国内外沥青路面设计方法综述_周利

合集下载

国外主要沥青路面设计方法概述

国外主要沥青路面设计方法概述

国外主要沥青路面设计方法概述说到沥青路面设计,咱们大多数人可能想的就是那条条笔直的马路,车子在上面呼啸而过,风驰电掣的感觉是不是挺爽?但大家有没有想过,这些路面背后,可是有一整套复杂的设计方法在支撑着呢!而这些设计方法,尤其是在国外,其实也是各具特色。

今天就带大家看看国外的几种主要沥青路面设计方法,别看它们名头大,其实操作起来也并没有那么神秘。

先说说美国的设计方法吧。

美国的路面设计方法通常参考的是所谓的“加州路面设计方法”,也叫加州法。

这套方法根据不同的交通流量、路面使用年限、气候条件来进行设计,简直可以说是根据“天时、地利、人和”来选材料、选厚度、定标准!美国人可是讲究数据和实际使用的,所以他们的设计特别重视“路面层次”。

简单来说,就是把路面分成几个层次,每一层的材料、厚度、结构,都是根据实际需要来定的。

举个例子,如果路面经常要承受重型卡车的碾压,那上面铺的材料肯定得耐磨又坚固,不然早晚就得“掉渣”了。

设计好这些层次后,设计师还得计算出每一层的承载能力,确保它能够支撑所有的车辆。

看着好像很复杂吧?其实就是要做到“量体裁衣”,每条路都按实际情况来量身定做。

接下来是欧洲的设计方法。

欧洲,尤其是英国,常用的是“贝尔法斯特法”。

听着好像有点高大上,其实这方法主要还是通过计算沥青混合料的结构、厚度以及耐久性来做设计。

和美国不同,英国这边更注重环境对路面的影响,特别是雨水、温度变化这些自然因素。

像英国那样,常年阴雨绵绵、湿气重,设计师们就得考虑到这些因素对沥青的侵蚀作用。

要是设计时没考虑周全,等天气一转,路面一发霉,车主们可就要抱怨了。

所以英国的路面设计方法,除了重视技术计算外,还很注重材料的选择和施工的细节。

比如,在选择沥青时,常常考虑那些抗水性强、耐腐蚀的混合料,确保雨水多的地区路面不容易出现裂缝。

这种方法其实就是强调“预防为主”,提前预测各种可能发生的情况,做到未雨绸缪。

也得提提德国的设计方法。

德国的设计方法可以说是“稳重派”的代表。

沥青路面结构设计方法综述

沥青路面结构设计方法综述
直未 能解决 的交 通荷 载 问题 。
223 提 出 了路 面结 构 数 与 .-
加 权 轴 载通 过 次数Ⅳ之 间关 系 的
基 本 方 程 ,此 结 果 是 A S O方 A H 法 的精 华 。
23 AAS O9 . HT 3路 面 设 计 方 法
的 主 要 不 足
经验性 路面 结构设 计方 法存
系 等 问题 ,应 用受 到 诸 多 限制 。
A S T 于2 世 纪5 年 代 末6 年 AH 0 0 0 0
231 缺 少 科 学 合 理 的 材 料 强 ..
度 指标 A S O试 验 路 面 面 层 材 料 AH
代 初 ,在渥 太华 和伊利诺 斯州 修
筑 了大 规 模 的试 验 路 进行 研 究 ,
车 辙 这 些 表 面状 况 。 因 此 ,以
21 A S T 9 沥青路 面设计 方 . AH 03
法 简 介
221 首 次 将 耐 用 性 指 数 引 进 .. 路面设 计方 法 ,而且提 出不 同道
A S O 3 计 方 法 是 在 A HT 9 设
2 世 纪 5 年代 美 国A S T O O A H O试 验 路成 果 的基础上 提 出的路 面设计
计 方 法
232 路 面 服务 性 指 数 ( S ) .. P I 问

能力损 失 的影 响 。
22 AAS O9 路 面 设 计 方 法 . HT 3
的 主 要 优 点
A S O设 计 法 以路 面 服 务 AH 性 指数 P I 为标 准 ,它 主要 反 S作 映不平 整度 、裂 缝与修 补 面积 和
发 生变 化 时 ,材料 的强 度 、耐久

