高中数学三角函数恒等变形公式
高中数学-简单的三角恒等变换

= 1 .
7
4
3.(教材习题改编)若(tan α+1)(tan β+1)=2,则α+β=
教材研读 栏目索引
.
答案 +kπ,k∈Z
4
解析 由(tan α+1)(tan β+1)=2可得,
tan α+tan β=1-tan αtan β,则tan(α+β)= tan α tan β =1,则α+β= +kπ,k∈Z.
1 tan α tan β
4
教材研读 栏目索引
4.(2019江苏无锡高三模拟)已知sin2x+2sin xcos x-3cos2x=0,则cos 2x= .
答案 - 4 或0
5
教材研读 栏目索引
解析
∵sin2x+2sin
xcos
x-3cos2x= sin2
x
2sin x cos x sin2x cos2
7 14 7 14 2
考点突破 栏目索引
因为α为锐角,所以0<2α<π.又cos 2α>0,所以0<2α< ,
2
又β为锐角,所以- <2α-β< ,所以2α-β= .
2
2
3
考点突破 栏目索引
方法技巧
“给值求角”实质上可转化为“给值求值”,即通过求角的某个三角函 数值来求角(注意角的范围),在选取函数时,遵循以下原则:
(2)1+sin α=③
sin
α 2
cos
α 2
2
;
教材研读 栏目索引
1-sin α=④
三角函数恒等变形公式

精品文档
.
精ห้องสมุดไป่ตู้文档
三角函数恒等变形公式
以下总结了三角函数恒等变形公式含倍角公式、辅助角公式、三角和的三角函数、两角和与差的三角函数
两角和与差的三角函数:
cos( α+β)=cos α· cosβ - sin α· sin β cos( α - β)=cos α· cosβ+sin α· sin β sin( α±β )=sin α· cosβ± cosα· sin β tan( α+β)=(tan α+tan β)/(1 - tan α· tan β) tan( α - β)=(tan α - tan β)/(1+tan α· tan β) 三角和的三角函数:
.
cosα· sin β=(1/2)[sin( α+β) - sin( α - β)] cosα· cosβ=(1/2)[cos( α+β)+cos( α - β)] sin α· sin β=- (1/2)[cos( α+β)- cos( α - β)] 和差化积公式: sin α+sin β=2sin[( α+β)/2]cos[( α - β)/2] sin α - sin β=2cos[( α+β)/2]sin[( α - β)/2] cosα+cosβ=2cos[( α+β)/2]cos[( α - β)/2] cosα - cosβ=- 2sin[( α+β)/2]sin[( α - β)/2] 推导公式 tan α+cot α=2/sin2 α tan α - cot α=- 2cot2 α 1+cos2α=2cos2α 1- cos2α=2sin2 α 1+sin α=(sin α/2+cos α/2)2
高中数学必修一 三角恒等变形总结(采百家之长版)

一、三角函数公式:辅助角公式的重要作用:合一变形⇒把形如x b x a cos sin +的函数转化为)sin(ϕ+=x A y 的函数,即:两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 B x A y ++=)sin(ϕϖ形式tan tan tan 2212ααααβ=-=←−−相除以上是三角函数公式的关系图二、三角恒等变换:一角二名三结构,对角、函数名、式子结构===化异为同三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。
即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点。
常用的数学思想方法技巧如下:(1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的相异角,可根据角与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变形如:(2余弦是基础,通常化切、割为弦,变异名为同名。
(3)常数代换:在三角函数运算,求值,证明中,有时需要将常数转化为三角函数值,(4)幂的变换:降幂是三角变换时常用方法,对次数较高的三角函数式,一般采用降幂处理的方法。
降幂并非绝对,有时需要升幂,如对无理式αcos 1+常用升幂化为有理式 (5)公式变形:三角公式是变换的依据,应熟练掌握三角公式的顺用,逆用及变形应用。
三、三角函数式的化简运算通常从:“角、名、形、幂”四方面入手;基本规则是:切割化弦,异角化同角,复角化单角,异名化同名,高次化低次,无理化有理,和积互化,特殊值与特殊角的三角函数互化。
化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量 使分母不含三角函数;⑤尽量使被开方数不含三角函数。
四、三角函数的求值类型有三类(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如2(),()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。
三角恒等变换和角公式

5
2
3
【习题 4】已知 , 都是锐角, cos 1 , cos( ) 11 ,求 cos 的值.
