红外传感器原理

合集下载

红外线传感器的工作原理

红外线传感器的工作原理

红外线传感器的工作原理红外线传感器是一种能够感知红外线辐射并将其转化成电信号的设备。

它广泛应用于无人机导航、安防系统、人体检测等领域。

本文将介绍红外线传感器的工作原理及其应用。

一、工作原理红外线传感器基于材料的电磁特性,利用红外线辐射与物体之间的相互作用,实现对红外线的探测。

其工作原理主要涉及热辐射、红外敏感材料和电信号转化。

1. 热辐射物体的热辐射是指在一定温度下,物体所发出的能量辐射。

根据斯特藩-玻尔兹曼定律,热辐射功率与物体的温度的四次方成正比。

因此,通过测量红外线接收器接收到的热辐射功率,可以间接测量物体的温度.2. 红外敏感材料红外线传感器的核心部件是红外敏感材料,其具有较高的红外辐射吸收能力。

常见的红外敏感材料有硫化镉、硫化铟等。

这些材料能够将红外辐射吸收后,产生电荷分离,并产生相应的电信号。

3. 电信号转化红外敏感材料吸收红外辐射后,会产生电信号。

这些电信号通过传感器内部的电路进行放大和过滤,然后转化成可以被控制器或处理器读取的电压信号。

控制器或处理器通过读取电压信号的大小,可以判断红外线的强度,从而实现对物体的探测。

二、应用领域1. 无人机导航红外线传感器在无人机导航中起到关键作用。

通过安装红外线传感器,无人机可以准确感知周围的障碍物、地形变化等,并将这些信息传递给控制系统,以实现自主飞行和避障。

2. 安防系统红外线传感器被广泛应用于安防系统中,用于检测人体的活动。

当有人进入安装有红外线传感器的区域时,传感器会感知到人体发出的红外辐射,从而触发报警系统。

这种应用能够在一定程度上提高安防系统的准确性和可靠性。

3. 温度测量红外线传感器还可以用于非接触式温度测量。

由于红外辐射与物体温度相关,所以通过测量红外线辐射能量的大小,可以获得物体的表面温度。

这种测量方式非常适用于高温或无法直接接触的环境,例如火山喷发监测、工业生产等领域。

4. 自动化控制红外线传感器也被广泛应用于自动化控制系统中,例如自动门、自动马桶等。

红外传感器的基本原理

红外传感器的基本原理

红外传感器的基本原理
红外传感器的基本原理:
①红外辐射属于电磁波谱一部分波长范围覆盖0.75至1000微米之间自然界中所有温度高于绝对零度物体都会发出红外线;
②红外传感器设计原理基于对这一不可见光谱段能量检测与转换利用半导体材料光电效应将接收到红外辐射转变为电信号输出;
③典型应用领域包括温度测量非接触式开关气体分析安防监控等领域通过感知环境中红外辐射变化实现自动化智能化控制;
④热释电型红外传感器依靠温度变化产生电动势工作时需保持器件自身温度恒定当外界红外辐射引起局部温升时产生电流;
⑤光电导型器件如硫化铅锑化铟等材料在红外光照射下导电率发生变化由此导致电路中电流或电压波动用于检测辐射强度;
⑥光伏型红外探测器内部形成PN结当入射红外光子能量大于等于禁带宽度时激发电子跃迁产生光生载流子形成短路电流;
⑦热敏电阻热电偶等基于温度敏感元件在受到红外辐射加热后电阻值或热电动势发生变化原理制成适用于低成本场合;
⑧集成电路形式将敏感元件信号处理放大电路集成于一体简化外部连接提高稳定性常见于消费电子产品中;
⑨应用实例中红外测温枪通过接收人体发射红外辐射计算出表面温度无需接触即可快速筛查发热个体适用于公共卫生防疫;
⑩红外遥控器与接收模块组合实现远距离无线控制家电设备利用编码调制技术发送指令序列由接收端解码执行对应操作;
⑪工业生产线上在线检测装置利用红外传感器监测产品表面温度变化判断固化程度调整工艺参数提高产品质量一致性;
⑫安防系统中被动红外探测器安装于门窗等易入侵位置监测是否有移动热源进入设定警戒区触发报警提醒注意安全。