沥青路面结构设计方法综述

沥青路面结构设计方法综述
经验性路面结构设计方法存 在诸多的缺点, 既没有结合道路 等级提出明确的损坏标准, 又没 有解决交通荷载类型与交通量关 系等问题, 应用受到诸多限制。 AASHTO 于 20 世 纪 50 年 代 末 60 年 代初, 在渥太华和伊利诺斯州修 筑了大规模的试验路进行研究, 探索路面结构设计与路用性能 之间的关系, 其研究成果成为 AASHTO 设 计 方 法 的 实 践 基 础 , 并对各国路面设计都产生了重要 影响。 AASHTO试验路提出了路 面状况的评价指标— ——路面服务 性指数PSI, 路面服务性指数PSI
采用弹性层状体系进行计 算, 但材料参数取值时充分考虑 材料的非线性。 荷载一般采用标 准 的 双 轮 荷 载 , 轴 重 80kN, 用 “双圆图式”进行模拟。 3.2 设计标准
SHELL 沥 青 路 面 设 计 方 法 的 设计标准分为主要标准、 次要标 准和再次要标准, 共三个层次。 主要标准为路基表面垂直压应变 (控制路面车辙)和沥青层内水 平拉应变(控制路面开裂); 次要 标准为基层底面拉应变(防止基 层疲劳开裂)和车辙深度指标;
c)在预测路面使用性能时能 考虑材料老化的影响;
d)路面结构设计性能预估与 沥青混合料性能评价联系起来;
e)可以预估环境因素对路面 性能的影响。 3 壳牌(SHELL)设计法
1943年, Burmister发表的弹 性层状体系理论, 为沥青路面设 计理论分析法奠定了基础。 1963 年 英 荷 壳 牌 石 油 公 司 (SHELL) 把 理论计算结果和WASHO、 AASHO 试验路成果相结合, 提出了第一 个以理论分析为基础的沥青路面 设计方法, 从此, 理论分析法在 全世界范围内得以推广和发展。 其分别在1967年和1978年进行了 修订, 1978年修订后的壳牌设计 法成为理论分析法的代表。 3.1 计算模型

国外沥青路面设计简介

国外沥青路面设计简介
√(中、轻交通)

英国
√(水稳碎石)


法国
薄沥青层 厚粒料基层
厚沥青层 下卧底基层
半刚性基层
混合式
全厚式
粒料基层
主要路面结构
国家


俄罗斯



法国



比利时


诺丁汉大学




南非


日本



澳大利亚



SHELL
补强※


AI
路表 弯沉
永久变形
粒料层剪 切应力
路基顶面 压应变
稳定粒料 层拉应力
路基膨胀或冻胀考虑——路基膨胀或冻胀造成PSI的损失。 每一个特定地区给出了膨胀或冻胀造成的PSI损失随时间的变化曲线(△PSISV~t △PSIFH ~t ) 设计方法: 估计路面使用年限(年) 查图得出相应△ PSI SV、FH 从设 计总服务能力损失(△PSI )中扣除△ PSISV、FH,得到完全由 交通荷载引起的△PSITR △PSIIR查AASHTO路面设计图得到 累计交通量(ESAL) 根据交通量随时间变化图得到允许的使 用年限 ,与初始估计的使用年限相比,两者相差1年则可,否 则重新计算,直至收敛。
AASHTO(200x修订版)的修订要点
◎ 对沥青路面、水泥混凝土路面、复合路面提供一个通用的设计方法;反映了交通、气候环境、路基、可靠性的共同的设计要求。 ◎ 适用于新建和重建路面的结构设计,设计项目包括计算路面结构各层的厚度、重建的方法、地下排水设施、路基改善等等。 ◎ 将使用周期效益成本分析的方法作为该设计方法的一个子程序。

