完整版医学超声原理----超声换能器的声场
医学超声原理 第九讲 超声换能器的声场

Pm
nP0 r
sin nd / sin n sin d / sin
图3.21 线阵换能器声场坐标系统
二、多阵元超声换能器的声场
2、声束指向性 (1)指向性函数Ds
Ds
P r P0r
sin
n
d
n
sin
d
sin
sin
式3.47
(2)主瓣、栅瓣的位置以及消除栅瓣的条件,Ds
半功率点开角的条件:
Ds
sin
nd
n
sin
d
sin sin
'3dB '3dB
1 2
式3.51
二、多阵元超声换能器的声场
波束宽度:
0
2 arcsin
nd
2 arcsin
n
1
nL
3dB
2
arcsin
0.42
nd
2 arcsin
0.42
n
1
nL
式3.52
L是阵的长度d=L/(n-1)
二、多阵元超声换能器的声场
(4)定向准确度Δθ 当超声设备用极大值法定向时,能发现声束偏离极
大值方向的最小偏角称为准确度,用Δθ表示,一 般情况下,
0.25sin0 / 2 0.60sin 3dB / 2 式3.53
第九讲 超声换能器的声场特性 器
第九讲 超声换能器的声场特性
本章主要内容 一、单阵元换能器的声场 二、多阵元超声换能器的声场 三、凹型压电材料聚焦声场的数值模拟
一、单阵元换能器的声场
一、单阵元换能器的声场 (一)平面圆形换能器的超
声场 1、声源轴线上的声压分布
点状声源在空间的 声场分布表达式
超声波换能器的结构及原理

超声波换能器的结构及原理超声波的发射和接收,需要一种电-声之间的能量转换装置,这就是换能器。
超声换能器,也即超声传感器,是超声波流量计中的重要组成部分。
通常所说的超声换能器一般是指电声换能器,它是一种既可以把电能转化为声能、又可以把声能转化为电能的器件或装置。
换能器处在发射状态时,将电能转换为机械能,再将机械能转换为声能;反之,当换能器处在接收状态时,将声能转换为机械能,再转换为电能。
超声换能器通常都有一个电的储能元件和一个机械振动系统。
人们为研究和应用超声波,己发明设计并制成了许多类型的超声波发生器,目前使用较多的是压电型超声波发生器,而压电材料有单晶体的、多晶体复合的,如石英单晶体,钛酸钡压电陶瓷、锆钛酸铅压电陶瓷复合晶体(PZT)、PVDF等。
压电型超声波换能器是借助压电晶体的谐振来工作的,即晶体的压电效应和逆压电效应。
其结构原理如图3所示:图3超声波换能器结构原理图超声波换能器是一个超声频电子振荡器,当把振荡器产生的超声频电压加到超声换能器的压电晶体上时,压电晶体组件就在电场作用下产生纵运动。
压电组件振荡时,仿佛是一个小活塞,其振幅很小,约为(1~10) m ,但这种振动的加速度很大,约(10~10 3 ) g,这样就可以把电磁振荡能量转化为机械振动量,若这种能量沿一定方向传播出去,就形成超声波。
当在超声换能器的两电极施加脉冲信号时,压电晶片就会发生共振,并带动谐振子振动,并推动周围介质振动,从而产生超声波。
相反,电极间未加电压,则当共振板接收到回波信号时,由逆压电效应,将压迫两压电晶片振动,从而将机械能转换为电信号,此时的传感器就成了超声波接收器。
通常压电型超声波换能器可以等效地看作一个电压源和一个电容器的串联电路,如图 4(a)所示,也可以等效为一个电流源和一个电容器地并联电路,如图4(b)所示。
如果用导线将压电换能器和测量仪器连接时,则应考虑连接导线地等效电容、等效电阻、前置放大器地输入电阻、输入电容。
超声波换能器原理

超声波换能器原理
超声波换能器是一种将电能转换为机械振动能的装置,它是超声波技术的核心部件之一。
超声波换能器的原理是利用压电效应,将电能转换为机械振动能,从而产生超声波。