红外传感器原理

红外传感器原理

红外传感器原理
红外传感器是一种能够感知红外光波的设备,其工作原理基于红外辐射的特性。

红外辐射是一种电磁波,其波长介于可见光和微波之间,具有较强的穿透能力。

红外传感器通常由红外发射器和红外接收器两部分组成。

红外发射器通过电流激活光源,产生红外辐射。

这些红外辐射以脉冲的形式发射出去,形成一个红外信号。

红外接收器是红外传感器的核心部分,它能够感知周围环境中的红外辐射。

当有物体靠近红外传感器时,周围环境中的红外辐射会被物体吸收、反射或散射,一部分红外辐射会进入传感器的接收器。

接收器中的红外探测器会感知到入射的红外辐射,并将其转化为电信号。

接收到的电信号会经过放大和处理,最终被转换为可以被微处理器或其他控制电路读取的数字信号。

通过对接收到的红外信号进行分析和处理,我们可以确定周围环境中是否存在物体或人体的存在。

红外传感器的工作原理基于红外辐射的特性,利用红外辐射的特点来实现物体的探测。

由于红外辐射在大部分物体上都存在,并且可以穿透一些表面材料,因此红外传感器具有较广泛的应用领域。

例如,红外传感器常被用于自动门的控制,当有人靠近门时,红外传感器会探测到周围的红外辐射变化,从而触发门的开启或关闭。

另外,红外传感器还常被用于安防领域,用于侦测物体或人体的活动等。

总结来说,红外传感器通过感知周围环境中的红外辐射来实现物体的探测。

其工作原理基于红外辐射的特性,通过发射和接收红外辐射来判断是否存在物体或人体,从而实现相应的控制或侦测功能。

红外线传感器的工作原理

红外线传感器的工作原理

红外线传感器的工作原理红外线传感器是一种常见的电子设备,用于检测和感应周围环境中的红外线信号。

它广泛应用于安防系统、自动化控制、家用电器、机器人等领域。

本文将介绍红外线传感器的工作原理及其应用。

一、红外线传感器的基本原理红外线是一种电磁波,其波长范围大致在0.75至1000微米之间。

红外线传感器利用物体在特定波长范围内的热辐射来感知物体的存在和位置。

一般来说,红外线传感器包括发射器和接收器两部分。

1. 发射器:发射器通常使用红外二极管,以频率为大约38kHz的脉冲信号作为源发射红外线。

红外线发射器将电能转化为红外线能量,并向周围环境发射红外线信号。

2. 接收器:接收器通常使用光电二极管或红外线传感器芯片,用于接收从物体反射回来的红外线信号。

当红外线信号照射到接收器上时,光电二极管或红外线传感器芯片将其转换为电能信号。

二、红外线传感器的工作过程红外线传感器的工作过程可以总结为以下几个步骤:1. 发射红外线信号:红外线传感器中的发射器产生一个特定频率的脉冲信号,将电能转化为红外线信号。