国内外沥青混合料设计方法研究与工程应用

国内外沥青混合料设计方法研究与工程应用

国内外沥青混合料设计方法研究与工程应用沥青混合料是道路施工中常用的一种材料,其质量对道路的使用寿命和安全性有着至关重要的影响。

因此,沥青混合料的设计方法研究和工程应用至关重要。

本文将从国内外的沥青混合料设计方法研究和工程应用方面进行探讨。

首先,国内外对沥青混合料设计方法的研究主要包括了传统方法和新型方法两种。

传统方法主要是基于马歇尔设计原理,通过沥青混合料的稠度、沥青含量、骨料粒径和配合比等参数进行设计。

而新型方法则主要是指通过采用高级沥青混凝土技术、开发新型沥青材料等手段来改善沥青混合料的性能和耐久性。

国内外许多研究机构和大学都在对沥青混合料设计方法进行了深入的研究,并取得了一些成果。

其次,沥青混合料设计方法在工程应用中的具体体现主要包括了配合比设计、稠度设计、抗剥落性设计等方面。

这些设计方法不仅要求沥青混合料在道路使用中具有足够的强度和稳定性,还要求其具有良好的耐久性和抗老化性能。

因此,在实际的施工中,工程师需要根据道路的使用环境和要求,选取合适的沥青混合料设计方法,并进行相应的设计和调整。

在国内,随着交通基础设施建设规模的不断扩大,沥青混合料的设计方法研究和工程应用也逐渐得到了重视。

许多高校和科研院所都开展了相关的研究工作,并积极推动沥青混合料设计方法的创新和改进。

与此同时,国内的道路建设和施工企业也在不断探索和应用新的沥青混合料设计方法,以提高道路建设工程的质量和耐久性。

在国外,沥青混合料设计方法的研究和工程应用也取得了一些成果。

一些发达国家在沥青混合料设计方法方面处于领先地位,他们不断推动沥青混合料设计方法的创新和改进,以适应不同地区和不同气候条件下的道路建设需求。

综上所述,沥青混合料设计方法的研究与工程应用在国内外都受到了广泛的关注。

通过不断地研究和实践,沥青混合料设计方法将会不断得到改进和完善,为道路建设工程提供更加稳定和耐久的材料,从而保障道路的安全、舒适和持久使用。

希望未来能有更多的研究机构和企业参与到沥青混合料设计方法的研究与工程应用中,共同推动该领域的发展与进步。

中外沥青路面设计方法对比研究开题报告

中外沥青路面设计方法对比研究开题报告

中外沥青路面设计方法对比研究开题报告一、研究背景和意义:目前,全球范围内的道路交通规模不断增加,而路面作为道路交通的基础设施,直接关系到道路的使用寿命、行驶安全以及行车舒适度,因此,具有极高的重要性。

存在不同背景下沥青路面的设计方法,主要的区别在于基础理论、实验数据以及经验的不同。

虽然这些方法各有优点,但很难确定哪种方法最适合特定的条件下使用。

本研究旨在比较国内外存在的不同沥青路面设计方法,为石油公司建立路面设计的最佳实践提供参考。

二、研究目的:1、研究国内外沥青路面设计方法的异同点以及对比分析;2、确定各个方法适用的条件和优缺点;3、提出“最佳实践”路面设计方案,以满足不同应用条件下的要求。

三、研究方法和步骤:1、文献综述:回顾文献中不同背景下的沥青路面设计方法;2、案例分析:选取几个具有代表性的案例进行分析,着重比较设计方法的异同,探讨理论与实践之间的关系;3、实验数据收集:收集涉及到实验数据,比如沥青材料的强度、黏度、流动性、温度等;4、模拟计算:利用计算机仿真进行模拟计算,评估不同沥青路面设计方法在不同情况下的效果;5、路面设计方案的确定:根据上述工作,结合实际情况确定最佳的路面设计方案。