7
14
【习题 5】已知 tan( ) 3 ,求 tan 的值 4
【习题 6】已知 , 都是锐角,且 sin 5 , sin 10 ,求 。
A. 0
B. 1
C. 1
D. 1 2
【习题 2】已知 (0 , ) ,且 sin 3 ,求 2 cos( ) 的值.
2
5
4
高中数学.三角恒等变换 01 和角公式(A 级).学生版
Page 3 of 4
【习题
3】已知 cos
4
,
(
,
)
,求 sin(
) 的值。
3
2
A. 15 3
B. 2 3
C. 1 3
D.1
高中数学.三角恒等变换 01 和角公式(A 级).学生版
Page 2 of 4
【例 11】 若 sin x sin y 3 , cos x cos y 4 ,求 cos(x y) 的值.
5
5
【例 12】 已知 3 ,则 (1 tan )(1 tan ) ( ) 4
【例 1】 求下列各式的值
(1) cos80 cos 20 sin 80 sin 20 ; (2) cos2 15 sin2 15 ; (3) 1 cos15 3 sin15 .
2
2
【例 2】 cos 79 cos 34 sin 79 sin 34 ( )
5
5
【例 16】 已知 tan 与 tan 是方程 x2 3x 3 0 的两根, 求 sin2 ( ) 3sin( ) cos( ) 3cos2 ( ) 的值.
三角恒等变形公式

三角恒等变形公式-余弦和差公式-正弦和差公式-二倍角公式-半角公式-和差化积公式-积化和差公式这些公式在解决三角函数的问题时非常有用,可以帮助我们将一个三角函数转化成其他形式来简化计算和推导。
下面将详细讨论每个变形公式及其应用。
首先是余弦和差公式。
余弦和差公式可以通过三角函数的几何定义得到。
设A和B是两个角,则有:cos(A ± B) = cosAcosB ∓ sinAsinB这个公式在解决三角函数的和差问题时非常有用,可以将一个复杂的三角函数转化为简单的三角函数相乘或相除的形式,进而简化计算。
接下来是正弦和差公式。
正弦和差公式与余弦和差公式类似,可以通过几何定义得到。
设A和B是两个角,则有:sin(A ± B) = sinAcosB ± cosAsinB这个公式也在解决三角函数的和差问题时非常有用,可以将一个复杂的三角函数转化为简单的三角函数相乘或相除的形式。
下面是二倍角公式。
二倍角公式可以通过余弦和正弦的和差公式得到。
设A是一个角,则有:cos2A = cos²A - sin²A= 2cos²A - 1= 1 - 2sin²Asin2A = 2sinAcosA这个公式可以将一个角的二倍角转化为这个角的正余弦的平方形式,便于计算。
再来是半角公式。
半角公式可以通过二倍角公式的变形得到。
设A是一个角,则有:cos(A/2) = ±√[(1 + cosA)/2]sin(A/2) = ±√[(1 - cosA)/2]这个公式可以将一个角的一半角转化为这个角的余弦或正弦形式。
接下来是和差化积公式。
和差化积公式可以通过余弦和正弦的和差公式得到。
设A和B是两个角,则有:cosA + cosB = 2cos[(A + B)/2]cos[(A - B)/2]cosA - cosB = -2sin[(A + B)/2]sin[(A - B)/2]sinA + sinB = 2sin[(A + B)/2]cos[(A - B)/2]sinA - sinB = 2cos[(A + B)/2]sin[(A - B)/2]这个公式可以将两个正弦或余弦的和(或差)转化为另外两个正弦或余弦的积,从而简化计算和推导。
高中数学三角恒等式变形技巧

高中数学三角恒等式变形技巧在高中数学的学习中,三角恒等式是一个重要的知识点。
学生们常常会遇到需要根据已知的三角恒等式来推导出新的恒等式的情况。
在这个过程中,掌握一些三角恒等式的变形技巧是非常有帮助的。
本文将介绍几种常见的变形技巧,并通过具体的例题进行说明。
一、平方差公式的变形平方差公式是我们在学习三角函数时经常接触到的一个恒等式,即:sin^2x - cos^2x = 1在解题过程中,我们常常需要根据这个公式来进行变形。
例如,以下是一道常见的题目:已知 sin^2x = 1/4,求 cos^2x 的值。
解析:首先,我们可以利用平方差公式将已知条件进行变形:sin^2x - cos^2x = 11/4 - cos^2x = 1然后,我们可以通过移项和化简的方法求解出 cos^2x 的值:cos^2x = 1/4 - 1cos^2x = -3/4通过这个例题,我们可以看到,利用平方差公式进行变形可以帮助我们解决一些关于三角函数平方的问题。
