动量守恒定律测试题
动量守恒定律单元测试题

动量守恒定律单元测试题一、动量守恒定律 选择题1.如图所示,在光滑水平面上有质量分别为A m 、B m 的物体A ,B 通过轻质弹簧相连接,物体A 紧靠墙壁,细线连接A ,B 使弹簧处于压缩状态,此时弹性势能为p0E ,现烧断细线,对以后的运动过程,下列说法正确的是( )A .全过程中墙对A 的冲量大小为p02ABE m mB .物体B 的最大速度为p02AE mC .弹簧长度最长时,物体B 的速度大小为p02BA BBE m m m m +D .弹簧长度最长时,弹簧具有的弹性势能p p0E E >2.如图所示,物体A 、B 的质量均为m =0.1kg ,B 静置于劲度系数k =100N/m 竖直轻弹簧的上端且B 不与弹簧连接,A 从距B 正上方h =0.2m 处自由下落,A 与B 相碰并粘在一起.弹簧始终在弹性限度内,g =10m/s 2.下列说法正确的是A .AB 组成的系统机械能守恒 B .B 运动的最大速度大于1m/sC .B 物体上升到最高点时与初位置的高度差为0.05mD .AB 在最高点的加速度大小等于10m/s 23.A 、B 两球沿同一直线运动并发生正碰,如图所示为两球碰撞前后的位移—时间(x-t)图像,图中a 、b 分别为A 、B 两球碰撞前的图线,c 为碰撞后两球共同运动的图线.若A 球的质量2A m kg =,则由图可知下列结论正确的是( )A .A 、B 两球碰撞前的总动量为3 kg·m/s B .碰撞过程A 对B 的冲量为-4 N·sC .碰撞前后A 的动量变化为4kg·m/sD .碰撞过程A 、B 两球组成的系统损失的机械能为10 J4.将质量为m 0的木块固定在光滑水平面上,一颗质量为m 的子弹以速度v 0沿水平方向射入木块,子弹射穿木块时的速度为3v .现将同样的木块放在光滑的水平桌面上,相同的子弹仍以速度v 0沿水平方向射入木块,设子弹在木块中所受阻力不变,则以下说法正确的是()A .若m 0=3m ,则能够射穿木块B .若m 0=3m ,子弹不能射穿木块,将留在木块中,一起以共同的速度做匀速运动C .若m 0=3m ,子弹刚好能射穿木块,此时子弹相对于木块的速度为零D .若子弹以3v 0速度射向木块,并从木块中穿出,木块获得的速度为v 1;若子弹以4v 0速度射向木块,木块获得的速度为v 2;则必有v 1<v 25.质量分别为3m 和m 的两个物体,用一根细绳相连,中间夹着一根被压缩的轻弹簧,在光滑的水平面上以速度v 0匀速运动.某时刻剪断细绳,质量为m 的物体离开弹簧时速度变为v= 2v 0,如图所示.则在这一过程中弹簧做的功和两物体之间转移的动能分别是A .2083mv 2023mv B .20mv 2032mv C .2012mv 2032mv D .2023mv 2056mv 6.如图所示,两个小球A 、B 在光滑水平地面上相向运动,它们的质量分别为m A =4kg ,m B =2kg ,速度分别是v A =3m/s (设为正方向),v B =-3m/s .则它们发生正碰后,速度的可能值分别为( )A .v A ′=1 m/s ,vB ′=1 m/s B .v A ′=4 m/s ,v B ′=-5 m/sC .v A ′=2 m/s ,v B ′=-1 m/sD .v A ′=-1 m/s ,v B ′=-5 m/s7.如图所示,轻弹簧的一端固定在竖直墙上,一质量为2m 的光滑弧形槽静止放在足够长的光滑水平面上,弧形槽底端与水平面相切,一质量为m 的小物块从槽上高h 处开始下滑,重力加速度为g,下列说法正确的是A.物体第一次滑到槽底端时,槽的动能为3mghB.物体第一次滑到槽底端时,槽的动能为6mghC.在压缩弹簧的过程中,物块和弹簧组成的系统动量守恒D.物块第一次被弹簧反弹后能追上槽,但不能回到槽上高h处8.如图所示,将质量为M1、半径为R且内壁光滑的半圆槽置于光滑水平面上,左侧靠竖直墙壁,右侧靠一质量为M2的物块.今让一质量为m的小球自左侧槽口A的正上方h高处从静止开始下落,与半圆槽相切自A点进入槽内,则以下结论中正确的是( )A.小球在槽内运动的全过程中,小球与半圆槽在水平方向动量守恒B.小球在槽内运动的B至C过程中,小球、半圆槽和物块组成的系统水平方向动量守恒C.小球离开C点以后,将做竖直上抛运动D.小球从A点经最低点向右侧最高点运动的过程中,小球、半圆槽和物块组成的系统机械能守恒9.有一宇宙飞船,它的正对面积S=2 m2,以v=3×103 m/s的相对速度飞入一宇宙微粒区.此微粒区1 m3空间中有一个微粒,每一个微粒的平均质量为m=2×10-7kg.设微粒与飞船外壳碰撞后附着于飞船上,要使飞船速度不变,飞船的牵引力应增加A.3.6×103 N B.3.6 N C.1.2×103 N D.1.2 N10.如图所示,一个质量为M的木箱静止在光滑水平面上,木箱内粗糙的底板上放着一个质量为m=2M的小物块.现使木箱瞬间获得一个水平向左、大小为v0的初速度,下列说法正确的是A.最终小物块和木箱都将静止B.最终小物块和木箱组成的系统损失机械能为20 3 MvC .木箱速度水平向左、大小为02v 时,小物块的速度大小为04v D .木箱速度水平向右、大小为03v . 时,小物块的速度大小为023v 11.如图,长木板M 原来静止于光滑水平面上,木块m 从长木板M 的一端以初速度v 0冲上木板,当m 相对于M 滑行7cm 时,M 向前滑行了4cm ,则在此过程中( )A .摩擦力对m 与M 的冲量大小之比等于11∶4B .m 减小的动能与M 增加的动能之比等于11∶4C .m 与M 系统损失的机械能与M 增加的动能之比等于7∶4D .m 减小的动能与m 和M 系统损失的机械能之比等于1∶112.如图所示,A 、B 、C 是三级台阶的端点位置,每一级台阶的水平宽度是相同的,其竖直高度分别为h 1、h 2、h 3,将三个相同的小球分别从A 、B 、C 三点以相同的速度v 0水平抛出,最终都能到达A 的下一级台阶的端点P 处,不计空气阻力。