这些红外线信号以一定的范围散射到周围环境中。

2. 接收红外线信号:接收器接收周围环境中反射回来的红外线信号。

当有物体进入传感器的感应范围内时,物体会反射一部分红外线信号,并被接收器接收到。

3. 转换为电信号:接收器中的光电二极管或红外线传感器芯片将接收到的红外线信号转换为相应的电信号。

信号的强度和频率将被转化为电压或频率的变化。

4. 预处理和信号处理:接收到的电信号将进一步进行预处理,如放大、滤波和去噪。

然后,信号经过处理电路进行分析和解码。

5. 结果输出:最终,红外线传感器将根据所接收到的信号进行输出。

根据不同的应用需求,输出信号可以是模拟信号或数字信号。

三、红外线传感器的应用领域红外线传感器凭借其便捷、高效和可靠的特性,在许多领域得到了广泛应用。

1. 安防系统:红外线传感器被广泛应用于安防系统,用于检测人体或其他物体的存在。

红外传感器的原理

红外传感器的原理

红外传感器的原理
一、红外传感器的原理
1、什么是红外传感器
红外传感器是一种利用“热”原理,能够检测周围环境中物体温度和红外能量的传感器。

它能够清楚地探测到温度和红外辐射,通常用于各种机器人和导航系统。

2、红外传感器的工作原理
红外传感器具有良好的灵敏度,能够有效地检测到周围环境中物体的温度和红外辐射。

红外传感器的工作原理是,物体中的温度和红外辐射被探测器感应,然后转换成电信号输出,最终根据电信号的强弱来处理外部环境的信息。

3、红外传感器的特点
红外传感器具有良好的灵敏度,可以探测到物体的温度和红外辐射,并能够精确地检测到小变化的温度。

另外,红外传感器可以用于夜晚的环境检测,因为它可以检测到红外辐射,而不受光强度的影响。

此外,由于红外传感器具有低功耗、精确度高、安装方便等优点,多用于飞行器、机器人、工业自动化系统等的环境检测和导航系统。

4、红外传感器的应用
红外传感器的主要应用领域有:
(1)飞行器环境检测:利用红外传感器能够准确地检测到周围环境的热源,从而控制飞行器的安全性和性能。

(2)机器人环境检测:利用红外传感器能够准确地检测到周围
环境中物体的温度和红外辐射,有效地为机器人的行为提供参考。

(3)导航系统:红外传感器能够检测到红外辐射,多用于夜间的导航系统,以便有效地定位和跟踪。

红外线传感器工作原理

红外线传感器工作原理

红外线传感器工作原理红外线传感器是一种常见的电子元件,广泛应用于安防、智能家居、机器人等领域。

它通过感知和接收红外线辐射来实现物体检测和距离测量。

本文将介绍红外线传感器的工作原理,以及其在实际应用中的作用。

一、红外线的概述红外线是一种电磁辐射,它的波长范围在可见光和微波之间。

与可见光不同,人眼无法直接感知红外线,但它的能量仍然可以被物体吸收和辐射。

红外线具有很强的穿透力,可以在一定范围内穿透透明材料如玻璃和塑料。

二、红外线传感器的组成红外线传感器通常由发射器和接收器两部分组成。

发射器负责发射红外线辐射,而接收器则接收这些辐射并进行信号处理。

1. 发射器红外线传感器的发射器通常由红外发光二极管(IR LED)构成。

当发射器受到电流驱动时,它会发出红外线信号,并将其辐射到周围环境中。

2. 接收器红外线传感器的接收器通常由一种叫做红外光敏二极管(IR photodiode)的元件构成。

接收器对红外线辐射非常敏感,当接收到红外线信号时,会产生电流变化的响应。

这个电流变化可以被放大和处理,以产生与探测目标相关的输出信号。

三、红外线传感器的工作原理红外线传感器利用物体对红外线的吸收和辐射特性来实现目标检测和测量。

接下来将详细介绍红外线传感器的工作原理。

1. 目标检测当发射器发出红外线信号后,这些信号会被周围的物体吸收或反射。

如果有目标物体出现在传感器的感知范围内,该物体会吸收或反射一部分红外线信号,并将其反射回传感器面前的接收器。

2. 信号检测接收器接收到反射回来的红外线信号后,会产生一个电流变化的响应。

这个响应可以通过电路放大,并经过滤波和去噪等处理,以消除干扰。