二、和差化积公式的变形和差化积公式是我们在学习三角函数时另一个重要的恒等式,即:sin(x ± y) = sinxcosy ± cosxsiny在解题过程中,我们可以利用这个公式将已知条件进行变形,从而得到新的恒等式。
例如,以下是一道常见的题目:已知 sin2x = 2sinx,求 cos2x 的值。
解析:首先,我们可以利用和差化积公式将已知条件进行变形:sin2x = 2sinxsin(x + x) = 2sinx然后,我们可以利用和差化积公式的逆向思维,将 sin(x + x) 进行变形:sin(x + x) = sinxcosx + cosxsinx2sinxcosx = 2sinx接着,我们可以通过移项和化简的方法求解出 cos2x 的值:sinxcosx = sinxcos2x = cos^2x - sin^2xcos2x = cos^2x - (1 - cos^2x)cos2x = 2cos^2x - 1通过这个例题,我们可以看到,利用和差化积公式进行变形可以帮助我们解决一些关于三角函数和的问题。
高中数学三角恒等式知识点归纳

高中数学三角恒等式知识点归纳三角恒等式是高中数学中的重要知识点,它们在三角函数的运算和证明中起到关键的作用。
下面是一些常见的三角恒等式知识点的归纳:1. 基本恒等式- 正弦函数的平方加上余弦函数的平方等于1:$\sin^2x +\cos^2x = 1$- 正切函数是正弦函数与余弦函数的比值:$\tan x = \frac{\sin x}{\cos x}$- 余切函数是余弦函数与正弦函数的比值:$\cot x = \frac{\cos x}{\sin x}$- 正割函数是1除以余弦函数:$\sec x = \frac{1}{\cos x}$- 余割函数是1除以正弦函数:$\csc x = \frac{1}{\sin x}$2. 倍角与半角公式- 正弦函数的倍角公式:$\sin 2x = 2 \sin x \cos x$- 余弦函数的倍角公式:$\cos 2x = \cos^2x - \sin^2x$- 正切函数的倍角公式:$\tan 2x = \frac{2\tan x}{1 - \tan^2x}$- 正弦函数的半角公式:$\sin^2\frac{x}{2} = \frac{1 - \cosx}{2}$- 余弦函数的半角公式:$\cos^2\frac{x}{2} = \frac{1 + \cosx}{2}$- 正切函数的半角公式:$\tan\frac{x}{2} = \sqrt{\frac{1 - \cos x}{1 + \cos x}}$3. 和差与积化和差公式- 正弦函数的和差公式:$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$- 余弦函数的和差公式:$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$- 正切函数的和差公式:$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$- 正弦函数的积化和差公式:$\sin x \sin y = \frac{1}{2}[\cos(x - y) - \cos(x + y)]$- 余弦函数的积化和差公式:$\cos x \cos y = \frac{1}{2}[\cos(x - y) + \cos(x + y)]$- 正切函数的积化和差公式:$\tan x \tan y = \frac{1 - \cos(x + y)}{1 + \cos(x + y)}$4. 诱导公式- 正弦函数的诱导公式:$\sin(\pi \pm x) = \mp \sin x$- 余弦函数的诱导公式:$\cos(\pi \pm x) = -\cos x$- 正切函数的诱导公式:$\tan(\pi \pm x) = \mp \tan x$这是一些常见的高中数学中三角恒等式的知识点归纳。
高中数学三角函数的恒等变形

知识框架三角 恒 等 变 换和差化积公式sin sin 2sin cos 22αβαβαβ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭+-+= sin sin 2cos sin 22αβαβαβ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭+--= cos cos 2cos cos 22αβαβαβ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭+-+=cos cos 2sin sin 22αβαβαβ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭+--=- 两角和与差的公式正弦公式::sin()sin cos