压电效应是指某些晶体在受到外力作用时,会产生电荷分布的不均匀,从而产生电势差。
反过来,当电场作用于这些晶体时,会使其发生形变。
这种晶体就是压电晶体,如石英、锆钛酸铅等。
超声波换能器通常由压电晶体和金属质量块组成。
当外加电压作用于压电晶体时,它会发生形变,从而使金属质量块也发生振动。
这种振动会产生超声波,其频率与电压的频率相同。
超声波换能器的工作原理可以用以下公式表示:
f = n × v / 2d
其中,f为超声波的频率,n为振动模式数,v为压电晶体的声速,d为压电晶体的厚度。
超声波换能器的应用十分广泛,如医学、工业、军事等领域。
在医学领域,超声波换能器被用于超声诊断、超声治疗等方面。
在工业领域,超声波换能器被用于清洗、焊接、切割等方面。
在军事领域,超声波换能器被用于声纳、水下通信等方面。
超声波换能器是一种将电能转换为机械振动能的装置,其原理是利用压电效应产生超声波。
它的应用十分广泛,是超声波技术的核心部件之一。
超声换能器的原理

超声换能器的原理
超声换能器是一种能够将电能转化为声能的装置。
它由压电材料制成,压电材料的晶粒排列规则,通过外加电场的作用而发生微小的位移。
当外加电场的方向周期性变化时,压电片中的晶粒也会周期性地振动。
这样,压电片就会产生声波,进而将电能转化为声能。
超声换能器的工作原理基于压电效应和反压电效应。
压电效应指的是某些特定的晶体或陶瓷材料在受到力或压力作用下会产生电荷分布不对称,从而生成电压。
反压电效应则是指当这些晶体或陶瓷材料受到外加电压时,会发生形变或位移。
在超声换能器中,应用了压电和反压电效应。
压电片是超声换能器的关键组件,它通常由PZT(铅酸钛锆)陶瓷材料制成。
当外加电压施加到压电片上时,它会引起压电片的厚度发生微小的周期性变化。
这个变化导致了超声波的产生和发射。
同时,当超声波通过压电片时,它也会使压电片发生反压电效应,产生微小的电压信号。
超声波在超声换能器中的传播是由压电片的振动和反压电效应共同完成的。
压电片的振动激发了超声波的产生,并将声波传送到被测物体。
当超声波在物体中传播时,它会遇到不同的介质和物体界面,从而发生折射、反射和散射。
当超声波反射回超声换能器时,它会导致压电片发生反压电效应,产生电压信号。
通过测量这个信号,我们可以获取被测物体的信息,例如距离、形状和物性等。
总之,超声换能器利用压电效应和反压电效应,将电能转化为声能,并实现声能和电能之间的相互转换。
它在医学、工业、军事等领域有着广泛的应用,如超声成像、超声清洗和超声检测等。
超声换能器工作原理

超声换能器工作原理1.引言1.1 概述概述超声换能器是一种重要的电声转换器件,广泛应用于工业、医学、科研等领域。
它通过电能与机械振动的转换,实现了声波的产生和接收。
在不同的应用领域中,它具有不同的工作原理和结构。
超声换能器的工作原理基于压电效应和回声原理。
当施加高频电场到压电材料上时,由于压电效应的存在,压电材料会发生微小的形变。
这种形变将产生机械振动,并通过传导介质传播出去,形成了超声波。
超声波在超声换能器的结构中发挥着至关重要的作用。
超声换能器的结构通常由压电材料和负载材料组成。
压电材料是产生超声波的关键部分,它具有良好的压电性能。
负载材料用于接收超声波,并将其转换回电能。
除了压电材料和负载材料,超声换能器还包括了传导介质和机械辐射面等组成部分。
超声换能器广泛应用于医学领域,例如超声检测和超声治疗。
它可以通过发射和接收超声波来对人体进行观察和治疗。
在工业领域,超声换能器可用于测量、清洁和焊接等应用中。
此外,随着科技的发展,超声换能器还有着广阔的应用前景,尤其是在无线电通信、物联网和汽车技术等领域。
总体而言,超声换能器是一种具有重要作用的电声转换器件。
通过压电效应和回声原理,它实现了电能与声能的相互转换。