物理动量守恒定律题20套(带答案)及解析

物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、m ,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度0v 向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求:(1)第一次碰撞过程中系统损失的动能 (2)第一次碰撞过程中甲对乙的冲量 【答案】(1)2014mv ;(2) 0mv 【解析】 【详解】解:(1)设第一次碰撞刚结束时甲、乙的速度分别为1v 、2v ,之后甲做匀速直线运动,乙以2v 初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速度相等,有:212v v =而第一次碰撞中系统动量守恒有:01222mv mv mv =+ 由以上两式可得:012v v =,20 v v = 所以第一次碰撞中的机械能损失为:222201201111222224E m v m v mv mv ∆=--=gg g g (2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:200I mv mv =-=2.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b ,小车质量M =3kg ,AO 部分粗糙且长L =2m ,动摩擦因数μ=0.3,OB 部分光滑.另一小物块a .放在车的最左端,和车一起以v 0=4m/s 的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB 部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a 、b 两物块视为质点质量均为m =1kg ,碰撞时间极短且不粘连,碰后一起向右运动.(取g =10m/s 2)求:(1)物块a 与b 碰后的速度大小;(2)当物块a 相对小车静止时小车右端B 到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.【答案】(1)1m/s (2) (3) x=0.125m【解析】试题分析:(1)对物块a,由动能定理得:代入数据解得a与b碰前速度:;a、b碰撞过程系统动量守恒,以a的初速度方向为正方向,由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分离,a以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车B端距挡板的距离:;(3)由能量守恒得:,解得滑块a与车相对静止时与O点距离:;考点:动量守恒定律、动能定理。
高中物理动量守恒定律题20套(带答案)及解析

高中物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。
已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。
求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J2.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m的光滑14圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。
《动量守恒定律》测试题(含答案)

《动量守恒定律》测试题(含答案)一、动量守恒定律选择题1.—粒钢珠从静止状态开始自由下落,然后陷入泥潭中静止.若把在空中下落的过程称为过程Ⅰ,进入泥潭直到停止的过程称为过程Ⅱ, 不计空气阻力,则( )A.过程Ⅰ中的钢珠动量的改变量的大小大于过程Ⅱ中合力的冲量的大小B.过程Ⅱ中合力的冲量的大小等于过程Ⅰ中重力冲量的大小C.过程Ⅱ中钢珠克服阻力所做的功等于过程Ⅰ中重力做功D.过程Ⅰ中的钢珠动量的改变量小于过程Ⅱ中钢珠的重力的冲量2.如图甲所示,质量M=2kg的木板静止于光滑水平面上,质量m=1kg的物块(可视为质点)以水平初速度v0从左端冲上木板,物块与木板的v-t图象如图乙所示,重力加速度大小为10m/s2,下列说法正确的是()A.物块与木板相对静止时的速率为1m/sB.物块与木板间的动摩擦因数为0.3C.木板的长度至少为2mD.从物块冲上木板到两者相对静止的过程中,系统产生的热量为3J3.如图所示,质量为m的小球从距离地面高度为H的A点由静止释放,落到地面上后又陷入泥潭中,由于受到阻力作用,到达距地面深度为h的B点时速度减为零不计空气阻力,重力加速度为g。
