基于单片机的自动避障小车设计和实现

合集下载

基于STM32智能小车避障系统的设计

基于STM32智能小车避障系统的设计

基于STM32智能小车避障系统的设计一、本文概述随着科技的进步和智能化的发展,智能小车作为一种集成了机械、电子、计算机等多学科知识的移动机器人,逐渐进入人们的日常生活。

智能小车的应用场景广泛,包括智能家居、自动导航、工业巡检等。

然而,智能小车在复杂多变的环境中自主导航时,如何有效地避开障碍物成为了一个关键问题。

因此,本文旨在设计一种基于STM32微控制器的智能小车避障系统,以提高小车的自主导航能力和安全性。

本文将首先介绍智能小车避障系统的研究背景和意义,阐述避障系统在智能小车中的重要作用。

接着,将详细分析现有的避障技术及其优缺点,为后续的系统设计提供理论基础。

在此基础上,本文将提出一种基于STM32微控制器的避障系统设计方案,包括硬件设计和软件设计两部分。

硬件设计将介绍小车的硬件组成、传感器选择及电路连接等;软件设计则重点阐述避障算法的实现和程序编写。

通过本文的研究,期望能够设计出一套高效、稳定的智能小车避障系统,提高小车的自主导航能力和避障性能,为智能小车在实际应用中的推广提供有力支持。

本文的研究成果也可为相关领域的研究人员提供有价值的参考和借鉴。

二、系统总体设计基于STM32的智能小车避障系统设计的总体目标是构建一个能够自主导航、实时感知环境并有效避障的智能小车。

系统主要由STM32微控制器、超声波距离传感器、电机驱动模块、电源管理模块、无线通信模块以及相应的控制算法构成。

系统的硬件设计以STM32微控制器为核心,通过其强大的处理能力和丰富的外设接口实现对超声波距离传感器的数据采集、电机驱动模块的控制以及无线通信模块的数据传输。

超声波距离传感器用于实时测量小车与前方障碍物的距离,为避障决策提供数据支持。

电机驱动模块则负责根据控制算法的输出控制小车的运动状态,包括前进、后退、左转、右转等。

系统的软件设计主要包括控制算法的设计和编程实现。

控制算法的核心是避障策略,根据超声波距离传感器测得的距离数据,通过算法计算得出小车的运动方向和速度,从而实现避障功能。

基于单片机的智能小车红外避障循迹系统设计与制作

基于单片机的智能小车红外避障循迹系统设计与制作

基于单片机的智能小车红外避障循迹系统设计与制作随着科技的高速发展,人们对生活质量的要求越来越高,无人驾驶汽车已经被广为研发和试用,由此智能小车的快速发展也是在情理之中。

通过对基于单片机的智能小车的硬件及软件设计分析,实现红外避障循迹功能,并给出程序系统框图加以分析,最后通过实践证明这一设计的可行性和可靠性。

标签:AT89S52 单片机;智能小车;系统框图;红外避障;循迹1 系统总体设计2 系统的硬件设计与制作在智能小车红外避障循迹系統的设计上,其硬件设计主要在电机模块和传感器模块等这两个部分的内容。

2.1 硬件的设计硬件的设计主要体现在电机和传感器的选择上,在电机设计上采取360度伺服舵机,可以实现连续的速度与位移控制,且其本身存在分别负责伺服舵机的电源、接地、信号控制的红、黑、白三条输入线,还存在基准电路及比较器。

这一结构可以更好地实现智能小车的控制。

传感器的设计上选择了QTI红外传感器,通过接受不同的反射光强度,实现对不同颜色物体的探测,且探测QTI传感器能够自动输出不同的电平信号,为智能小车避障的实现提供了有力的保障。

2.2 硬件的制作硬件的制作主要介绍电路板的焊制及焊制方法,为智能小车的功能实现提供坚实的基础。

2.2.1 电路板的焊制电路板的焊制优劣直接影响到成果的效果展示,电路板的焊接内容主要是焊接电阻、电容、发光二极管、晶振、三极管、STM32、USB、三端稳压、电机驱动。

2.2.2 元件的焊制方法按照先焊一边再焊另一边的方法,先把焊锡丝放在焊盘的中间,放上电烙铁,焊锡丝融化后立马拿开焊锡丝,再拿开电烙铁,一定要注意焊锡的量不能过多也不能过少,一只手用镊子把贴片元件放平夹着,另一只手用电烙铁把焊盘上的焊锡融化,马上把贴片元件的一端推到焊锡处,再把元件的另一端焊盘焊上少量焊锡,推到元件的一端处。