cos sin :sin()sin cos cos sin S S αβαβαβαβαβαβαβαβ+-+=+⎧⎪⎨-=-⎪⎩余弦公式:()()+C :cos cos cos sin sin C :cos cos cos sin sin αβαβαβαβαβαβαβαβ-⎧+=-⎪⎨-=+⎪⎩正切公式:tan tan tan tan :tan();:tan()1tan tan 1tan tan T T αβαβαβαβαβαβαβαβ+-+-+=-=-⋅+⋅221cos 1cos :sin;:cos2222S C αααααα-+=±=±21cos sin 1cos :tan21cos 1cos sin T αααααααα--=±==++ 半角公式二倍角公式2:sin 22sin cos S αααα=22222:cos2cos sin 2cos 112sin C αααααα=-=-=-222tan :tan 21tan T αααα=-积化和差公式()()1sin cos sin sin 2αβαβαβ⎡⎤⎣⎦=++- ()()1cos sin sin sin 2αβαβαβ⎡⎤⎣⎦=+-- ()()1cos cos cos cos 2αβαβαβ⎡⎤⎣⎦=++- ()()1sin sin cos cos 2αβαβαβ⎡⎤⎣⎦=-+--三角函数的恒等变形三角函数 的恒等变形要求层次重难点两角和与差的正弦、余弦、正切公式C 掌握两角和与差的三角函数公式,掌握二倍角公式;能运用这些公式进行三角化简,求值等有关运算问题能正确地运用三角函数的有关公式进行三角函数式的求值,化简与恒等式的证明.二倍角的正弦、余弦、正切公式 C 简单的恒等变形B(一)知识内容1.两角和与差的三角函数公式:sin()sin cos cos sin αβαβαβ±=± cos()cos cos sin sin αβαβαβ±=tan tan tan()1tan tan αβαβαβ±±=2.倍角公式 sin 22sin cos ααα=;2222cos 2cos sin 12sin 2cos 1ααααα=-=-=-22tan tan 21tan ααα=-3sin 33sin 4sin ααα=-;3cos34cos 3cos ααα=-;323tan tan tan 313tan αααα-=-3.半角公式1cos sin22αα-=±1cos cos 22αα+=± 1cos 1cos sin tan21cos sin 1cos ααααααα--=±==++ 4.万能公式22tan2sin 1tan 2ααα=+;221tan 2cos 1tan 2ααα-=+;22tan2tan 1tan 2ααα=-5.积化和差公式例题精讲高考要求1sin cos [sin()sin()]2αβαβαβ=++-;1cos sin [sin()sin()]2αβαβαβ=+--;1cos cos [cos()cos()]2αβαβαβ=++-;1sin sin [cos()cos()]2αβαβαβ=-+--6.和差化积公式 sin sin 2sincos22αβαβαβ+-+=;sin sin 2cossin22αβαβαβ+--=;cos cos 2cos cos 22αβαβαβ+-+=;cos cos 2sin sin 22αβαβαβ+--=-【说明】这里的三倍角公式、万能公式、积化和差公式、和差化积公式都属于了解内容,不要求必须掌握.不建议大家去记这些公式,首先sin()sin cos cos sin αβαβαβ+=+这个公式比较容易记,而且如果大家不记其他公式不记其他公式的话,应该很容易了.下面给出其他公式通过这个公式的推导过程: 2.公式的推导:sin()sin[()]sin cos()cos sin()αβαβαβαβ-=+-=-+-sin cos cos sin αβαβ=- cos()sin[()]sin[()()]22ππαβαβαβ+=-+=-+-sin()cos()cos()sin()cos cos sin sin()22ππαβαβαβαβ=--+--=+- cos cos sin sin αβαβ=-cos()sin[()]sin[()]22ππαβαβαβ-=--=-+ sin()cos cos()sin cos cos sin sin 22ππαβαβαβαβ=-+-=+ sin()sin cos cos sin tan()cos()cos cos sin sin αβαβαβαβαβαβαβ+++==+-两边同时除以cos cos αβ可得tan()αβ+=tan tan 1tan tan αβαβ+-tan tan()tan tan tan()tan[()]1tan tan()1tan