则关于小球下落过程中,说法正确的是A.整个下落过程中,小球的机械能减少了mgHB.整个下落过程中,小球克服阻力做的功为mg(H+h)C.在陷入泥潭过程中,小球所受阻力的冲量大于mD.在陷入泥潭过程中,小球动量的改变量的大小等于m4.如图所示,A、B、C三个半径相同的小球穿在两根平行且光滑的足够长的杆上,三个球的质量分别为m A=2kg,m B=3kg,m C=1kg,初状态三个小球均静止,BC球之间连着一根轻质弹簧,弹簣处于原长状态.现给A 一个向左的初速度v 0=10m/s,A 、B 碰后A 球的速度变为向右,大小为2m/s ,下列说法正确的是A .球A 和B 碰撞是弹性碰撞B .球A 和B 碰后,球B 的最小速度可为0C .球A 和B 碰后,弹簧的最大弹性势能可以达到96JD .球A 和B 碰后,弹簧恢复原长时球C 的速度可能为12m/s5.一物体在外力的作用下从静止开始做直线运动,合外力方向不变,大小随时间的变化如图所示.设该物体在0t 和02t 时刻相对于出发点的位移分别是1x 和2x ,速度分别是1v 和2v ,合外力从开始至o t 时刻做的功是1W ,从0t 至02t 时刻做的功是2W ,则A .215x x =,213v v =B .1221,95x x v v ==C .2121,58x x W W ==D .2121,39v v W W ==6.A 、B 两球沿同一直线运动并发生正碰,如图所示为两球碰撞前后的位移—时间(x-t)图像,图中a 、b 分别为A 、B 两球碰撞前的图线,c 为碰撞后两球共同运动的图线.若A 球的质量2A m kg =,则由图可知下列结论正确的是( )A .A 、B 两球碰撞前的总动量为3 kg·m/sB .碰撞过程A 对B 的冲量为-4 N·sC .碰撞前后A 的动量变化为4kg·m/sD .碰撞过程A 、B 两球组成的系统损失的机械能为10 J7.如图所示,将质量为M 1、半径为R 且内壁光滑的半圆槽置于光滑水平面上,左侧靠竖直墙壁,右侧靠一质量为M 2的物块.今让一质量为m 的小球自左侧槽口A 的正上方h 高处从静止开始下落,与半圆槽相切自A 点进入槽内,则以下结论中正确的是( )A .小球在槽内运动的全过程中,小球与半圆槽在水平方向动量守恒B .小球在槽内运动的B 至C 过程中,小球、半圆槽和物块组成的系统水平方向动量守恒 C .小球离开C 点以后,将做竖直上抛运动D .小球从A 点经最低点向右侧最高点运动的过程中,小球、半圆槽和物块组成的系统机械能守恒8.如图所示,光滑水平面上有一质量为m =1kg 的小车,小车右端固定一水平轻质弹簧,弹簧左端连接一质量为m 0=1kg 的物块,物块与上表面光滑的小车一起以v 0=5m/s 的速度向右匀速运动,与静止在光滑水平面上、质量为M =4kg 的小球发生弹性正碰,若碰撞时间极短,弹簧始终在弹性限度内.则( )A .碰撞结束时,小车的速度为3m/s ,速度方向向左B .从碰后瞬间到弹簧最短的过程,弹簧弹力对小车的冲量大小为4N·sC .小车的最小速度为1m/sD .在小车速度为1m/s 时,弹簧的弹性势能有最大值9.A 、B 两球沿同一直线运动并发生正碰,如图所示为两球碰撞前后的位移—时间(x-t)图像,图中a 、b 分别为A 、B 两球碰撞前的图线,c 为碰撞后两球共同运动的图线.若A 球的质量2A m kg ,则由图可知下列结论正确的是( )A .A 、B 两球碰撞前的总动量为3 kg·m/sB .碰撞过程A 对B 的冲量为-4 N·sC .碰撞前后A 的动量变化为4kg·m/sD .碰撞过程A 、B 两球组成的系统损失的机械能为10 J10.如图所示,足够长的光滑水平面上有一质量为2kg 的木板B ,质量为1kg 的木块C 叠放在B 的右端点,B 、C 均处于静止状态且B 、C 之间的动摩擦因数为μ = 0.1。
动量守恒测试题及答案高中

动量守恒测试题及答案高中1. 动量守恒定律适用于哪些情况?2. 一个质量为2kg的物体以5m/s的速度向北运动,与一个质量为3kg 的物体以3m/s的速度向南运动相撞。
如果两物体发生完全非弹性碰撞,请计算碰撞后两物体的共同速度。
3. 一个质量为5kg的物体以10m/s的速度向东运动,撞击一个静止的质量为3kg的物体。
如果碰撞是完全弹性的,请计算碰撞后两物体的速度。
4. 一辆质量为1000kg的汽车以20m/s的速度行驶,突然刹车。
如果刹车过程中动量守恒,计算汽车在刹车过程中受到的平均冲击力(假设刹车过程持续了0.5秒)。
5. 一个质量为0.5kg的足球以15m/s的速度被踢出,如果足球在撞击墙壁后以相同的速率反弹回来,计算墙壁对足球的平均作用力(假设作用时间为0.1秒)。
答案1. 动量守恒定律适用于没有外力作用或外力之和为零的系统。
在这种情况下,系统的总动量在时间上保持不变。
2. 碰撞前总动量为 \( P_{\text{总}} = (2 \times 5) - (3 \times3) = 10 - 9 = 1 \) kg·m/s。
因为完全非弹性碰撞后两物体粘在一起,所以共同速度 \( v \) 为 \( P_{\text{总}} / (2 + 3) = 1 /5 = 0.2 \) m/s,方向向北。
3. 碰撞前总动量为 \( P_{\text{总}} = 5 \times 10 = 50 \)kg·m/s。
碰撞后两物体的总动量仍为50 kg·m/s。
设碰撞后5kg物体速度为 \( v_1 \),3kg物体速度为 \( v_2 \),则 \( 5v_1 + 3v_2= 50 \)。
由于完全弹性碰撞,还满足 \( \frac{5}{3} =\frac{v_1}{v_2} \)。
解得 \( v_1 = 10 \) m/s,\( v_2 = 6 \)m/s。
4. 汽车的初始动量为 \( P_{\text{初}} = 1000 \times 20 = 20000 \) kg·m/s。
高中物理选修一第一章《动量守恒定律》测试卷(包含答案解析)