由于元件种类较多,一般按照元件的大小从小到大的顺序焊接。

焊接完成后就可以进行组装,组装完毕后,组装过程中,要注意电源的正负极,不可接反。

基于STM32的智能循迹避障小车

基于STM32的智能循迹避障小车

基于STM32的智能循迹避障小车智能循迹避障小车是一种基于STM32微控制器的智能车辆,它可以根据预设的路径自动行驶并能够避开障碍物。

这种小车具有很高的自主性和智能性,非常适合用于教学、科研和娱乐等领域。

本文将介绍基于STM32的智能循迹避障小车的设计原理、硬件结构、软件开发以及应用场景。

一、设计原理智能循迹避障小车的设计原理主要包括传感器感知、决策控制和执行动作三个部分。

通过传感器感知车辆周围环境的变化,小车可以及时做出决策并执行相应的动作,从而实现自动行驶和避障功能。

在基于STM32的智能小车中,常用的传感器包括红外避障传感器、光电传感器和编码器等。

红外避障传感器可以检测到障碍物的距离和方向,从而帮助小车避开障碍物。

光电传感器可以用于循迹,帮助小车按照预定的路径行驶。

编码器可以用于测量小车的速度和位置,实现精确的定位和控制。

通过这些传感器的数据采集和处理,小车可以实现智能化的行驶和避障功能。

二、硬件结构基于STM32的智能循迹避障小车的硬件结构包括主控制板、传感器模块、执行器模块和电源模块。

主控制板采用STM32微控制器,负责控制整个车辆的运行和决策。

传感器模块包括红外避障传感器、光电传感器和编码器等,用于感知周围环境的变化。

执行器模块包括电机和舵机,用于控制车辆的速度和方向。

电源模块提供电能,为整个车辆的运行提供动力支持。

三、软件开发基于STM32的智能循迹避障小车的软件开发主要包括嵌入式系统的编程和算法的设计。

嵌入式系统的编程主要使用C语言进行开发,通过STM32的开发环境进行编译和调试。

算法的设计主要包括避障算法和循迹算法。

避障算法通过传感器的数据处理,判断障碍物的位置和距离,并做出相应的避开动作。

循迹算法通过光电传感器的数据处理,使小车能够按照预设的路径行驶。

四、应用场景基于STM32的智能循迹避障小车可以广泛应用于教学、科研和娱乐等领域。

在教学领域,可以用于智能机器人课程的教学实验,帮助学生掌握嵌入式系统的开发和智能控制的原理。

基于单片机的自动避障小车设计

基于单片机的自动避障小车设计

基于单片机的自动避障小车设计一、本文概述随着科技的发展和的日益普及,自动避障小车作为智能机器人的重要应用领域之一,其设计与实现具有重要意义。

本文旨在探讨基于单片机的自动避障小车设计,包括硬件平台的选择、传感器的配置、控制算法的实现以及整体系统的集成。

本文将首先介绍自动避障小车的背景和研究意义,阐述其在实际应用中的价值和潜力。

接着,详细分析单片机的选型依据,以及如何利用单片机实现小车的避障功能。

在此基础上,本文将深入探讨传感器的选取和配置,包括超声波传感器、红外传感器等,以及如何通过传感器获取环境信息,为避障决策提供数据支持。

本文还将介绍控制算法的设计与实现,包括基于模糊控制、神经网络等先进控制算法的应用,以提高小车的避障性能和稳定性。

本文将总结整个设计过程,展示自动避障小车的实物样机,并对其性能进行评估和展望。

通过本文的研究,旨在为读者提供一个全面、深入的自动避障小车设计方案,为推动相关领域的发展提供有益参考。