在不同的应用领域中,超声换能器发挥着重要的作用,并且有着广阔的发展前景。
通过进一步研究和技术创新,相信超声换能器将在未来的科技领域中发挥更大的作用。
1.2 文章结构文章结构部分的内容:本文共分为引言、正文和结论三个部分进行叙述。
引言部分主要概述了超声换能器工作原理的研究背景和重要性。
首先介绍了超声换能器的定义和作用,然后简要解释了超声换能器的结构和组成。
最后明确了本文的目的,即深入分析和总结超声换能器的工作原理,展望其在未来的应用前景。
正文部分是本文的重点部分,主要讲述了超声换能器的工作原理。
首先详细介绍了超声换能器的定义和作用,包括其在医学、工业和生物科学等领域的广泛应用。
然后着重解释了超声换能器的结构和组成,包括压电材料和电极的选择以及超声波的产生和传播原理。
超声波 换能器 原理

超声波换能器原理超声波换能器是将电能转化为超声能量的一种装置。
它广泛应用于医疗、工业、农业、冶金等领域,具有高频率、高效能、无污染、易实现自动化控制等特点。
本文将详细介绍超声波换能器的原理、工作方式以及应用领域。
超声波换能器一般由压电陶瓷、金属盖板、保护罩和导线等组成。
其中压电陶瓷是核心部件,它是通过压电效应实现将电能转化为机械振动能的材料。
压电陶瓷材料在施加电场时会发生形变,这种形变即为压电效应。
根据压电效应的不同方向,压电陶瓷又可分为纵向和横向两种。
在超声波换能器中,通常采用的是横向压电陶瓷。
超声波换能器的工作原理是利用压电陶瓷的压电效应将输入的电能转化为机械振动能,进而产生超声波。
当外加交流电源施加在压电陶瓷上时,电场的变化会导致压电陶瓷的尺寸发生微小变化。
这种变化会导致陶瓷产生机械振动,即超声波。
超声波的频率通常在20kHz以上,人耳无法听到。
这种高频超声波的特点使得它在工业和医疗领域有广泛应用。
超声波换能器的工作方式可以分为共振和非共振两种。
共振工作方式是将输入的电信号频率与超声波换能器的共振频率匹配,以达到最大振幅的效果。
通常,在共振频率处,换能器的振动幅度最大,能量转化效率最高。
而非共振工作方式则是将电信号频率设定在超声波换能器的非共振范围内,使得振动幅度较小,但换能器仍能转化电能为超声能量。
超声波换能器的应用领域十分广泛。
在医疗领域,超声波换能器主要应用于超声检测与成像。
它可以将电信号转化为超声波信号,通过体内组织的反射和散射,产生显像。
这种成像技术可以帮助医生了解患者的内部情况,对于诊断病变和指导手术具有重要意义。
在工业领域,超声波换能器被广泛应用于清洗、焊接、切割和探伤等领域。
超声波的高频振动能够有效清洗表面污垢;同时,超声波的局部热效应可以实现焊接和切割的高精度和高效率;此外,超声波还可以用于金属材料的探伤,检测材料内部的缺陷。
此外,超声波换能器还被应用于农业领域。
例如,超声波换能器可以用于植物的喷雾和施肥。
医学超声原理 第八讲 超声换能器

用来接收声波的换能器称为接收器。当换 能器处于接收状态时,将声能变成机械能,再转 换成电能。
有些情况下,换能器既可以用作发射器,又 可以用作接收器,即所谓的收发两用型换能器。
一、超声换能器介绍
工作原理:
通常换能器都有一个电的储能元件和一个机械振动 系统。当换能器用作发射器时,从激励电源的输出级送 来的电振荡信号将引起换能器中电储能元件中电场或磁 场的变化,这种电场或磁场的变化通过某种效应对换能 器的机械振动系统产生一个推动力,推动与换能器机械 振动系统相接触的介质发生振动,向介质中辐射声波。
电子聚焦示意图
三、医学超声换能器结构
现以前者为例加以说明。 如图3.10所示,激励脉冲经延迟 线后激发压电材料,两边延迟时间值最小并对称、然后由两边 到中央逐渐对称地变大,中央延迟线的延迟时间值最大。因此 仿于两边的压电品片最早振动,然后依次振动,位于中央最迟 振动。这样形成的圆形波阵面,其圆心就是焦点。