一、选择题1.(0分)[ID:127070]静止在光滑水平面上的物体,受到水平拉力F的作用,拉力F随时间t变化的图象如图所示,则下列说法中正确的是()A.0~4s内物体的位移为零B.0~4s内拉力对物体做功不为零C.4s末物体的动量为零D.0~4s内拉力对物体的冲量不为零2.(0分)[ID:127067]在光滑水平面上,有两个小球A、B沿同一直线同向运动(B在前),已知碰前两球的动量分别为p A=12kg·m/s、p B=13kg·m/s,碰后它们的动量变化分别为Δp A、Δp B,下列数值可能正确的是()A.Δp A=-3kg·m/s、Δp B=3kg·m/s B.Δp A=3kg·m/s、Δp B=-3kg·m/sC.Δp A=-24kg·m/s、Δp B=24kg·m/s D.Δp A=24kg·m/s、Δp B=-24kg·m/s3.(0分)[ID:127051]如图所示,A、B、C三球的质量分别为m、m、2m,三个小球从同一高度同时出发,其中A球有水平向右的初速度v0, B、C由静止释放。
三个小球在同一竖直平面内运动,小球与地面之间、小球与小球之间的碰撞均为弹性碰撞,则小球与小球之间最多能够发生碰撞的次数为( )A.2次B.3次C.4次D.5次4.(0分)[ID:127043]质量为M的物块以速度v运动,与质量为m的静止物块发生正碰,碰撞后两者的动量正好相等,两者质量M与m的比值可能为()A.2 B.4 C.6 D.85.(0分)[ID:127042]一质量为2kg的物块在合外力F的作用下从静止开始沿直线运动。
F 随时间t变化的图线如图所示,则()A .1s t =时物块的速率为2m/sB .2s t =时物块的动量大小为2kg·m/sC .3s t =时物块的动量大小为3kg·m/sD .4s t =时物块的速度为零6.(0分)[ID :127035]光滑绝缘水平桌面上存在与桌面垂直方向的匀强磁场,有一带电粒子在桌面上做匀速圆周运动,当它运动到M 点,突然与一不带电的静止粒子发生正碰合为一体(碰撞时间极短),则粒子的运动轨迹应是图中的哪一个(实线为原轨迹,虚线为碰后轨迹)( )A .B .C .D . 7.(0分)[ID :127030]质量相等的A 、B 两个物体放在同一水平面上,分别受到水平拉力F 1、F 2的作用而从静止开始做匀加速直线运动,经过时间t 0和4t 0,A 、B 的速度分别达到2v 0和v 0时,分别撤去拉力,以后物体继续做匀减速直线运动直至停止,两个物体速度随时间变化的图像如图所示,设F 1和F 2的冲量分别为I 1和I 2,F 1和F 2做的功分别为W 1和W 2,则下列结论正确的是( )A .I 1>I 2,W 1>W 2B .I 1<I 2,W 1>W 2C .I 1<I 2,W 1<W 2D .I 1>I 2,W 1<W 28.(0分)[ID :127029]由我国自主研发制造的世界上最大的海上风电机SL5000,它的机舱上可以起降直升机,叶片直径128米,风轮高度超过40层楼,是世界风电制造业的一个奇迹。
上海市选修1高中物理(完整版)动量守恒定律单元测试题

上海市选修1高中物理(完整版)动量守恒定律单元测试题一、动量守恒定律 选择题1.如图所示,在光滑水平面上有质量分别为A m 、B m 的物体A ,B 通过轻质弹簧相连接,物体A 紧靠墙壁,细线连接A ,B 使弹簧处于压缩状态,此时弹性势能为p0E ,现烧断细线,对以后的运动过程,下列说法正确的是( )A .全过程中墙对A 的冲量大小为p02A B E m mB .物体B 的最大速度为p02A E mC .弹簧长度最长时,物体B 的速度大小为p02B A BB E m m m m +D .弹簧长度最长时,弹簧具有的弹性势能p p0E E > 2.如图,在光滑的水平面上有一个长为L 的木板,小物块b 静止在木板的正中间,小物块a 以某一初速度0v 从左侧滑上木板。
已知物块a 、b 与木板间的摩擦因数分别为a μ、b μ,木块与木板质量均为m ,a 、b 之间的碰撞无机械能损失,滑动摩擦力等于最大静摩擦力。
下列说法正确的是( )A .若没有物块从木板上滑下,则无论0v 多大整个过程摩擦生热均为2013mvB .若22ab a μμμ<≤,则无论0v 多大,a 都不会从木板上滑落C .若032a v gL μ≤,则ab 一定不相碰 D .若2b a μμ>,则a 可能从木板左端滑落3.如图所示,质量分别为m 和2m 的A 、B 两个木块间用轻弹簧相连,放在光滑水平面上,A 紧靠竖直墙.用水平力向左推B 将弹簧压缩,推到一定位置静止时推力大小为F 0,弹簧的弹性势能为E .在此位置突然撤去推力,下列说法中正确的是( )A .在A 离开竖直墙前,A 、B 与弹簧组成的系统机械能守恒,之后不守恒B .在A 离开竖直墙前,A 、B 系统动量不守恒,之后守恒C .在A 离开竖直墙后,A 、B 速度相等时的速度是223E m D .在A 离开竖直墙后,弹簧的弹性势能最大值为3E 4.如图所示,物体A 、B 的质量均为m =0.1kg ,B 静置于劲度系数k =100N/m 竖直轻弹簧的上端且B 不与弹簧连接,A 从距B 正上方h =0.2m 处自由下落,A 与B 相碰并粘在一起.弹簧始终在弹性限度内,g =10m/s 2.下列说法正确的是A .AB 组成的系统机械能守恒B .B 运动的最大速度大于1m/sC .B 物体上升到最高点时与初位置的高度差为0.05mD .AB 在最高点的加速度大小等于10m/s 25.质量为3m 足够长的木板静止在光滑的水平面上,木板上依次排放质量均为m 的木块1、2、3,木块与木板间的动摩擦因数均为μ.现同时给木块l 、2、3水平向右的初速度v 0、2v 0、3v 0,已知重力加速度为g .则下列说法正确的是( )A .1木块相对静止前,木板是静止的B .1木块的最小速度是023v C .2木块的最小速度是056v D .木块3从开始运动到相对静止时位移是204v g6.如图所示,光滑绝缘的水平面上M 、N 两点有完全相同的金属球A 和B ,带有不等量的同种电荷.