导数与微分多元函数的偏导数、全导数高阶偏导数、隐函数求导、参数方程求导微分的概念与性质、微分在多元函数中的应用8.2 多元函数的泰勒公式与不定积分多元函数的泰勒公式、泰勒级数不定积分的概念、多元函数的不定积分积分在多元函数中的应用九、第9章多元函数的定积分与反常积分9.1 多元函数的定积分多元函数定积分的定义、性质多元函数定积分的计算、换元法、分部积分法多元函数定积分在几何、物理等方面的应用9.2 多元函数的反常积分多元函数反常积分的定义、无穷区间上的积分多元函数瑕点、解析延拓、魏尔斯特拉斯函数多元函数反常积分在实际应用中的意义十、第10章向量分析与线性代数10.1 向量分析的概念与方法向量的定义、向量的运算空间解析几何、向量场的概念梯度、散度、旋度、格林公式10.2 线性代数的基本理论向量空间、线性变换、特征值与特征向量矩阵的运算、行列式、特征方程线性方程组、最小二乘法、正交投影重点和难点解析一、第1章函数与极限1.1 函数的概念与性质重点关注函数的奇偶性、周期性及单调性难点解析:奇偶性的判断、周期性的求解、单调性的证明1.2 极限的概念与性质重点关注极限的定义、性质及运算法则难点解析:极限的判断(洛必达法则)、无穷小与无穷大的比较、极限的夹逼定理与单调有界定理二、第2章导数与微分2.1 导数的定义与计算重点关注导数的定义、基本导数公式及导数的运算法则难点解析:导数的计算(隐函数求导、参数方程求导)、高阶导数的应用、导数在实际问题中的应用2.2 微分的作用与应用重点关注微分的定义及微分的运算法则难点解析:微分的应用(近似计算、物理应用)、微分方程的解法及应用三、第3章泰勒公式与不定积分3.1 泰勒公式的概念与计算重点关注泰勒公式的定义、常见函数的泰勒展开式难点解析:泰勒公式的应用(近似计算)、泰勒级数的收敛性判断3.2 不定积分的概念与计算重点关注不定积分的定义、基本积分公式及积分方法难点解析:不定积分的计算(换元积分、分部积分)、积分在几何、物理等方面的应用四、第4章定积分与反常积分4.1 定积分的概念与计算重点关注定积分的定义、性质及计算方法难点解析:定积分的计算(牛顿-莱布尼茨公式、换元法、分部积分法)、定积分在几何、物理等方面的应用4.2 反常积分的概念与计算重点关注反常积分的定义、性质及计算方法难点解析:反常积分的计算(瑕点、解析延拓、魏尔斯特拉斯函数)、反常积分在实际应用中的意义五、第5章微分方程与线性微分方程组5.1 微分方程的概念与解法重点关注微分方程的定义、解的结构及解法难点解析:微分方程的解法(分离变量法、积分因子法、变量替换法)、高阶线性微分方程的解法5.2 线性微分方程组的概念与解法重点关注线性微分方程组的定义、解的结构及解法难点解析:线性微分方程组的解法(特解法、待定系数法、常数变易法)、线性微分方程组的应用全文总结与概括:本文针对《高等数学电子教案》课件的十个章节进行了重点和难点的解析。

高等数学教案完整版

高等数学教案完整版

包括局部保号性、介值定理、零 点定理等。这些性质为分析和研 究连续函数的性质和行为提供了 重要的依据。
连续函数在数学分析、物理学、 工程学等领域有着广泛的应用。 例如,利用连续函数的性质可以 研究函数的单调性、极值等问题; 利用介值定理可以判断方程根的 存在性等。
PART 03
导数与微分
REPORTING
行列式的计算 利用性质将行列式化为上(下)三角形行列式,然后计算主对角线元素的乘积。
矩阵概念及运算规则
1 2
矩阵的定义 由m×n个数排成m行n列的数表称为m行n列的 矩阵,简称m×n矩阵。
矩阵的运算规则 矩阵的加法、数乘、乘法、转置等运算规则。
3
矩阵的性质