二、系统总体设计在自动避障小车的设计中,我们采用了单片机作为核心控制器,利用其强大的数据处理能力和灵活的编程特性,实现了小车的自动避障功能。

整个系统由硬件部分和软件部分组成,其中硬件部分包括单片机、电机驱动模块、避障传感器等,软件部分则包括控制算法和程序逻辑。

硬件设计方面,我们选择了具有高性价比的STC89C52RC单片机作为核心控制器,该单片机具有高速、低功耗、大容量等特点,非常适合用于自动避障小车的控制。

电机驱动模块采用了L298N电机驱动芯片,该芯片具有驱动能力强、稳定性好等优点,能够有效地驱动小车的直流电机。

避障传感器则选用了超声波传感器,通过测量超声波发射和接收的时间差,可以计算出小车与障碍物之间的距离,为避障控制提供数据支持。

软件设计方面,我们采用了模块化编程的思想,将整个控制程序划分为多个模块,包括初始化模块、电机控制模块、避障控制模块等。

在初始化模块中,我们对单片机的各个端口进行了初始化设置,包括IO口、定时器、中断等。

基于AT89C52的智能避障小车设计

基于AT89C52的智能避障小车设计

基于AT89C52的智能避障小车设计摘要:智能避障小车是一种基于单片机控制的智能机器人,能够通过传感器感知周围环境,自主避开障碍物并实现自动导航。

本文基于AT89C52单片机,设计了一款简单的智能避障小车,通过详细的硬件设计和软件编程实现了小车的智能避障功能。

实验结果表明,该智能避障小车具有良好的稳定性和灵活性,能够有效地避开障碍物并沿着指定的路线自主行驶。

关键词:AT89C52;智能避障小车;单片机控制;传感器;自动导航二、AT89C52单片机简介AT89C52是一款8位微控制器,由51系列单片机中的一员,采用CMOS工艺制造,具有较高的性能和稳定性。

AT89C52具有4KB的闪存程序存储器、128字节RAM和32个I/O端口,适用于各种嵌入式控制应用。

由于其性能优异且价格低廉,AT89C52在嵌入式系统和智能控制领域得到了广泛应用。

三、智能避障小车硬件设计1. 主控制电路本设计采用AT89C52单片机作为主控制芯片,通过I/O口控制小车的电机驱动和传感器信号的采集。

AT89C52的复位电路、时钟电路和编程电路按照规范连接,保证单片机正常工作。

2. 电机驱动电路小车采用直流电机作为驱动装置,为了实现正转、反转和制动等功能,需要设计一个电机驱动电路。

电机驱动电路采用L298N驱动芯片,能够提供足够的电流和电压给电机,并且通过控制L298N芯片的使能端和控制端,可以实现对电机的控制。

3. 传感器模块为了实现避障功能,小车需要安装多个传感器用于感知周围环境。

本设计采用红外避障传感器模块,能够通过红外线感知前方障碍物的距离,从而实现避障功能。

传感器模块通过模拟信号输出障碍物距离,通过AT89C52的模拟输入端口采集传感器信号。

4. 电源管理电路小车采用锂电池作为电源,并且需要设计一个电源管理电路,用于对电池进行充电和放电管理。

电源管理电路采用锂电池充放电管理芯片,能够对锂电池进行充电保护和放电保护,保证小车电源的安全和稳定。

基于ARM单片机的智能小车循迹避障研究设计共3篇

基于ARM单片机的智能小车循迹避障研究设计共3篇

基于ARM单片机的智能小车循迹避障研究设计共3篇基于ARM单片机的智能小车循迹避障研究设计1一、研究的背景近年来,随着机器人技术的不断发展,人们对智能小车的需求越来越高。