现使A 、B 以大小相等的初动量相向运动,不计一切能量损失,碰后返回M 、N 两点,则A.碰撞发生在M、N中点之外B.两球同时返回M、N两点C.两球回到原位置时动能比原来大些D.两球回到原位置时动能不变7.如图,固定的光滑斜面倾角 =30°,一质量1kg的小滑块静止在底端A点.在恒力F 作用下从沿斜面向上作匀加速运动,经过时间t=2s,运动到B点,此时速度大小为v1,到B点时撤去F再经过2s的时间,物体运动到AB的中点C,此时速度大小为v2,则以下正确的是A.v2=2v1B.B点到C点的过程中,物体动量改变量为2kg·m/sC.F=7ND.运动过程中F对小滑块做功28J8.从高处跳到低处时,为了安全,一般都要屈腿(如图所示),这样做是为了()A.减小冲量B.减小动量的变化量C.增大与地面的冲击时间,从而减小冲力D.增大人对地面的压强,起到安全作用9.如图所示,两滑块A、B位于光滑水平面上,已知A的质量M A=1k g,B的质量M B=4k g.滑块B的左端连有轻质弹簧,弹簧开始处于自由伸长状态.现使滑块A以v=5m/s速度水平向右运动,通过弹簧与静止的滑块B相互作用(整个过程弹簧没有超过弹性限度),直至分开.则()A .物块A 的加速度一直在减小,物块B 的加速度一直在增大B .作用过程中弹簧的最大弹性势能2J p E =C .滑块A 的最小动能为 4.5J KA E =,滑块B 的最大动能为8J KB E =D .若滑块A 的质量4kg A M =,B 的质量1kg B M =,滑块A 的最小动能为18J KAE =,滑块B 的最大动能为32J KB E =10.如图所示,在同一水平面内有两根足够长的光滑水平平行金属导轨,间距为L =20cm ,电阻不计,其左端连接一恒定电源,电动势为E ,内阻不计,两导轨之间交替存在着磁感应强度为B =1T 、方向相反的匀强磁场,同向磁场的宽度相同。
《动量守恒定律》单元测试题含答案(1)

小为 gH ,物体最终落在地面上.则下列关于物体的运动说法正确的是 2
A.当物体沿墙壁下滑时,物体先加速运动再做匀速直线运动
B.摩擦力对物体产生的冲量大小为 E02q 2k
C.摩擦力所做的功W 1 mgH 8
D.物体与墙壁脱离的时刻为 t gH g
9.如图,斜面体固定在水平面上,斜面足够长,在斜面底端给质量为 m 的小球以平行斜 面向上的初速度 v1 ,当小球回到出发点时速率为 v2 。小球在运动过程中除重力和弹力外, 另受阻力 f (包含摩擦阻力),阻力 f 大小与速率成正比即 f kv 。则小球在斜面上运动 总时间 t 为( )
《动量守恒定律》单元测试题含答案(1)
一、动量守恒定律 选择题
1.如图所小,在粗糙水平面上,用水平轻绳相连的两个相同物体 P 和 Q,质量均为 m,在 水平恒力 F 作用下以速度 v 做匀速运动.在 t=0 时轻绳断开,Q 在 F 的作用下继续前进,则 下列说法正确的是( )
A.t=0 至 t 2mv 时间内,P、Q 的总动量守恒 F
A. t
v1 v2 g sin
B. t
v1 v2 g sin
C. t
mg
mv1 mv2 sin k v1
v2
2
D.
t
mg
mv1 mv2 sin k v1
v2
2
10.如图所示, A 是不带电的球,质量 mA 0.5kg , B 是金属小球,带电量为 q 2102C ,质量为 mB 0.5kg ,两个小球大小相同且均可视为质点。绝缘细线长 L 0.25m,一端固定于 O 点,另一端和小球 B 相连接,细线能承受的最大拉力为 276N 。整个装置处于竖直向下的匀强电场中,场强大小 E 500N/C ,小球 B 静止于最
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动量守恒定律测试题一、高考物理精讲专题动量守恒定律1.如图所示,在倾角30°的斜面上放置一个凹撸B,B 与斜面间的动摩擦因数36μ=;槽内靠近右侧壁处有一小物块A(可视为质点),它到凹槽左侧壁的距离d =0.1m ,A 、B 的质量都为m=2kg ,B 与斜面间的最大静摩擦力可认为等于滑动摩摞力,不计A 、B 之间的摩擦,斜面足够长.现同时由静止释放A 、B,经过一段时间,A 与B 的侧壁发生碰撞,碰撞过程不计机械能损失,碰撞时间极短,g 取210/m s .求:(1)释放后物块A 和凹槽B 的加速度分别是多大?(2)物块A 与凹槽B 的左侧壁第一次碰撞后瞬间A 、B 的速度大小;(3)从初始位置到物块A 与凹糟B 的左侧壁发生第三次碰撞时B 的位移大小. 【答案】(1)(2)v An =(n-1)m∙s -1,v Bn ="n" m∙s -1(3)x n 总=0.2n 2m 【解析】 【分析】 【详解】(1)设物块A 的加速度为a 1,则有m A gsin θ=ma 1, 解得a 1=5m/s 2凹槽B 运动时受到的摩擦力f=μ×3mgcos θ=mg 方向沿斜面向上; 凹槽B 所受重力沿斜面的分力G 1=2mgsin θ=mg 方向沿斜面向下; 因为G 1=f ,则凹槽B 受力平衡,保持静止,凹槽B 的加速度为a 2=0 (2)设A 与B 的左壁第一次碰撞前的速度为v A0,根据运动公式:v 2A0=2a 1d 解得v A0=3m/s ;AB 发生弹性碰撞,设A 与B 第一次碰撞后瞬间A 的速度大小为v A1,B 的速度为v B1,则由动量守恒定律:0112A A B mv mv mv =+ ;由能量关系:2220111112222A AB mv mv mv =+⨯ 解得v A1=-1m/s(负号表示方向),v B1=2m/s2.