四、研究成果:本研究旨在比较国内外沥青路面设计方法,验证其应用价值以及优缺点,最后提出最佳实践路面设计方案。

预期成果包括:1、对各种沥青路面设计方法的优缺点进行深入探讨;2、提出适用于不同情况下的最佳沥青路面设计方案;3、为石油公司建立路面设计的最佳实践提供参考。

五、研究进度:本研究已完成文献综述和案例分析的工作。

目前正在进行实验数据的收集和模拟计算的工作。

预计于2021年完成所有研究工作并提交论文。

浅析国内外沥青路面设计方法

浅析国内外沥青路面设计方法

经验法主要是以经验或试验为依据( 实验路和实验观测) 。纯经 组成输入力学计算程序。计算关键位置的应力和应变 , 如双轮中心处 验公路结构设计公式仅仅是基于对公路陛能及使用历史 的观察而作 面层底部的拉应变和路基顶部的压应变。利用应力和应变结果 , 进而 出的判断。 一般在加速道路试验过程中确定公式。 其中最著名的经验 计算破坏容许载荷次数和计算条件下地载荷次数。 对每—季节条件和  ̄ t% 4 7法有美国加州承载比法(B 法) C R 和美国各州公路和运输工作 每一种载荷组成进 塞 代计算, 并累计破坏指数 。 如果破坏指数大于 者协会柔l 面设计法( A H O法 ) A ST 。 单位 l , 则表明结构破坏, 因此调整初始厚度 , 重新计算累计破坏指数。
1 美国加州承载比法。美国加州承载比法( . 1 以下简称 C R法) B 是以 i t Ri ̄程的主要特征是迭代循环。第一次迭代循环针对气候条 C R值作为路基土和路 面材料( B 主要是粒料 ) 的性质指标 , 通过对 已 件, 给定载荷组成, 改变每层的材料 陛质。第二次迭代针对载荷组成 。
分数表示。 国 在 外常采用 C R B 值作为路面材料和路基土的设计参数。 2 壳牌公司柔性 . 1 潞面{ 怯。壳牌 柔性 / 公司 潞面设 叶 ( 下简称 j砝 以 此方法设计过程简单 、 概念明确, 适用于重载、 低等级的路面设计 , 所 Se 法) hl 是由英、 l 荷壳牌石油公司研究E研究、 吁 完善和启用的基于力学 提出的 C R指标 已经作为路面材料的一种参数指标并得到了广泛 的 分析的设计方法。 hl B Se 法把路面当 l 成一种多层线弹l 各层材料以 生 . 体, 应用。 动态模量表征, 以厚度、 模量和泊松比表 示路面特征。hl Se 设计法考虑 l 1 美国各州公路和运输工作者协会柔性路面设计法。美国各州公 了两项主要标准和两项次要标准。 . 2 两项主要标准是沥青层底面的拉应 路和运输工作者协会柔眭路面设计法 ( 以下简称 A S T A H O法)是在 变和路基顶面的竖向 压应变。 两项次要标准是水泥稳定类材料底面的 15 年到 16 年间 A S T 98 92 A H O试验路的基础上建立的。整理试验路 弯压力和路表面的 永久变形。 该方法设计简 容易操作。 单, 在考虑温度 的实验观测数据, 得到了路面结构—轴载—使用性能三者之间的试验 影响时 , 提出了加权年平均温度概念 , 了 考虑 一年不同时期的湿度对 关系式。路面结构中的路基土采用回弹模量表征其 I , 生 路面结构层 材料特征的影响程度。但本方法对路面模型做了很多限制, 顷 和实际 隋

浅谈国内外沥青路面设计方法详解

浅谈国内外沥青路面设计方法详解

浅谈国内外沥青路面设计方法2016-12-19摘要:目前国内外众多沥青路面设计方法中,可以归纳为两类:一是建立在经验或试验的基础上进行的经验法;一是以力学分析为基础的力学经验法,此方法考虑了材料特性、交通条件及环境因素。

本文主要介绍国内外典型的设计方法,包括CBR法,AASHTO法,SHELL法,AI法和国内的设计方法,分别对比分析各设计方法的优缺点,并提出相应的改进意见。

关键词:沥青路面,设计方法,综述沥青路面是我国高等级公路普遍采用的路面型式,它是在半刚性基层、柔性基层上铺筑一定厚度的沥青混合料作为面层的路面结构。

沥青路面设计理论与方法经历了古典法、经验法和力学经验法的发展过程,目前各国多数以后面两种设计方法进行路面结构设计。

虽然有不同的设计理论和方法作指导,但是沥青路面在设计年限内已经破坏的道路屡见不鲜,这与道路建设的各个环节都有关系,为了更好的了解并借鉴前人的研究成果,并完善和改进国内的沥青路面设计方法,本文简要介绍以经验法为代表的CBR设计方法,AASHTO设计方法;以力学经验法为基础的SHEEL法,AI法及国内的设计方法。