二、医学超声换能器种类
单元换能器
1.按振子单元数分
多元换能器
线 阵 相控阵 方 阵
凸 阵
2.按声束特性分
聚焦换能器
一维聚焦 二维聚焦
电子聚焦 声学聚焦 电子聚焦 声学聚焦
非聚焦换能器
二、医学超声换能器种类
发射型换能器 3.按收发方式分 接收型换能器
收发兼用型换能器
圆形换能器
环形换能器
Lf=1.8λ(f/a)2 ; 其中,λ为声波波长,a为聚焦系统孔径的一半 ,f为系统焦距。
三、医学超声换能器结构
c)声反射镜 如图3-31,3-32所示的平行声束经楔形 声反射镜反射到抛物面声透镜,然后经抛物面聚焦 在它的焦点。
超声换能器的工作原理

超声换能器的工作原理
超声换能器是一种将电能转换为机械能的装置,它的工作原理是利用压电效应将电能转换为机械能,从而实现声波的发射和接收。
超声换能器由压电陶瓷材料和金属电极组成,当外加电场作用于压电陶瓷材料时,会使其发生形变,从而产生声波。
反之,当声波作用于压电陶瓷材料时,会使其发生形变,从而产生电信号。
在超声波的发射过程中,电源会向超声换能器提供一定的电压,使其产生高频振动,从而产生超声波。
超声波的频率通常在1MHz到100MHz之间,具有高频、高能量、高方向性等特点,可以穿透物体并在其内部产生反射,从而实现对物体的检测和成像。
在超声波的接收过程中,超声波会穿过物体并在其内部产生反射,反射波会被超声换能器接收并转换为电信号,电信号经过放大和处理后,可以得到物体内部的信息,如结构、缺陷、密度等。
超声换能器广泛应用于医学、工业、军事等领域,如超声诊断、无损检测、材料分析等。
在医学领域,超声波可以用于检测人体内部的器官、组织和血管等,具有无创、无辐射、安全可靠等优点。
在工业领域,超声波可以用于检测材料的缺陷、厚度、硬度等,具有高效、精准、经济等优点。
超声换能器的工作原理是利用压电效应将电能转换为机械能,从而实现声波的发射和接收。
它具有高频、高能量、高方向性等特点,
广泛应用于医学、工业、军事等领域,为人们的生产和生活带来了巨大的便利和效益。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、单阵元换能器的声场
极小值的位置为:
? ? a 2 ? ? 2n2
Zmin ? 2n? ,n ? 0,1,2,3,... 式3.38
定义最后一个极大值位置为近场到远场的临界距离:
? ? 4a 2 ? ? 2
ZN ?
4?
式3.39
如果a 2 ?? ? ,此表达式可简化为
ZN
?
a2
?
式3.40
轴上最后一个最大值的位置ZN常被最为近场(Fresnel区)向远场
式3.41
通过计算可得圆片振子的指向性函数为:(可参见数学物理
方法)
Ds
?
2J1 ?ka sin? ?
ka sin?
式3.42
J1为第一类第一阶贝塞尔函数
一、单阵元换能器的声场 Shanghai Jiao Tong University
(2)波瓣图
1)第一旁瓣与主瓣相差约- 20dB 请问声压相差多少倍?
一、单阵元换能器的声场
从上式看出, Pm与Z成反比,当 Z足够大时,圆 形声源轴线上的声压随距离的增加而衰减的规律。
(1)Z<ZN的范围内,存在若干个极大值和极小值。极 大值为2,极小值为0,极大值的位置为:
Zmax
?
4a 2 ? ? 2 ?2m ? 1?2 4? ?2m ? 1?
, m ? 0,1,2,3,...
1 2
?
?? z?? sin
?wt
?
ka ?
??
式3.23
声压振幅为:
? ? Pm
?
2P0
sin
?? ???
a2 ? z2
1 2
?
? z?
?