3. 信号处理经过电路处理后的信号,可以被转换为数字信号或模拟信号,用于接收到的红外线信号的解析和输出。

这样,我们可以获得与目标物体相关的信息,如距离、位置等。

四、红外线传感器的应用红外线传感器由于其灵敏度高、反应速度快、成本低等优点,在多个领域得到广泛应用。

红外传感器的工作原理及应用

红外传感器的工作原理及应用

红外传感器的工作原理及应用红外传感器是一种能够感知红外辐射并转化为电信号的装置。

它主要基于物体发射的红外辐射与其周围环境的红外辐射差异来工作。

红外传感器广泛应用于许多领域,包括安防监控、工业自动化、医疗仪器、家电、热成像等。

红外传感器的工作原理主要由以下几个方面组成:1. 红外发射:红外传感器内部有一个发射二极管,通过施加电压或电流来驱动二极管发射红外光线。

通常使用半导体材料,如氮化镓(GaN)或铟镓砷化物(InGaAs)作为发射材料。

2. 红外接收:红外传感器内部有一个接收二极管,用于接收周围物体发射的红外辐射。

接收二极管通常采用半导体材料,如硅(Si)或锗(Ge),具有高灵敏度和短响应时间。

3. 红外信号处理:传感器接收到红外辐射后,会将其转换为电信号。

这些电信号经过放大、滤波和调节等处理步骤,以更好地适应特定应用需求。

红外传感器广泛应用于各个领域,以下是一些常见的应用:1. 安防监控:红外传感器在安防监控领域中被广泛使用。

它们能够检测到人体的热量和红外辐射,可以在黑暗中进行夜间监控,并在检测到热体时触发警报。

2. 工业自动化:红外传感器在工业自动化中应用较多。

它们可用于检测物体的位置、距离、速度和方向,以实现自动控制和无人操作。

3. 医疗仪器:红外传感器在医疗仪器中用于测量体温、呼吸率和心率等生理参数。

它们以非接触的方式进行测量,减少了对患者的不适和传染风险。

4. 家电:红外传感器广泛应用于家电中,如遥控器、智能家居设备等。

它们能够接收来自遥控器的红外信号,并将其转换为电信号以实现远程控制。

5. 热成像:红外传感器也常用于热成像技术中。

它们能够检测并测量物体表面的红外辐射,以生成温度分布图像,用于检测异常热源、热量损失等。

红外传感器具有许多优点,如高灵敏度、快速响应、无接触测量等。

然而,它们也存在一些限制,如受到环境温度和湿度的影响、易受其他光源干扰等。

因此,在选择和应用红外传感器时,需要仔细考虑具体的应用环境和要求,以确保其正常工作和有效性。

红外传感器工作原理

红外传感器工作原理

红外传感器工作原理
红外传感器是一种能够探测并感知红外辐射的仪器。

它的工作原理基于物体发出、反射或传输红外辐射的特性。

红外传感器内部包含一个红外辐射源和一个红外探测器。

红外辐射源一般采用红外发射二极管,能够发射特定波长范围的红外光。

当红外光照射到目标物体上时,可能有以下三种情况之一:
1. 目标物体吸收红外光:部分或全部的红外光被目标物体吸收,导致目标物体升温。

这个变化可以被红外探测器察觉到。

2. 目标物体反射红外光:部分或全部的红外光被目标物体反射回来,并被红外探测器接收到。

红外探测器会转换这些光信号为电信号。

3. 目标物体透过红外光:部分或全部的红外光能够透过目标物体,直接照射到红外探测器上。

无论是目标物体吸收、反射还是透过红外光,红外探测器都能够感知到信号的变化。

红外探测器一般采用红外光敏元件(如红外光敏电阻、红外光敏二极管等),当红外光照射到红外探测器上时,光敏元件会产生电流或电压信号。

这些电流或电压信号会被传输到一个信号处理器中,通过信号处理器来解读红外探测器感知到的信号。

信号处理器会根据输入信号的强度、变化频率等参数,判断目标物体的存在、距离、
运动方向等信息。

根据信号处理器的输出,我们可以得到关于目标物体的相关数据。

总之,红外传感器通过感知目标物体对红外辐射的吸收、反射或透射,利用红外探测器将红外光信号转化为电信号,然后通过信号处理器解读和分析这些信号,从而实现检测、识别和测量目标物体的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用红外线的物理性质来进行测量的传感器。