智能小车能够根据周围环境的变化,自动地进行信号处理和运动抉择,实现自主导航、路径规划和避障等功能。

在工业生产、物流配送、智能家居、环保治理等领域,智能小车具有广泛的应用前景。

二、研究的目的本文研究的目的是基于ARM单片机的智能小车循迹避障设计。

通过对小车的硬件组成和软件程序的设计,使小车能够自主进行行车,避免撞车和碰撞,并能够遵循预设的路径进行行驶,完成既定的任务。

三、研究的内容1. 小车的硬件组成小车的硬件组成主要包括以下方面:(1)ARM单片机:ARM单片机是一种高性能、低功耗的微处理器,广泛应用于嵌入式系统领域。

在本设计中,ARM单片机作为控制中心,负责控制小车的各项功能。

(2)直流电机:直流电机是小车的动力来源,通过电路控制,实现小车前进、后退、转弯等各种运动。

(3)红外循迹传感器:红外循迹传感器是小车的“眼睛”,能够检测和识别地面上的黑色和白色,实现循迹运行。

(4)超声波传感器:超声波传感器是小车的避障装置,能够探测小车前方的障碍物,实现自动避障。

(5)LCD液晶屏幕:LCD液晶屏幕是小车的显示器,能够显示小车行驶的速度、距离、角度等信息。

2. 小车的软件程序设计小车的软件程序设计分为两部分:一部分是嵌入式软件设计,另一部分是上位机程序设计。

(1)嵌入式软件程序设计嵌入式软件程序是小车控制程序的核心部分,负责控制小车硬件的各项功能。

具体实现过程如下:① 初始化程序:负责对小车硬件进行初始化和启动,包括IO口配置、计数器设置、定时器设置等。

② 循迹程序:根据红外循迹传感器所检测到的黑白线,判断小车的行驶方向。

如果是白线,则小车继续向前行驶;如果是黑线,则小车需要进行转向。

③ 路径规划程序:根据预设路径,计算小车应该按照什么路线进行行驶。

基于单片机的一种多功能玩具小车的设计与实现

基于单片机的一种多功能玩具小车的设计与实现

随着科技的发展,单片机作为一种常用的微控制器,已经在各个领域得到了广泛应用。

在玩具领域,特别是玩具小车的设计中,单片机的运用也越来越普遍,可以实现各种有趣的功能。

本文将介绍一种基于单片机的多功能玩具小车的设计与实现。

二、设计目标1. 实现无线遥控功能,通过遥控器实现对小车的控制。

2. 设置超声波避障模块,让小车能够自动避开障碍物。

3. 小车可通过蓝牙模块与手机进行连接,实现手机APP控制。

4. 为小车设计多种灯光效果,增添趣味性。

5. 使用音乐模块,使小车产生丰富的声音效果。

三、硬件设计1. 主控芯片选择了常用的Arduino单片机。

2. 驱动模块选用了直流电机驱动模块,实现小车的前进、后退和转向。

3. 采用了超声波传感器模块,用于检测障碍物并实现避障功能。

4. 蓝牙模块选用了蓝牙串口模块,实现与手机的数据传输和控制。

5. 设计了多种灯光效果,包括LED灯和彩色灯带。

6. 音乐模块选用了声音传感器模块,可以发出不同的声音效果。

四、软件设计1. 编写了小车的控制程序,包括前进、后退、左转、右转等基本控制2. 通过编写遥控器程序,实现了对小车的无线遥控功能。

3. 编写了避障算法,使小车能够自动避开障碍物。

4. 开发了手机APP,通过蓝牙模块与小车进行连接和控制。

5. 设计了多种灯光效果的控制程序,可以实现闪烁、变色等效果。

6. 编写了音乐模块的程序,可以根据指令发出不同的声音效果。

五、实现效果1. 小车可以通过遥控器实现前进、后退、左转、右转的基本功能。

2. 超声波传感器可以准确检测到障碍物,并成功避开。

3. 通过手机APP可以实现对小车的遥控和控制各种功能。

4. 多种灯光效果可以有效增加小车的趣味性。

5. 音乐模块发出的声音效果丰富多彩,增加了小车的趣味性。

六、总结与展望本文介绍了一种基于单片机的多功能玩具小车的设计与实现,通过结合硬件设计和软件设计,实现了多种有趣的功能。

未来,可以进一步优化设计,增加更多的传感器模块和功能模块,使小车的功能更加丰富多样。

基于单片机的红外遥控智能小车设计

基于单片机的红外遥控智能小车设计

基于单片机的红外遥控智能小车设计引言:随着科技的不断发展,智能物联网已经走进了我们的生活。

智能小车作为一种智能化的产品,能够实现远程遥控、自动避障等功能,受到了广大消费者的青睐。

本文就基于单片机的红外遥控智能小车设计进行详细介绍。

一、设计目标本设计的目标是通过红外遥控,实现对智能小车的远程控制,小车能够根据收到的指令进行行驶、避障等操作。

二、设计原理1.主控芯片:本设计使用单片机作为主控芯片,常用的单片机有51系列、AVR系列等,可根据实际需求选择合适的芯片型号。

2.红外遥控模块:红外遥控模块是实现红外通信的设备,可以将遥控器发出的红外信号解码成数据,实现遥控操作。

3.电机驱动模块:电机驱动模块可将单片机的PWM信号转化为电机的动力驱动信号,控制小车的行驶方向和速度。

4.超声波传感器:超声波传感器可以感知到小车前方的障碍物距离,根据测得的距离,进行相应的避障操作。

5.电源模块:小车需要使用适当的电源,通常是锂电池或者直流电源供应。

三、系统设计1.硬件设计:(1)搭建小车底盘:根据所选择的底盘,搭建小车结构,并安装好电机驱动模块、电源模块等硬件设备。

(2)连接电路:将红外遥控模块、超声波传感器等硬件设备与主控芯片进行连接,确保每个模块正常工作。

2.软件设计:(1)红外遥控程序设计:通过红外遥控模块接收红外信号,并解码成相应的指令。

根据指令控制电机驱动模块,实现小车的行驶方向和速度控制。

(2)超声波避障程序设计:根据超声波传感器测得的距离,判断是否有障碍物,如果有障碍物就停止或者转向。

四、实验结果和讨论经过实验验证,本设计的红外遥控智能小车能够准确接收红外信号,并根据指令控制小车的行驶方向和速度。

同时,超声波传感器能够及时感知到前方的障碍物,并进行相应的避障操作。

然而,该设计仍然存在一些不足之处,比如超声波传感器的测距范围有限,可能无法感知到较小的障碍物。

此外,红外遥控信号的传输距离也有一定限制,需要保持遥控器与小车之间的距离不过远。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工业应用技术学院本科生毕业设计题目:基于单片机的自动避障小车设计与实现指导教师:职称:讲师学生:周红宇学号:1102120515专业:电气工程及其自动化院(系):机电工程学院答辩日期:年月日2015年月日摘要智能小车是一种能够通过编程手段完成特定任务的小型化机器人,主要是在自动化控制领域,它具有制作成本低,电路结构简单,程序调试方便等优点,具有很强的趣味性。

智能小车深受广大机器人爱好者以及高校学生的喜爱。