1 CBR 设计方法CBR法以CBR值作为路基土和路面材料(主要是粒料)的性质指标。

通过对已损坏或使用良好的路面的调查和 CBR测定,建立起路基土CBR~轮载~路面结构层厚度(以粒料层总厚度表征)三者间的经验关系。

利用此关系曲线,可以按设计轮载和路基土CBR值确定所需的路面层总厚度。

路面各结构层次的厚度,按各层材料的CBR值进行当量厚度换算。

不同轮载的作用按等弯沉的原则换算为设计轮载的当量作用。

CBR法对世界各国影响最广泛的是,采用CBR试验方法和指标值表征路基土和路面材料(粒料)的力学性质。

CBR试验法是一种模拟野外路基土承载板试验的室内小型试验,它通过贯入试验测定路基土抵抗侧向位移的能力。

然而 ,它仅是一种经验性的指标。

即便Porter 本人也认为,CBR值并不是材料承载力的直接度量指标,它与弹性变形量的关系很小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

国内外沥青路面设计方法综述周 利,蔡迎春,杨泽涛(郑州大学环境与水利学院,郑州 450002)摘 要:当前世界各国众多的沥青路面设计方法,可概括地分为2类:一类是以经验或试验为依据的经验法;一类是以力学分析为基础,考虑环境、交通条件以及材料特性为依据的力学-经验法。

简要介绍目前国内外典型设计方法(CBR法、AASHTO法、SHELL法、AI法及国内方法),并比较其优缺点,针对现行设计方法,特别是我国设计方法,提出改进意见。

关键词:沥青路面;设计方法;综述文章编号:1009-6477(2007)04-0036-04 中图分类号:U416.217 文献标识码:BSummary of Domestic&Overseas Asphalt Pavemen t Design MethodZhou Li,Cai Yingc hun,Yang Zetao 沥青路面是在柔性基层、半刚性基层上,铺筑一定厚度的沥青混合料作为面层的路面结构。

以沥青路面为主的柔性路面设计理论与方法研究已有近百年的历史,其发展历程经历了古典法、经验法和力学-经验法3个阶段。

当前世界各国众多的沥青路面设计方法大体为后面2种,即以工程使用经验或试验为依据的经验法和以力学分析为基础,考虑环境、交通条件以及材料特性为依据的力学-经验法。

为了更好地借鉴前人的研究成果,有助于指导今后设计方法的研究,本文简要介绍目前国内外几种典型的设计方法:(1)经验法的代表方法:CBR法和AASHTO法;(2)力学-经验法的典型代表:AI法和SHELL法;(3)我国2004规范(报批稿)采用的设计方法,并作简单评价。

1 国外沥青路面设计方法国外的沥青路面设计方法,可分为经验法和力学-经验法2大类[1]。

1.1 经验法经验法主要通过对试验路或使用道路的实验观测,建立路面结构、荷载和路面性能三者间的经验关系。

最为著名的经验设计方法有美国加州承载比(CBR)法和美国各州公路和运输工作者协会(AASHTO)柔性路面设计法。

1.1.1 CBR法[2-3]CBR法是以CBR值作为路基土和路面材料(主要是粒料)的性质指标,通过对已损坏或使用良好的路面的调查和CBR测定,建立起路基土CBR-轮载-路面结构层厚度3者之间的经验关系。

利用此关系曲线,可以按设计轮载和路基土CBR值确定所需的路面层总厚度。

路面各结构层的厚度,按各层材料的CBR值进行当量厚度换算。

不同轮载的作用按等弯沉的原则换算为设计轮载的当量作用。

此方法设计过程简单、概念明确,适用于重载、低等级的路面设计,所提出的C BR指标已作为路面材料的一种参数指标得到了广泛应用。

如日本的路面设计经验法(TA法)就是以CBR法为基础制定的。

1.1.2 AASHTO法[2,4-5]AASHTO法是在1958—1962年间AASHO试验路的基础上建立的。

整理试验路的试验观测数据,得到了路面结构-轴载-使用性能三者间的经验关系式。

路面结构中的路基土采用回弹模量表征其性质,路面结构层按各层材料性质的不同转换为用一个结构数(SN)表征。

AASHTO方法提出了现时服务能力指数(P SI)的概念,以反映路面的服务质量。

PSI是一个由评分小组进行主观评定后得到的指标,它与路面实际状况(坡度变化、裂缝面积、车辙深度、修补面积)之间建立经验关系式,提出了轴载换算的概念和公式,考虑了结构的可靠度和排水条件的影响,这些思想对后来世界各国的设计思想产生了很大的影响。