如图,质量分别为m 1=1.0kg 和m 2=2.0kg 的弹性小球a 、b ,用轻绳紧紧的把它们捆在一起,使它们发生微小的形变.该系统以速度v 0=0.10m/s 沿光滑水平面向右做直线运动.某时刻轻绳突然自动断开,断开后两球仍沿原直线运动.经过时间t =5.0s 后,测得两球相距s =4.5m ,则刚分离时,a 球、b 球的速度大小分别为_____________、______________;两球分开过程中释放的弹性势能为_____________.【答案】①0.7m/s, -0.2m/s ②0.27J 【解析】试题分析:①根据已知,由动量守恒定律得联立得②由能量守恒得代入数据得考点:考查了动量守恒,能量守恒定律的应用【名师点睛】关键是对过程分析清楚,搞清楚过程中初始量与末时量,然后根据动量守恒定律与能量守恒定律分析解题3.如图所示,固定的凹槽水平表面光滑,其内放置U 形滑板N ,滑板两端为半径R=0.45m 的1/4圆弧面.A 和D 分别是圆弧的端点,BC 段表面粗糙,其余段表面光滑.小滑块P 1和P 2的质量均为m .滑板的质量M=4m ,P 1和P 2与BC 面的动摩擦因数分别为μ1=0.10和μ2=0.20,最大静摩擦力近似等于滑动摩擦力.开始时滑板紧靠槽的左端,P 2静止在粗糙面的B 点,P 1以v 0=4.0m/s 的初速度从A 点沿弧面自由滑下,与P 2发生弹性碰撞后,P 1处在粗糙面B 点上.当P 2滑到C 点时,滑板恰好与槽的右端碰撞并与槽牢固粘连,P 2继续运动,到达D 点时速度为零.P 1与P 2视为质点,取g=10m/s 2.问:(1)P 1和P 2碰撞后瞬间P 1、P 2的速度分别为多大? (2)P 2在BC 段向右滑动时,滑板的加速度为多大? (3)N 、P 1和P 2最终静止后,P 1与P 2间的距离为多少?【答案】(1)10v '=、25m/s v '= (2)220.4m/s a = (3)△S=1.47m 【解析】试题分析:(1)P 1滑到最低点速度为v 1,由机械能守恒定律有:22011122mv mgR mv += 解得:v 1=5m/sP 1、P 2碰撞,满足动量守恒,机械能守恒定律,设碰后速度分别为1v '、2v ' 则由动量守恒和机械能守恒可得:112mv mv mv ''=+222112111222mv mv mv ''=+ 解得:10v '=、25m/s v '= (2)P 2向右滑动时,假设P 1保持不动,对P 2有:f 2=μ2mg=2m (向左) 设P 1、M 的加速度为a 2;对P 1、M 有:f=(m+M )a 22220.4m/s 5f ma m M m===+ 此时对P 1有:f 1=ma 2=0.4m <f m =1.0m ,所以假设成立. 故滑块的加速度为0.4m/s 2;(3)P 2滑到C 点速度为2v ',由2212mgR mv '= 得23m/s v '= P 1、P 2碰撞到P 2滑到C 点时,设P 1、M 速度为v ,由动量守恒定律得:22()mv m M v mv '=++ 解得:v=0.40m/s 对P 1、P 2、M 为系统:222211()22f L mv m M v '=++ 代入数值得:L=3.8m滑板碰后,P 1向右滑行距离:2110.08m 2v s a ==P 2向左滑行距离:22222.25m 2v s a '==所以P 1、P 2静止后距离:△S=L-S 1-S 2=1.47m考点:考查动量守恒定律;匀变速直线运动的速度与位移的关系;牛顿第二定律;机械能守恒定律.【名师点睛】本题为动量守恒定律及能量关系结合的综合题目,难度较大;要求学生能正确分析过程,并能灵活应用功能关系;合理地选择研究对象及过程;对学生要求较高.4.人站在小车上和小车一起以速度v 0沿光滑水平面向右运动.地面上的人将一小球以速度v 沿水平方向向左抛给车上的人,人接住后再将小球以同样大小的速度v 水平向右抛出,接和抛的过程中车上的人和车始终保持相对静止.重复上述过程,当车上的人将小球向右抛出n 次后,人和车速度刚好变为0.已知人和车的总质量为M ,求小球的质量m . 【答案】02Mv m nv= 【解析】试题分析:以人和小车、小球组成的系统为研究对象,车上的人第一次将小球抛出,规定向右为正方向,由动量守恒定律:Mv 0-mv=Mv 1+mv得:102mvv v M=-车上的人第二次将小球抛出,由动量守恒: Mv 1-mv=Mv 2+mv 得:2022mvv v M=-⋅同理,车上的人第n 次将小球抛出后,有02n mvv v n M=-⋅ 由题意v n =0, 得:02Mv m nv=考点:动量守恒定律5.用放射源钋的α射线轰击铍时,能发射出一种穿透力极强的中性射线,这就是所谓铍“辐射”.1932年,查德威克用铍“辐射”分别照射(轰击)氢和氨(它们可视为处于静止状态).测得照射后沿铍“辐射”方向高速运动的氨核和氦核的质量之比为7:0.查德威克假设铍“辐射”是由一种质量不为零的中性粒子构成的,从而通过上述实验在历史上首次发现了中子.假设铍“辐射”中的中性粒子与氢或氦发生弹性正碰,试在不考虑相对论效应的条件下计算构成铍“辐射”的中性粒子的质量.(质量用原子质量单位u 表示,1u 等于1个12C 原子质量的十二分之一.取氢核和氦核的质量分别为1.0u 和14u .)【答案】m =1.2u 【解析】设构成铍“副射”的中性粒子的质量和速度分别为m 和v ,氢核的质量为m H .构成铍“辐射”的中性粒子与氢核发生弹性正碰,碰后两粒子的速度分别为v′和v H ′.由动量守恒与能量守恒定律得 mv =mv′+m H v H ′ ①12mv 2=12mv′2+12m H v H ′2② 解得v H ′=2Hmv m m +③同理,对于质量为m N 的氮核,其碰后速度为 V N ′=2Nmvm m +④由③④式可得 m =''''N N H H H N m v m v v v --⑤根据题意可知v H ′=7.0v N ′ ⑥将上式与题给数据代入⑤式得 m =1.2u ⑦6.