该设计利用单片机STC89C52RC作为主控芯片,该芯片是一种高速、低功耗、抗干扰能力强的芯片,其最高时钟工作频率为48MHz,用户应用程序空间为8K。

能够满足程序空间需要。

驱动采用L298N驱动芯片,它是一种双全桥步进电机专用芯片,通过对其输入端的控制可以实现小车的启动、转向、停止等动作。

为节省成本,小车由两个直流减速电机加一个万向轮构成,并采用后轮驱动。

采用了E18-D50NK红外光电开关组成的避障传感器来避障。

由于采用了6节干电池供电使系统的抗干扰性得到加强。

充分利用STC89C52的系统资源,使智能小车完美的实现了障碍物检测、避开障碍物自动巡航等功能。

经实践验收测试,该智能小车的电路结构简单,调试方便,系统反映快速、灵活,设计方案正确、可行,各项指标稳定、可靠。

本文首先介绍了智能车的发展前景,接着介绍了该课题设计构想,各模块电路的选择及其电路工作原理,最后对该课题的设计过程进行了总结与展望,并附带各个模块的电路原理图和本设计实物图及完整的C语言程序。

关键词:智能小车单片机避障红外线AbstractSmart car is a small robot to accomplish specific tasks by programming, mainly in the field of automation control, it has low production cost, simple circuit structure, debugging convenient, has the very strong interest. Smart car robot lovers as well as by the majority of College students.This design uses STC89C52RC micro controller as the main control chip, the chip is a chip of high speed, low power consumption, strong anti-interference ability, and the maximum clock frequency is 48MHz, the user application space for 8K. To meet the needs of the space program. Driven by the L298N drive chip, it is a kind of dual full bridge stepper motor dedicated chip, the input end of the control can realize the car start, stop, turn. In order to save costs, the car by two DC motor and a universal wheel, and the rear wheel drive. The obstacle avoidance sensor E18-D50NK infrared photoelectric switch to obstacle avoidance. Due to the adoption of the 6 battery supplies power to the anti-interference of the system has been strengthened. To make full use of the system resources of STC89C52, the perfect realization of the intelligent vehicle obstacle detection, obstacle avoidance automatic cruise function. Through the practice of acceptance testing, circuit structure of the smart car is simple, convenient debugging, the system to reflect the rapid, flexible, the design scheme is correct and feasible, stable, reliable indicators.This paper first introduces the development prospects of the smart car, and then introduces the design idea, working principle and circuit of each module circuit, the design process of the project are summarized and prospects, with each module circuit diagram and the design of the physical map and the integrity of the C language program.Keywords: Smart Cars Single-chip Obstacle Avoidance Infrared目录1 绪论 (1)1.1 课题研究背景及意义 (1)1.2 国外研究现状 (1)1.3 单片机及直流电机的发展 (1)1.4 课题主要研究容 (4)2 工作原理及总体设计 (5)2.1 工作原理 (5)2.2 总体设计 (6)3 硬件设计 (7)3.1 小车车体设计 (7)3.2 电源模块 (8)3.3 电机驱动模块 (8)3.4 电机模块 (9)3.5 检测模块 (10)3.6 最终方案 (10)4 硬件实现及单元电路设计 (11)4.1 主控制模块 (11)4.2 单片机的复位电路与振荡电路设计 (12)4.3 电源设计 (14)4.4 驱动电路 (15)4.5 E18-D50NK光电开关避障模块 (16)4.6 红外光电开关传感器的安装 (18)4.7 小车车体总体设计 (18)5 软件设计与仿真调试 (19)5.1 主程序流程 (19)5.2 Keil uVision3环境 (21)5.3 单片机程序烧写 (24)5.4 系统的安装与调试 (25)结束语 (26)致 (27)参考文献 (28)附录 (30)附录A 整体电路图 (30)附录B 部分源程序 (31)附录C 小车实物图 (35)1 绪论1.1 课题研究背景及意义随着第一台机器人的诞生,机器人的发展已经涉及到航空、交通、国防等领域。