1.2 力学-经验法力学-经验法首先分析路面结构在荷载和环境作用下的力学响应(应力、应变、位移),利用在力学公路交通技术 2007年8月 第4期 Technology of Highway and Transport Aug.2007 No.4收稿日期:2007-01-10响应与路面性能(各种损坏模式)之间建立的性能模型,按设计要求设计路面结构。

最著名的是美国沥青协会(AI)法和壳牌石油公司柔性路面设计(Shell)法。

1.2.1 Shell设计法[6-9]Shell设计方法是由英、荷壳牌石油公司研究所研究、发展和完善起来的设计方法。

在该设计方法中,路面结构分为3层,即路基、基层和沥青层,各层材料以动态模量劲度表征,以厚度、模量和泊松比表示路面特征。

混合料的粘弹性性质以其劲度模量体现,其值取决于沥青含量、沥青劲度和沥青混合料的空隙率。

路基模量受应力影响,路基动态模量可以通过现场的动态弯沉试验在道路实际湿度条件和荷载条件下测定,也可在室内通过三轴仪测定。

当有困难时,也可根据CBR或承载板试验结合工程经验选择。

无机结合料基层模量依赖于它的受力状态,其值取决于路基模量和基层厚度。

环境因素的影响以温度对沥青混合料材料特性的影响来表征。

此方法中交通荷载以标准双轮轴载次数为代表,设计年限内的累计轴次即为设计寿命。

临界荷位的应力应变由计算机程序BISAR计算。

标准轴载为单轴双轮,轴重80kN,单轮轴载为20kN,双圆接地半径R=105mm,轮际间距315mm。

在计算中,沥青层、无机结合料基层及路基的泊松比都为0.35,计算应力与应变的最不利位置都取2处,即沥青层底部和路基顶部的轮中心下及轮际中心下。

Shell设计法考虑了2项主要设计标准和2项次要设计标准。

2项主要设计标准是控制疲劳开裂的沥青层底面的容许水平拉应变εfat和控制永久变形的路基顶面的容许竖向压应变εz。

控制标准分别如下式:N f=[(0.856V bit+S-0.36mix)] εr5N f=(aεz)4式中,N f为累计标准荷载作用次数;V b it为结合料的体积比;S mix为沥青的劲度模量。

可靠度为50%时,a取0.028;可靠度为85%时,a取0.021;可靠度为95%时,a取0.018。

2项次要标准是水泥稳定类材料底面的弯拉应力和路表面的永久变形。

水泥稳定类材料底面的弯拉应力采用下式控制:σr2=σr1(1-0.075lg N f)式中,σr2为容许弯拉应力;σr1为材料的极限弯拉强度。

由于沥青层具有粘弹性特性,因此会产生永久变形。

为了控制所设计的路面结构在使用中不出现过大车辙,即高速公路不超过10mm,普通道路不高于30mm,SPDM建立了基于静态蠕变试验的车辙预估模型-沥青层厚度、沥青层平均应力、沥青混合料劲度模量的函数。

沥青层永久变形公式如下式:Δh1-i=C m×h1-i×(Z×δ0)S m-i式中,Z为应力分布系数;δ0为轴载压应力,标准轴载80kN的为6×105Pa;S m-i为i层沥青混合料的单轴静态蠕变劲度模量;C m为动态修正系数,反映动态轮辙试验及静态蠕变试验的差异,同混合料类型有关。