tan a αβαβαββαβαβ+---=+-==--+然后把上面各式中的β代换为α,则可得到二倍角公式sin 2sin()sin cos cos sin 2sin cos ααααααααα=+=+=22cos2cos()cos cos sin sin cos sin ααααααααα=+=⋅-⋅=-再利用22sin cos 1αα+=,可得:2222cos2cos sin 2cos 112sin ααααα=-=-=-()2tan tan 2tan tan 2tan 1tan tan 1tan ααααααααα+=+==-⋅-sin 2tan2cos 2ααα===sin 2sinsin1cos 222tan2sin cos 2sin cos 222ααααααααα-=== sin2cossinsin 222tan21cos cos 2cos cos 222ααααααααα===+【说明】这里没有考虑cos sin 022αα==,实际处理题目的时候需要把等于0的情况分出来单独讨论一下.建议大家刚学的时候自己每次推导一下要用的公式,这样比较容易记忆,加深对公式的理解,让自己能够更熟练的使用公式.同时告诉大家数学没有需要记忆的东西,大家在学习数学时不要有任何记忆的想法,要去理解它,才能掌握它,把它变成自己的东西,每学一个东西就像知道一个常识一样的去对待.如果靠记忆来学习数学的话,你学的仍然是别人的东西,而且用起来必然不够熟练.(二)主要方法1.倍角、半角、和差化积、积化和差等公式的运用(1)并项功能:2221sin 2sin cos 2sin cos (sin cos )ααααααα±=+±=± (2)升次功能2222cos 2cos sin 2cos 112sin ααααα=-=-=-(3)降次功能221cos 21cos 2cos ,sin 22αααα+-== (4)一个重要的构造22sin cos cos )ba b a b αααα+=++令sin β=,则cos β=cos cos sin )αβαβ+(sin β=)可知:sin cos a b αα+2.三角变换中常用的数学思想方法技巧有:⑴角的变换:和、差、倍、半、互余、互补的相对性,有效沟通条件与结论中角的差异, 比如:3015453060452︒︒=︒-︒=︒-︒=, ()()22αααββαββ=-+=+-=⋅()()()()ππ2()()44ααβαβαββααα=++-=+--=+--()()222βαβαβαααβα⎛⎫-=-+=-=-- ⎪⎝⎭ππππππ244362αααααα⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+-=++-=++-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭π3ππ2ππ5ππ443366αααααα⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++-=++-=++-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⑵函数名称的变换:三角变形中,常常需要变函数名称为同名函数,在三角函数中正余弦是基础,通常化切为弦,变异名为同名;有时可以使用万能公式将所有函数名化为正切; ⑶常数代换:在三角函数运算、求值、证明中,有时需要将常数转化为三角函数值, 例如:2222ππππ1sin cos sec tan sintan 2sin 2sin 2464αααα=+=-====; ⑷幂的变换:降幂是三角变换时常用的方法,常用的降幂公式有:21cos2cos 2αα+=,21cos2sin 2αα-=但降幂并非绝对,有时也需要对某些式子进行升幂处理,比如:221cos22cos ,1cos22sin αααα+=-=;21sin 2(sin cos )ααα±=±;⑸公式变形:三角公式是变换的依据,应熟练掌握三角公式的顺用,逆用及变形应用, 例如:tan tan tan()(1tan tan )αβαβαβ±=±⋅⋅; ⑹辅助角公式的运用:在求值问题中,要注意辅助角公式 ()22 sin cos sin y a b a b αααϕ=+=++的应用,其中tan baϕ=,ϕ所在的象限由,a b 的符号确定.(三)典例分析:【例1】 运用两角和与差的三角函数公式推导倍角公式:sin 2,cos 2,tan 2ααα.【例2】 若04παβ<<<,sin cos a αα+=,sin cos b ββ+=,判断,a b 的大小关系及求ab 的范围.板块一:三角函数中角的变换【变式】 已知sin cos αα+=,则求tan cot αα+的值.