红外线又称红外光,它具有反射、折射、散射、干涉、吸收等性质。

任何物质,只要它本身具有一定的温度(高于绝对零度),都能辐射红外线。

红外线传感器测量时不与被测物体直接接触,因而不存在摩擦,并且有灵敏度高,响应快等优点。

红外线传感器包括光学系统、检测元件和转换电路。

光学系统按结构不同可分为透射式和反射式两类。

检测元件按工作原理可分为热敏检测元件和光电检测元件。

热敏元件应用最多的是热敏电阻。

热敏电阻受到红外线辐射时温度升高,电阻发生变化,通过转换电路变成电信号输出。

光电检测元件常用的是光敏元件,通常由硫化铅、硒化铅、砷化铟、砷化锑、碲镉汞三元合金、锗及硅掺杂等材料制成。

红外线传感器常用于无接触温度测量,气体成分分析和无损探伤,在医学、军事、空间技术和环境工程等领域得到广泛应用。

例如采用红外线传感器远距离测量人体表面温度的热像图,可以发现温度异常的部位,及时对疾病进行诊断治疗(见热像仪);利用人造卫星上的红外线传感器对地球云层进行监视,可实现大范围的天气预报;采用红外线传感器可检测飞机上正在运行的发动机的过热情况等。

/view/495838.html人的眼睛能看到的可见光按波长从长到短排列,依次为红、橙、黄、绿、青、蓝、紫。

其中红光的波长范围为0.62~0.76μm;紫光的波长范围为0.38~0.46μm。

比紫光光波长更短的光叫紫外线,比红光波长更长的光叫红外线最广义地来说,传感器是一种能把物理量或化学量转变成便于利用的电信号的器件,红外传感器就是其中的一种。

随着现代科学技术的发展,红外线传感器的应用已经非常广泛,下面结合几个实例,简单介绍一下红外线传感器的应用。

人体热释电红外传感器和应用介绍被动式热释电红外探头的工作原理及特性:一般人体都有恒定的体温,一般在37度,所以会发出特定波长10UM左右的红外线,被动式红外探头就是靠探测人体发射的10UM左右的红外线而进行工作的。

人体发射的10UM左右的红外线通过菲尼尔滤光片增强后聚集到红外感应源上。

红外感应源通常采用热释电元件,这种元件在接收到人体红外辐射温度发生变化时就会失去电荷平衡,向外释放电荷,电后续电路经检验处理后即可产生报警信号。

1)这种探头是以探测人体辐射为目标的。

所以热释电元件对波长为10UM左右的红外辐射必须非常敏感。

2)为了仅仅对人体的红外辐射敏感,在它的辐射照面通常覆盖有特殊的菲尼尔滤光片,使环境的干扰受到明显的控制作用。

3)被动红外探头,其传感器包含两个互相串联或并联的热释电元。

而且制成的两个电极化方向正好相反,环境背景辐射对两个热释元件几乎具有相同的作用,使其产生释电效应相互抵消,于是探测器无信号输出。

4)一旦人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元接收,但是两片热释电元接收到的热量不同,热释电也不同,不能抵消,经信号处理而报警。

5)菲尼尔滤光片根据性能要求不同,具有不同的焦距(感应距离),从而产生不同的监控视场,视场越多,控制越严密。

在电子防盗、人体探测器领域中,被动式热释电红外探测器的应用非常广泛,因其价格低廉、技术性能稳定而受到广大用户和专业人士的欢迎。

红外线遥控鼠标器中的传感器在机械式鼠标器底部有一个露出一部分的塑胶小球,当鼠标器在操作桌面上移动时,小球随之转动,在鼠标器内部装有三个滚轴与小球接触,其中有两个分别是X轴方向和Y轴方向滚轴,用来分别测量X轴方向和Y轴方向的移动量,另一个是空轴,仅起支撑作用。