矩阵的加法满足交换律和结合律;数乘满足分配 律;矩阵乘法满足结合律和分配律,但不满足交 换律。
PART 07
线性代数初步
REPORTING
行列式概念及性质
行列式的定义
由n^2个数按一定规则排成的n行n列的数表称为n阶行列式。
行列式的性质
行列式与它的转置行列式相等;互换行列式的两行(列),行列式变号;行列式的某一行(列)的公因子可以提到行列式 外面;若行列式中某一行(列)的元素都是两数之和,则此行列式等于两个行列式的和。
若∑|u_n|收敛,则称原级数绝对 收敛;若原级数收敛但∑|u_n|发 散,则称原级数条件收敛。
比较判别法
通过比较级数与已知收敛或发散 的级数来判断其收敛性。
级数定义
比值判别法与根值判别法
无穷序列的和,表示为∑u_n,其 中u_n为级数的通项。
通过求通项的比值或根值的极限 来判断级数的收敛性。
微分方程与级数应用举例
利用微分方程描述人口
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CBE
CAE
d
x 1( y)
Q( x, y)dy Q( x, y)dy
CBE
EAC
c
LQ( x, y)dy
o
同理可证
D
P y
dxdy
L
P
(
x
,
y
)dx
E D
C
x 2( y)
x
两式相加得
D
(
Q x
P y
)dxdy
L
Pdx
Qdy
证明(2)
L3 D3
若区域D 由按段光
滑的闭曲线围成.如图,
将D 分成三个既是X 型又是 L1 D1
x
D {( x, y)1( x) y 2( x),a x b}
D {( x, y)1( y) x 2( y),c y d }
Q dxdy
d
dy
2 ( y) Qdx
D x
c
1 ( y) x
d
c
Q(
2
(
y),
y)dy
d
c
Q(
1(
y),
y)dy
y
Q( x, y)dy Q( x, y)dy
四、小结
1.连通区域的概念;
2.二重积分与曲线积分的关系
D
(Q x
P y
)dxdy
L
Pdx
Qdy
——格林公式;
3. 格林公式的应用.
思考题
y
若区域 如图为
复连通域,试描述格
D
C
G
林公式中曲线积分中LE的方向。源自oAFBx
D
Q x
P y
dxdy
L
Pdx
Qdy
思考题解答
围成的面积.
解 ONA为直线 y 0.
M
曲线AMO 由函数
A(a,0) N
y ax x, x [0,a]表示,
A
1 2
L
xdy
ydx
1
2 ONA
xdy
ydx
1
2 AMO
xdy
ydx
1
2 AMO
xdy
ydx
M
N
A(a,0)
1 2
0
a
x(
2
a ax
1)dx
(
ax x)dx
a a
40
xdx 1 a2 . 6
L3
E C
F
L1
A
{ } (Pdx Qdy) AB L2 BA AFC CE L3 EC CGA
( )(Pdx Qdy)
L2
L3
L1
Pdx Qdy L
(L1,L2 , L3对D来说为正方向)
格林公式的实质: 沟通了沿闭曲线的积分与
二重积分之间的联系.
则 Q P e y2 , x y
A
x
1
应用格林公式,有
e y2dxdy
xe y2 dy
D
OA AB BO
xe y2dy 1 xex2dx
OA
0
1 (1 e1 ). 2
例3
计算
L
xdy x2
ydx y2
,其中L
为一条无重点,
分段光滑且不经过原点的连续闭曲线,L 的方
向为逆时针方向.
L Pdx Qdy
L3 D3
( L1, L2 , L3对D来说为正方向) L1 D1
D2 L2
L
证明(3)
G
若区域不止由一条闭曲
线所围成.添加直线段 AB,CE.