式3.24
Shanghai Jiao Tong University
一、单阵元换能器的声场
我们对声压振幅做一些简化:
Shanghai Jiao Tong University
式3.37
Shanghai Jiao Tong University
与本PPT配套的指定教材
目前,关于生物医学超声的参考书很多;但是 从教十年多来,一直很难找到一本非常适合本 科生的教材。这也是编者下定决心编写本书的 主要原因之一。本书的内容主要包括超声物理 基础,压电效应与换能器技术,超声成像诊断 原理,超声治疗技术,医学超声实验,医学超 声的最新进展等。每章节都配置了一定量的练 习与思考题,以帮助读者巩固书中的内容,并 提高分析解决问题的能力。为配合双语教学, 本书保留了关键专业词汇的中英文对照。
本书的特点是在注重基本概念,基本原理,基 本方法的同时,兼顾一定的工程技术实用性, 如包含声场的数值模拟,超声图像的C语言程 序处理,超声波发射电路原理,换能器的匹配 技术等。本书适合医学超声以及相关领域的本 科生作教材,也可供该领域的研究生,科研及 工程技术工作者参考。
Shanghai Jiao Tong University
本书的特点是在注重基本概念,基本原理,基 本方法的同时,兼顾一定的工程技术实用性, 如包含声场的数值模拟,超声图像的C语言程 序处理,超声波发射电路原理,换能器的匹配 技术等。本书适合医学超声以及相关领域的本 科生作教材,也可供该领域的研究生,科研及 工程技术工作者参考。
Shanghai Jiao Tong University
? (Fraunhofer区)过渡的起始点,自ZN开始,声束开始扩散,扩散
角为
Shanghai Jiao Tong University
一、单阵元换能器的声场
图3.14 圆片换能器的 (a)声束; (b)轴线上的声压分布
Shanghai Jiao Tong University
一、单阵元换能器的声场
P ? ? p0dS sin ?wt ? kr ? 式3.22
r
Shanghai Jiao Tong University
一、单阵元换能器的声场
ቤተ መጻሕፍቲ ባይዱ圆片上各微小元面积都可看成单一的声源。故在圆 片源的轴线上对整个圆面积分,求得轴线上任一 点M的声压:
? ? pz
?
?
?2 ?
P0
sin
?? ???
a 2 ? z2
第九讲 超声换能器的声场特性 器
与本PPT配套的指定教材 目前,关于生物医学超声的参考书很多;但是 从教十年多来,一直很难找到一本非常适合本 科生的教材。这也是编者下定决心编写本书的 主要原因之一。本书的内容主要包括超声物理 基础,压电效应与换能器技术,超声成像诊断 原理,超声治疗技术,医学超声实验,医学超 声的最新进展等。每章节都配置了一定量的练 习与思考题,以帮助读者巩固书中的内容,并 提高分析解决问题的能力。为配合双语教学, 本书保留了关键专业词汇的中英文对照。
Shanghai Jiao Tong University
Sound field of a non focusing 4MHz ultrasonic transducer with a near field length of N=67mm in water. The plot shows the sound pressure at a logarithmic db-scale
Shanghai Jiao Tong University
Shanghai Jiao Tong University
一、单阵元换能器的声场
2、声束指向性
(1)指向性函数Ds。在换能器远场中,任意方向上的声压
幅值Pθr与最大方向上的声压幅值P0r之比,定义为该换能
器的辐射声场指向性函数,即
Ds
?
P? r P0r
第九讲 超声换能器的声场特性
本章主要内容 一、单阵元换能器的声场 二、多阵元超声换能器的声场 三、凹型压电材料聚焦声场的数值模拟
Shanghai Jiao Tong University
一、单阵元换能器的声场
一、单阵元换能器的声场 (一)平面圆形换能器的超
声场 1、声源轴线上的声压分布
点状声源在空间的 声场分布表达式
一、单阵元换能器的声场
几点说明 : A) 频率越高,主瓣越窄;旁瓣个数越多; B)圆片面积越大,主瓣越窄; C)θ0定义为主瓣方向锐度角; D)通常也用半功率点来表示主瓣的展宽角度。即
声功率降到最大功率一半时(- 3dB),所对应 的角度。
What is ultrasound transducer?
2)当 ka sin? ? 3.83,7.02,10.17,13.32 时,J1为0,声压幅度降 为0,Ds为0。由下式可 以估计主瓣的宽度。
?0
?
arcsin
? 3.83 ?? ka
? ??
?
arcsin
? ??
0.61?
a
? ??
式3.43
图3.15 平面圆盘换能器的远场波瓣图
Shanghai Jiao Tong University