如图所示,一质量m 1=0.45kg 的平顶小车静止在光滑的水平轨道上.车顶右端放一质量m 2=0.4 kg 的小物体,小物体可视为质点.现有一质量m 0=0.05 kg 的子弹以水平速度v 0=100 m/s 射中小车左端,并留在车中,已知子弹与车相互作用时间极短,小物体与车间的动摩擦因数为μ=0.5,最终小物体以5 m/s 的速度离开小车.g 取10 m/s 2.求:(1)子弹从射入小车到相对小车静止的过程中对小车的冲量大小. (2)小车的长度.【答案】(1)4.5N s ⋅ (2)5.5m 【解析】①子弹进入小车的过程中,子弹与小车组成的系统动量守恒,有:0011()o m v m m v =+,可解得110/v m s =;对子弹由动量定理有:10I mv mv -=-, 4.5I N s =⋅ (或kgm/s); ②三物体组成的系统动量守恒,由动量守恒定律有:0110122()()m m v m m v m v +=++;设小车长为L ,由能量守恒有:22220110122111()()222m gL m m v m m v m v μ=+-+- 联立并代入数值得L =5.5m ;点睛:子弹击中小车过程子弹与小车组成的系统动量守恒,由动量守恒定律可以求出小车的速度,根据动量定理可求子弹对小车的冲量;对子弹、物块、小车组成的系统动量守恒,对系统应用动量守恒定律与能量守恒定律可以求出小车的长度.7.光滑水平面上质量为1kg 的小球A ,以2.0m/s 的速度与同向运动的速度为1.0m/s 、质量为2kg 的大小相同的小球B 发生正碰,碰撞后小球B 以1.5m/s 的速度运动.求:(1)碰后A 球的速度大小;(2)碰撞过程中A 、B 系统损失的机械能. 【答案】 1.0/A v m s '=,0.25E J =损 【解析】试题分析:(1)碰撞过程中动量守恒,由动量守恒定律可以求出小球速度. (2)由能量守恒定律可以求出损失的机械能.解:(1)碰撞过程,以A 的初速度方向为正,由动量守恒定律得: m A v A +m B v B =m A v′A +m B v′B 代入数据解:v′A =1.0m/s②碰撞过程中A 、B 系统损失的机械能量为:代入数据解得:E 损=0.25J答:①碰后A 球的速度为1.0m/s ;②碰撞过程中A 、B 系统损失的机械能为0.25J .【点评】小球碰撞过程中动量守恒、机械能不守恒,由动量守恒定律与能量守恒定律可以正确解题,应用动量守恒定律解题时要注意正方向的选择.8.如图所示,带有14光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g ) (1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【答案】(1)023v gR =(2)123gRv =253gR v =【解析】本题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由02mv mu =,解得02v u =C 滑到最高点的过程: 023mv mu mu +='222011123222mv mu mu mgR +⋅=+'⋅ 解得023v gR =(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+22220121111222222mv mu mv mv +⋅=+⋅解得:123gRv =,253gR v =9.如图甲所示,用半径相同的A 、B 两球的碰撞可以验证“动量守恒定律”.实验时先让质量为1m 的A 球从斜槽上某一固定位置C 由静止开始滚下,进入水平轨道后,从轨道末端水平抛出,落到位于水平地面的复写纸上,在下面的白纸上留下痕迹.重复上述操作10次,得到10个落点痕迹.再把质量为2m 的B 球放在水平轨道末端,让A 球仍从位置C 由静止滚下,A 球和B 球碰撞后,分别在白纸上留下各自的落点痕迹,重复操作10次.M 、P 、N 为三个落点的平均位置,未放B 球时,A 球的落点是P 点,O 点是水平轨道末端在记录纸上的竖直投影点,如图乙所示.(1)在这个实验中,为了尽量减小实验误差,两个小球的质量应满足______(填“>”或“<”).(2)除了图中器材外,实验室还备有下列器材,完成本实验还必须使用的两种器材是_____.A .秒表B .天平C .刻度尺D .打点计时器 (3)下列说法中正确的是_________.A .如果小球每次从同一位置由静止释放,每次的落点一定是重合的B .重复操作时发现小球的落点并不重合,说明实验操作中出现了错误C .用半径尽量小的圆把10个落点圈起来,这个圆的圆心可视为小球落点的平均位置D .仅调节斜槽上固定位置C ,它的位置越低,线段OP 的长度越大(4)在某次实验中,测量出两个小球的质量1m 、2m ,记录的落点平均位置M 、N 几乎与OP 在同一条直线上,测量出三个落点位置与O 点距离OM 、OP 、ON 的长度.在实验误差允许范围内,若满足关系式__________________,则可以认为两球碰撞前后在OP 方向上的总动量守恒;若碰撞是弹性碰撞,则还需满足的关系式是________________.(用测量的量表示)(5)某同学在做这个实验时,记录下小球三个落点的平均位置M 、P 、N ,如图丙所示.他发现M 和N 偏离了OP 方向.这位同学猜想两小球碰撞前后在OP 方向上依然动量守恒,他想到了验证这个猜想的办法:连接OP 、OM 、ON ,作出M 、N 在OP 方向上的投影点M '、N '.