拖动鼠标器时,由于小球带动三个滚轴转动,X轴方向和Y轴方向滚轴又各带动一个转轴(称为译码轮)转动。

译码轮(见图1)的两侧分别装有红外发光二极管和光敏传感器,组成光电耦合器。

光敏传感器内部沿垂直方向排列有两个光敏晶体管A和B,如图2所示。

由于译码轮有间隙,故当译码轮转动时,红外发光二极管发出的红外线时而照在光敏传感器上,时而被阻断,从而使光敏传感器输出脉冲信号。

光敏晶体管A和B被安放的位置使得其光照和阻断的时间有差异,从而产生的脉冲A和脉冲B有一定的相位差,利用这种方法,就能测出鼠标器的拖动方向照相机中的红外线传感器――夜视功能红外夜视,就是在夜视状态下,数码摄像机会发出人们肉眼看不到的红外光线去照亮被拍摄的物体,关掉红外滤光镜,不再阻挡红外线进入CCD,红外线经物体反射后进入镜头进行成像,这时我们所看到的是由红外线反射所成的影像,而不是可见光反射所成的影像,即此时可拍摄到黑暗环境下肉眼看不到的影像。

索尼数码摄像机首创了红外线夜视摄影功能,能够在全黑环境下进行拍摄,甚至连肉眼也不能分辨清楚的物体,现在也可以清晰地拍摄下来。

这种夜视的特点是可以在完全没有光线的条件下进行拍摄,但由于采用的是红外摄影,无法进行彩色的还原,所以拍摄出来的画面是单色的,影像会变绿。

不久之后,索尼又推出了拥有超级红外线夜视摄功能的数码摄像机,红外线功能的慢速快门为2段选择,超级红外线夜摄功能的慢速快门为自动调节,可以获得更好的影像效果。

举一个大家都见过的例子,在美国空袭伊拉克时,伊拉克首都大部分地区都处于停电状态,这时除了防空曳光弹和导弹爆炸引起的火光以外就只有月光或星光照明了,能见度极差。

我们在电视新闻上看到的从现场传回来的录像片的画面都呈现绿色,说明电视记者在拍摄时使用了红外线夜视仪,导致影像是绿色的,如果不使用红外摄像技术,那么我们从电视画面上将只能听到声音,而看不到任何影响了。

需要注意的:因为红外线夜视摄影仪的前提是数码摄像机能发出人们肉眼看不到的红外光线去照亮被拍摄的物体,所以说它的拍摄距离是有一定限制的,如果摄像机发出的红外线到达不了要拍摄的物体,那么当然就什么也拍不到了 C-211D微型黑白红外线摄像机红外线传感器在工程上的应用―――红外线轴套扫描器 ROTA-SONDE TS 2006 通过光机系统扫描视场,并且无需任何光学调整。

它精确测量线材、棒材等生产线的活套大小,甚至对特殊钢或有色金属以及在水汽、烟雾严重的情况下也能可靠工作。

DELTA 的红外传感器TS2006 可用于活套控制、热带材或热板材的对中控制以及在其它很广的应用中提供位置信息。

ISO9002 红外检测–高灵敏度250 ℃ 或400 ℃ 使用维护简单、方便具有自监测和报警功能 ROTA-SONDE TS 2006 –特点 TS 2006 检测位于其视场范围内的热工件(钢,铜,合金及玻璃等)的位置并输出与工件在视场中的角度位置成正比的信号。

ROTA-SO ROTA-SONDE NDE TS 2006 是扫描方式工作的测量用传感器,它对温度高于250 °C (480 °F) 的热工件的红外辐射敏感。

主要特点:· 高灵敏度:400°C/750°F或250°C / 480 °F · 红外光谱: 1至 3 µm · 由自监测功能实现数字式控制· 无需光学调整· 使用维护方便· 专为钢铁工业恶劣的工作环境设计,光电子电路放置于重型外壳中(IP66) · 设有空气吹扫装置和水冷却系统· 提供连接器和带有不锈钢辫型编织保护层的电缆 ROTA-SONDE TS 2006 –应用典型应用热钢板的对中控制和纠偏控制红外线边缘传感器 FR50 边缘纠偏传感器FR50是以反射原理工作的。