近年来机器人的智能化水平不断提高,也在改变着人们的生活方式。

人们在不断探讨、认识和改变自然的过程中,制造能代替人力劳动的机器一直是人类的梦想。

智能避障电动小车是一个运用传感器、单片机、电机驱动等来实现环境感和自动行驶为一体的高新技术综合体,它在民用和科学研究等发面已获得了广泛应用。

当前的电动小汽车大部分是直线行驶,也有一部分是在遥控下实现前进、后退、转弯、停车等动作。

但这并不能满足某些特殊场合下的要求。

因此,本文设计了智能避障小车的控制系统。

它的主要功能是探测前方是否有障碍物,如果有障碍物时,经过判断障碍物的位置,实现避障功能。

智能是现代社会的标志性产物,是以后的发展趋势,它可以按照预先设定的模式在特定的环境里运作,无需人为操作,便可以完成预期达到的目的。

此设计主要体现小车的智能避障模式,设计中理论、分析方法及创新都可以为运输机器人、采矿机器人、家用清洁机器人等自动半自动机器人的设计提供一些依据。

同时小车也是玩具的发展方向,为中国玩具市场技术含量的缺乏进行一定的弥补,实现经济增长,形成商业价值。

我国是一个世界大国,在高科技领域也应占据一席之地,汽车的智能化是汽车产业发展的必然趋势,在这种情况下研究智能避障小车具有深远意义。

本智能小车的前景就可用于未来的智能汽车上了,当驾驶员因瞌睡或疏忽时这样的智能汽车的设计就能体现出它的作用。

如果汽车偏离车道或距离障碍物小于安全距离时,汽车就会发出报警,如果驾驶员没有及时作出反应,汽车就会自动减速或停止。

这样的小车同样可以用于月球探测的无人探月车,帮助我们传达月球上的信息,让我们更加的了解月球。

该智能小车是机器人的典型代表。

它有三大部分组成:传感器检测模块、驱动电路和单片机模块。

机器人要实现自动避障功能,还可以发展循迹功能,感知引导物和障碍物。

可以实现小车自动识别路线,选择正确的路线,还可以检测到障碍物自动躲避。

1.2 国外研究现状随着科学技术的不断发展,智能机器人在各方面的应用也越来越广泛。

这是一个蓬勃发展而又有无限前景的技术产业领域,在各方面都有很大的发展空间,它将会向着更高定位精度发展,随着智能机器人技术的进步,机器人将从具有单一的判断功能发展到具有学习功能、创新能力的全智能化机器人。

虽说目前我们对智能机器人的研究尚处于探索阶段,但是我们已经取得了很多不凡成就。

在70年代,斯坦福研究院研制出了名叫Shakey的自主智能机器人。

目的是研究复杂环境下机器人的自主推理、规划和控制能力。

同时,首个步行机器人也研制成功,对此种机器人结构的研究是为了解决机器人在不平整地理状况下的运动问题。

在此基础上,研制成功了多足步行机器人,其中最著名的是General Electric Quadruped的步行机器人。

从80年代开始美国国防高级研究计划局专门立项制订了地面无人作战平台战略计划。

如DARPR的“战略计算机”计划中的自主地面车辆计划。

能源部制订了为期十年的机器人和智能系统计划,以及后来的空间机器人计划。

美国NASA研究的火星探测机器人于1997年登上了火星。

为了在火星上进行距离探测,又开始了新一代样机的研制,命名为Rocky7,并在Lavic湖的岩溶流上和干枯的湖床上进行了成功的实验。

美国的MDARS项目是在著名的保安机器人ROBART的基础上建立的一个多智能机器人平台,后来在指定地点执行巡逻任务。

相关文档
最新文档