则D 的边界曲线由 AB,L2 ,BA, AFC,CE, L3 , EC 及 CGA 构成.
D
L2
B
由(2)知
D
(
Q x
P y
)dxdy
D
OA xdy AB xdy BO xdy,
由于 OA
xdy
0,
BO xdy 0,
xdy dxdy 1 r2.
AB D
4
2. 简化二重积分
y
例 2 计算
e y2 dxdy ,其中D 是
B 1
D
D
以O(0,0), A(1,1), B(0,1)为顶点
的三角形闭区域.
o
解 令P 0, Q xe y2 ,
便于记忆形式:
x ydxdy L Pdx Qdy.
DP Q
三、简单应用
1. 简化曲线积分
例 1 计算 xdy ,其中曲 AB
线 AB是半径为r 的圆在
第一象限部分.
y
A
D
oL
Bx
解 引入辅助曲线L , L OA AB BO
应用格林公式, P 0, Q x 有
dxdy L xdy
解 记L所围成的闭区域为D ,
令P
y x2 y2
,
Q
x2
x
y2
,
则当 x2
y2
0时,
有Q x
(
y2 x2
x2 y2 )2
P .
y
y
(1) 当(0, 0) D时,
由格林公式知
L
xdy x2
ydx y2
0
D
o
(2) 当(0,0) D时,
L x
作位于D 内圆周 l : x2 y2 r 2, y L
一、区域连通性的分类
设D为平面区域, 如果D内任一闭曲线所 围成的部分都属于D, 则称D为平面单连通区 域, 否则称为复连通区域.
D D
单连通区域
复连通区域
设空间区域G, 如果G内任一闭曲面所围成
的区域全属于G, 则称G是空间二维单连通域;
如果G内任一闭曲线总可以张一片完全属于 G的曲面, 则称G为空间一维单连通区域.
格林公式:
D
(
Q x
P y
)dxdy
L
Pdx
Qdy
取P y, Q x, 得 2 dxdy L xdy ydx
D
闭区域D 的面积
A
1
2 L
xdy
ydx .
取P 0, Q x, 得 A L xdy 取P y, Q 0, 得 A L ydx
例 4 计算抛物线( x y)2 ax(a 0)与x 轴所
G
G
G
一维单连通 二维单连通
一维单连通 二维不连通
一维不连通 二维单连通
二、格林公式
定理1 设闭区域D 由分段光滑的曲线L 围
成,函数P( x, y)及Q( x, y)在D 上具有一阶连
续偏导数, 则有
D
( Q x
P y
)dxdy
L
Pdx
Qdy
(1)
其中L 是D 的取正向的边界曲线,
公式(1)叫做格林公式.
L1
D
L2
L1
D
L2
L由L1与L2连成
L由L1与L2组成
边界曲线L的正向: 当观察者沿边界行走时,区 域D总在他的左边.
证明(1)
若区域D 既是X 型 又是Y 型,即平行于 坐标轴的直线和L 至
多交于两点.
y
d x 1( y)
A c oa
E y 2(x)
D
B
x 2( y)
Cy 1(x) b
记D1由L 和l 所围成,
应用格林公式,得
l D1
or
x
L
xdy x2
ydx y2
l
xdy x2
ydx y2
0
L
xdy x2
ydx y2
l
xdy x2
ydx y2
y
L
D1
l
or
x
2r 2
0
cos2
r2
r2
sin2
d
2 .
( 其 中l 的 方 向 取逆时针方向)
(注意格林公式的条件)
3. 计算平面面积
Y 型的区域D1,D2 ,D3 .
Q P
Q P
( )dxdy
( )dxdy
D x y
x D1 D2 D3 y
D2 L2
D L
Q P
Q P
Q P
(
D1
x
y
)dxdy
(
D2
x
y
)dxdy
(
D3
x
y
)dxdy
L1 Pdx Qdy L2 Pdx Qdy L3 Pdx Qdy
相关文档
最新文档