发射机产生一束波长为880nm的平行红外线,这束红外线被对面整齐排列的CCD元件所接收。

一个处理器评估这些信号并发送出估计好的实际位置到CAN 总线。

传感器在+/-10mm的测量范围内以0.02毫米的精确度确定出纸边位置。

光学设备只是接收平行光束从而排除了位置偏差导致的高度起伏。

一个位向控制器监控镜头扫描污渍并反馈适当的污渍信息到控制器。

传感器应用与军事上――军用遥感技术遥感从字面上说就是从远处感觉事物。

严格一点的意义上定义为:远远地去感觉某一定对象的技术。

广义地讲,遥感是不直接接触地收集关于某一定对象的某种或某些特定的信息,从而了解这个对象的性质。

很早以前,人们就希望从空中来观察地球,当时人们使用的是普通的照相机,后来发展成为专门的航空照相机。

航空摄影的技术在世界大战期间获得了长足的发展,基于这种照片的识别技术也得到了提高。

随着飞行器技术的提高,尤其是火箭和卫星的出现,遥感技术获得了一个全新的平台。

现在,遥感技术也日新月异,成为在国民经济建设中不可取少的一种重要技术,尤其在军事方面的应用也很广泛。

遥感中收集到的信息,就是物体发射或者被它反射的电磁波。

这些电磁波包括近紫外、红外线、可见光、微波等。

收集电磁波信息的装置叫做传感器。

装载传感器的地方,称为平台。

遥感就是用装在平台上的传感器来收集(测定)由对象辐射或(和)反射来的电磁波,再通过对这些数据进行分析和处理,获得对象信息的技术。

遥感技术的迅速发展,一个重要的因素是它应用于我们所生活的环境。

人们越来越需要深刻地了解我们的地球,了解它的资源,了解他的变化,以便合理安排生产和生活活动。

遥感主要原理注:传感器装载在平台上遥感中可以使用可见光和近红外区的电磁波进行遥感,这是利用了对象的反射特性,这种方式是航空摄影发展而来的结果,也是最为广泛应用的一种,在月球上观察地球就是这样的。

另外有两类技术也在遥感中大显身手。

其一是使用热红外和热成像技术,主要是利用了物体的辐射特性。

热成像是与远距离测量地球表面特征的温度有关的遥感分支。

它所研究的问题小到可以探测一间屋子的热能量泄漏,大到可以研究地球表面的洋流。

因为温度实质是地球环境中一切物理、化学和生物过程的重要控制因素之一。

因此,温度数据在经营管理地球资源的活动中必然占有极其重要的地位。

其二是利用微波遥感器进行遥感。

微波遥感分为被动式和主动式。

主动式的微波遥感器主要是侧视雷达。

它是在50年代为军事侦察目的而发展的。

它目前的重要应用主要在于快速取得大片有云地区的地面资源情报数据。

被动式微波遥感器感受的是它们视场内的自然可利用的微波能量,其工作方式和热辐射计或热扫描仪非常相似,但是能够接受到的信号也比热红外区微弱得多,同时信号所伴随的噪声也大得多。

因此这种信号的判释问题也要比其他各种遥感器困难得多。

但和侧视雷达一样也有全天候的特性。

依靠选择适合的工作波长,可以用它或者穿透大气,或者观察大气。

通常来说,微波遥感用在大气的各项数据的测量上,在海洋学、油污探测、融雪测定等方面都有应用。

遥感在军事科学上的应用是显然的,因为可以远距离地观察目标,而且可以获得相对宏观的分析数据。

在军事上,遥感的用途大致有:首先是对目标国家和地区的资源状况的监视。

通过有效地监视资源及其变化,可以帮助确定战略的目标。

相关文档
最新文档