分别测量出OP 、OM '、ON '的长度.若在实验误差允许的范围内,满足关系式:_____则可以认为两小球碰撞前后在OP 方向上动量守恒.【答案】> BC C 112m OP m OM m ON =+ 222112m OP m OM m ON =+112m OP m OM m ON ''=+【解析】 【分析】 【详解】(1)为了防止入射球碰后反弹,应让入射球的质量大于被碰球的质量;(1)小球离开轨道后做平抛运动,小球在空中的运动时间相同,小球的水平位移与其初速度成正比,可以用小球的水平位移代替小球的初速度,实验需要验证:101122m v m v m v =+,因小球均做平抛运动,下落时间相同,则可知水平位移x =vt ,因此可以直接用水平位移代替速度进行验证,故有112m OP m OM m ON ⋅=⋅+⋅ ,实验需要测量小球的质量、小球落地点的位置,测量质量需要天平,测量小球落地点的位置需要毫米刻度尺,因此需要的实验器材有:BC ;(3)由于各种偶然因素,如所受阻力不同等,小球的落点不可能完全重合,落点应当比较集中,但不是出现了错误,故AB 错误;由于落点比较密集,又较多,每次测量距离很难,故确定落点平均位置的方法是最小圆法,即用尽可能最小的圆把各个落点圈住,这个圆的圆心位置代表落点的平均位置,故C 正确;仅调节斜槽上固定位置C ,它的位置越低,由于水平速度越小,则线段OP 的长度越小,故D 错误.故选C ; (4)若两球相碰前后的动量守恒,则101122m v m v m v =+,又012,,OP v t OM v t ON v t ===,代入得:112m OP m OM m ON ⋅=⋅+⋅,若碰撞是弹性碰撞,满足机械能守恒,则:222101122111222m v m v m v =+ ,代入得;222112m OP m OM m ON ⋅=⋅+⋅;(5)如图所示,连接OP 、OM 、ON ,作出M 、N 在OP 方向上的投影点M ′、N ′,如图所示;分别测量出OP 、OM ′、ON ′的长度.若在实验误差允许范围内,满足关系式112m OP m OM m ON ''⋅=⋅+⋅ 则可以认为两小球碰撞前后在OP 方向上动量守恒.10.如图所示,质量均为M =4 kg 的小车A 、B ,B 车上用轻绳挂有质量为m =2 kg 的小球C ,与B 车静止在水平地面上,A 车以v 0=2 m/s 的速度在光滑水平面上向B 车运动,相碰后粘在一起(碰撞时间很短).求:(1)碰撞过程中系统损失的机械能;(2)碰后小球C 第一次回到最低点时的速度大小. 【答案】(1) 4 J (2) 1.6 m/s 【解析】 【详解】解:(1)设A 、B 车碰后共同速度为1v ,由动量守恒得:012Mv Mv = 系统损失的能量为:220112 4 212E Mv Mv J -⨯==损 (2)设小球C 再次回到最低点时A 、B 车速为2v ,小球C 速度为3v ,对A 、B 、C 系统由水平方向动量守恒得:12322Mv Mv mv =+ 由能量守恒得:22212311122222Mv Mv mv ⨯=⨯+ 解得:3 1.6 /v m s =11.如图所示,在沙堆表面放置一长方形木块A ,其上面再放一个质量为m=0.10kg 的爆竹B ,木块的质量为M=6.0kg .当爆竹爆炸时,因反冲作用使木块陷入沙中深度h=5cm ,而木块所受的平均阻力为f=80N .若爆竹的火药质量以及空气阻力可忽略不计,g 取10m/s 2,求爆竹能上升的最大高度.【答案】60m h = 【解析】试题分析:木块下陷过程中受到重力和阻力作用,根据动能定理可得211()02mg f h Mv -=-(1)爆竹爆炸过程中木块和爆竹组成的系统动量守恒,故有21mv Mv =(2)爆竹完后,爆竹做竖直上抛运动,故有222v g h =∆(3)联立三式可得:600h m ∆=考点:考查了动量守恒定律,动能定理的应用点评:基础题,比较简单,本题容易错误的地方为在A 下降过程中容易将重力丢掉12.如图所示,固定点O 上系一长L =0.6 m 的细绳,细绳的下端系一质量m =1.0 kg 的小球(可视为质点),原来处于静止状态,球与平台的B 点接触但对平台无压力,平台高h =0.80 m,一质量M=2.0 kg的物块开始静止在平台上的P点,现对物块M施予一水平向右的初速度v0,物块M沿粗糙平台自左向右运动到平台边缘B处与小球m发生正碰,碰后小球m在绳的约束下做圆周运动,经最高点A时,绳上的拉力恰好等于小球的重力,而物块M落在水平地面上的C点,其水平位移x=1.2 m,不计空气阻力,g=10 m/s2.(1)求物块M碰撞后的速度大小;(2)若平台表面与物块M间的动摩擦因数μ=0.5,物块M与小球的初始距离为x1=1.3 m,求物块M在P处的初速度大小.【答案】(1)3.0m/s(2)7.0m/s【解析】试题分析:(1)碰后物块M做平抛运动,设其平抛运动的初速度为V① (2分)S = Vt ② (2分)得:=" 3.0" m/s ③ (2分)(2)物块与小球在B处碰撞,设碰撞前物块的速度为V1,碰撞后小球的速度为V2,由动量守恒定律:MV1= mV2+ MV ⑥ (2分)碰后小球从B处运动到最高点A过程中机械能守恒,设小球在A点的速度为V A:⑦(2分)小球在最高点时依题给条件有:⑧ (2分)由⑦⑧解得:V2=" 6.0" m/s ⑨ (1分)由③⑥⑨得:=" 6.0" m/s ⑩ (1分)物块M从P运动到B处过程中,由动能定理:⑾(2分)解得:=" 7.0" m/s ⑿(2分)考点:本题考查了平抛运动的规律、动量守恒定律、机械能守恒定律及动能定理的应用。