将各层的永久变形相加即为沥青层的永久变形,沥青层永久变形同基层与路基变形之和即为车辙。

1.2.2 美国地沥青协会(AI)法[2,6-7,10]AI设计法也把路面看成多层弹性体系,材料特性主要包括土基、粒料基层和沥青层的回弹模量和泊松比。

路基土的泊松比假设为0.45,其它材料的泊松比假设为0.35。

路基土的回弹模量的确定可由室内重复三轴抗压试验确定,或根据其与CBR (或R)的关系式估计而得;粒料材料的回弹模量与应力水平相关,其值可根据多变量回归的预测方程计算;热拌沥青混合料的动态模量由室内60种不同的沥青混合料试验得到的计算公式确定。

环境的影响通过面层温度对沥青混合料劲度值的影响来体现,以面层厚13深处的温度作为沥青层的设计温度,由月平均气温和路面温度的关系式计算得到。

沥青混凝土面层、沥青混凝土(全厚式)或乳化沥青基层采用3层弹性层状连续体系,当其下还有粒料基层时,采用4层弹性层状连续体系。

荷载模型为双圆垂直荷载,不考虑水平荷载,以80kN单轴荷载为标准轴载,单圆当量圆半径为δ=11.43c m,两轮中心间距为3δ,力学计算须计算各层沥青层底、路基土顶面以下单圆中心点,单圆内侧边缘、双圆间隙中心点3个点的最大应力、应变值。

AI法采用的设计标准与Shell法相同,即控制疲劳开裂的沥青层底部的水平拉应变εθ和控制永久变形的土基表面的竖向压应变εz。

(1)疲劳准则AI法建立了标准混合料(沥青体积为11%,空372007年 第4期 周 利,等:国内外沥青路面设计方法综述隙率为5%)的疲劳方程,该方程考虑了实验室与野外条件的差异。

N f=0.00115(εθ)-3.291E*-0.854式中,N f为控制疲劳开裂的允许荷载重复作用次数;E*为沥青混合料的动模量,MPa。

AASH O道路试验所选路段的观察表明,应用上式所得到的疲劳开裂占总面积的20%。

对于非标准混合料,根据试验室的疲劳试验结果,上式可表示为:N f=0.00115(εθ)-3.291E*0.854C式中,C是沥青混合料空隙率V a和沥青体积率V b 的函数。

c=10MM=4.84[V b(V a+V b)-0.6875](2)永久变形准则根据AASHO试验数据整理结果得出,控制永久变形的允许荷载重复作用次数可用N d=1.365×10-9(εz)-4.477计算。

SHELL和AI设计法是公认的力学-经验法的典型代表,很多国家都借鉴了SHELL法和AI法的研究成果。

如澳大利亚的沥青混合料疲劳方程采用的就是Shell1978年提出的室内疲劳试验关系式,预估野外疲劳寿命时,乘以修正系数5[11];日本的疲劳破坏标准采用的是AI的破坏标准。

但这2种方法都没有考虑湿度对路面设计的影响,也没有考虑低温断裂问题。

世界上很多国家(如澳大利亚、日本、南非、法国等)的路面设计都有自己的力学-经验法,且大部分的力学-经验法都是以裂缝和永久变形作为设计标准的。

现在AASHTO正在研究制定的采用力学-经验法的新设计指南AASHTO200X将考虑疲劳开裂、永久变形、低温断裂和不平整度4种损坏模型[1,6]。

其中沥青混合料的疲劳方程是在AI 疲劳方程的基础上根据不同开裂方式(自上向下和自下向上开裂)进行修正得到的。

永久变形是分别考虑各结构层永久变形的总和而得到路表面的永久变形(车辙),这将使以后的路面设计更加完善。

2 国内沥青路面设计方法我国沥青路面设计采用的是力学-经验法。

其路面模型借鉴了SHELL的理论设计法[12],把路面作为一种多层弹性体系。

材料特性以弹性模量和泊松比表征,土基回弹模量可根据现场实测法、查表法、室内试验法或换算法求得。

各层材料统一采用圆柱体试件测定抗压回弹模量和劈裂模量。

弯沉指标计算时,沥青混合料用20℃抗压回弹模量;层底弯拉应力计算采用15℃抗拉强度与弯拉回弹模量,也可以采用劈裂强度与抗压回弹模量[13-15]。

交通荷载以双轮组单轴载100kN为标准轴载。

轮胎接地压强0.70MPa,单轮当量圆直径d为21.3 cm,两轮中心距为1.5d。

相关文档
最新文档