【点评】解题时有时根据已知条件很难找到和要求问题的关系,这时候可以从要求的问题出发,进行推导,化简可能就会得到已知条件能够得到的简单形式.这是数学解题常用的一种方法.【变式】 若04παβ<<<,sin cos ,sin cos a b ααββ+=+=,求,a b 的大小关系及ab 的范围.【例3】 若三角形的两个内角,αβ满足cos cos sin sin αβαβ⋅>⋅,试判断此三角形的形状.【变式】 若三角形的两个内角,αβ满足tan tan 1αβ>,试判断这个三角形的形状.【变式】 在三角形ABC 中,如果22sin sin sin()A B A B +=+,且,A B 都是锐角,求A B +的值.【变式】 关于x 的方程22cos cos cos02Cx x A B --=有一根为1,判断ABC ∆的形状.【例4】 已知α为锐角,且π5cos 613α⎛⎫+= ⎪⎝⎭,求cos α的值.【变式】 已知π2π63α<<,πcos (0)3m m α⎛⎫+= ⎪⎝⎭≠,求2πtan 3α⎛⎫- ⎪⎝⎭的值.【例5】 ⑴α、β均为锐角,且sin cosαβ==,则αβ+=____.⑵已知2π1tan(),tan 544αββ⎛⎫+=-= ⎪⎝⎭,则πtan 4α⎛⎫+= ⎪⎝⎭____.【例6】 已知π02α<<,4sin 5α=. ⑴求tan α的值;⑵求πcos2sin 2αα⎛⎫++ ⎪⎝⎭的值.【例7】 (2008山东卷)已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭,则7πsin 6α⎛⎫+ ⎪⎝⎭的值是( )A .BC .45-D .45【例8】 求tan 20tan 30tan 30tan 40tan 40tan 20︒⋅︒+︒⋅︒+︒⋅︒的值.【例9】 ()2cos 40sin101⎤︒+︒︒⎦的值.【例10】 已知π3cos 45α⎛⎫+= ⎪⎝⎭,π3π22α≤≤,则πcos 24α⎛⎫+= ⎪⎝⎭ .【解析】 已知1cos 7α=,13cos()14αβ-=,且π02βα<<<.⑴求tan 2α的值. ⑵求β.【例11】 已知1tan()2αβ-=,1tan 7β=-,,(0,π)αβ∈,求2αβ-的值.【点评】此题的角的范围容易产生以下错解.∵tan[2()]tan[()()]αβαβαβ-=-+-22tan()41tan ()3αβαβ-==--,∴tan(2)tan[2()]αβαββ-=-+tan[2()]tan 1tan[2()]tan αββαββ-+=--⋅41()371411()37+-==-⨯-. ∵,(0,π)αβ∈,∴022πα<<,π0β-<-<,∴π22παβ-<-<,∴2αβ-的值为3π4-或π4或5π4.【变式】 已知π,0,4αβ⎛⎫∈ ⎪⎝⎭且3sin sin(2)βαβ=+,24tan 1tan 22αα=-,求αβ+的值.【变式】 若,αβ为锐角,且满足43cos ,cos()55ααβ=+=,则求sin β的值.【变式】 已知sin sin sin 0αβγ++=,cos cos cos 0αβγ++=,则求cos()αβ-的值.【变式】 把x x x x 4cos 3cos 2cos cos +++化成积的形式.【例12】 已知53)4πcos(=-α,1312)45πsin(-=+β,且)4π0(,∈β,)43π4π(,∈α 求)sin(βα+.【变式】 已知π432π<<<αβ,1312)cos(=-βα,53)sin(-=+βα,求α2sin ..【变式】 求︒︒︒︒70sin 50sin 30sin 10sin 的值.【变式】 已知βα,为锐角,54cos =α,31)tan(-=-βα,求βcos 的值.【变式】 已知αtan 与βtan 是一元二次方程02532=-+x x 的2个根,且︒<<︒900α,︒<<︒18090β.(1)求βα+的值;(2)求)cot(βα-的值.【变式】 求+︒+︒40tan 220tan ︒-︒70tan 10tan 4的值.【例13】ππππtan 2tan tan 2tan tan()tan 6363θθθθθθ⎛⎫⎛⎫⎛⎫-+-+--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭_________.【变式】 已知π4αβ+=,求(1tan )(1tan )αβ++的值;【变式】 求(1tan1)(1tan 2)(1tan3)(1tan 45)+︒+︒+︒+︒的值.【变式】 已知2tan()t x y t--=,tan tan 1x y t ⋅=-,2tan ()4x y +=,求实数t 的值.【变式】 已知tan()tan()k αβαβ-=⋅+,求证:sin 21.sin 21k kαβ+=-(一) 知识内容本板块主要是对三角函数的求值与化简以及辅助角公式的应用,并讲解一类特殊问题,即同时含有sin cos αα+及sin cos αα这类题目的处理办法.1.三角函数求值问题一般有三种基本类型:(1)给角求值,即在不查表的前提下,求三角函数式的值;(2)给值求值,即给出一些三角函数,而求与这些三角函数式有某种联系的三角式的值;(3)给值求角,即给出三角函数值,求符合条件的角.2.三角函数式的化简要求:通过对三角函数式的恒等变形使最后所得到的结果中:①所含函数和角的名类或种类最少;②各项的次数尽可能地低;③出现的项数最少;④一般应使分母和根号不含三角函数式;⑤对能求出具体数值的,要求出值.3.三角恒等式的证明要求:利用已知三角公式通过恒等变形,论证所给等式左、右相等.(二)主要方法1.寻求角与角之间的关系,化非特殊角为特殊角;2.正确灵活地运用公式,通过三角变换消去或约去一些非特殊角的三角函数值;3.一些常规技巧:“1”的代换、切割化弦、和积互化、异角化同角等.4.三角函数式的化简常用方法是:异名函数化为同名三角函数,异角化为同角,异次化为同次,切割化弦,特殊值与特殊角的三角函数互化.5.三角恒等式的证明:三角恒等式包括有条件的恒等式和无条件的恒等式.板块二:三角函数的化简与求值化为“同”;②有条件的等式常用方法有:代入法、消去法、综合法、分析法等.(三)典例分析【例14】 已知函数()sin cos f x a x b x =-(a ,b 为常数,0a ≠,x ∈R )在π3x =处取得最小值2-,则函数π3f x ⎛⎫- ⎪⎝⎭=_______________.【解析】 (1)化简6161π()cos π2cos π22(,)333k k f x x x x x k +-⎛⎫⎛⎫⎛⎫=++-++∈∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭R Z , (2)求函数()f x 的值域和最小正周期.【解析】若cos 2sin αα+tan α=( )A .12B .2C .12- D .2-【例15】 函数2()sin cos f x x x x =在区间ππ,42⎡⎤⎢⎥⎣⎦上的最大值是( ) A .1 BC .32D.1 【变式】 已知sin sin cos )x y y x +-,π,0,2x y ⎛⎫∈ ⎪⎝⎭,则______x y -=.【例16】 已知π02x -<<,1sin cos 5x x +=. ⑴求sin cos x x -的值; ⑵求223sin 2sin cos cos 2222tan cot x x x x x x -++的值.【变式】 已知1sin cos 5x x +=,π3π,62x ⎛⎫∈- ⎪⎝⎭.求tan x 的值.【例17】 已知π0,2x ⎡⎤∈⎢⎥⎣⎦,求函数sin cos 2sin cos 1y x x x x =+++的最大值和最小值,并求出此时x 的值.【变式】 已知02a ≤≤,求函数(sin )(cos )y x a x a =++的最值.【变式】 求函数()sin cos 3sin cos f x x x x x =-+⋅的值域.【例18】 设函数2πππ()sin 2cos 1468x x f x ⎛⎫=--+ ⎪⎝⎭. ⑴求()f x 的最小正周期.w .w .w .k .s .5.u .c .o .m⑵若函数()y g x =与()y f x =的图像关于直线1x =对称,求当403x ⎡⎤∈⎢⎥⎣⎦,时()y g x =的最大值.【变式】 设θ是锐角,求θ2sin )31(+=y θ2cos )31(-+的最大值及此时θ的值.【变式】 将1块圆心角为︒120,半径为20 cm 的扇形铁片截成1块矩形,如图1-13有2种裁法:让矩形1边在扇形的1条半径OA 上,或让矩形1边与弦AB 平行.请问哪种裁法能得到最大面积的矩形,并求出这个最大值.【变式】 化简ββαβα2sin )cos()cos(+-+.【变式】 求证:︒=︒-︒10sin 3240cos 140sin 322.【变式】 求证tan(60)tan(60)tan tan(60)tan tan(60)3A A A A A A +︒-︒++︒+-︒=-【变式】 已知:a A A A =++5sin 3sin sin ,b A A A =++5cos 3cos cos .求证:(1)当0≠b 时,ba A =3tan ;(2)222)2cos 21(b a A +=+.【变式】 已知222tan -=θ,π22π<<θ,求)2πsin(21sin 2cos 22+--θθθ的值.【例19】 求函数()()()43sin 43cos f x x x =--的值域。