初中数学中考题中的科学记数法
初中数学 科学记数法

4.练一练:用科学计数法表示下列各数:
1 000 000
57 000 000
-123 000 000 000
解:1 000 000=106 57 000 000=5.7×107 -123 000 000 000=-1.23×1011
5.已知:下列用科学记数法表示的数, 写出原来的数:
(1)5.1876×103 5187.6
1、用科学记数法表示:
⑴650000= 6.5×105⑵2340000= 2.34×106 ⑶10200= 1.02×104 ⑷32100000= 3.21×107
2、人体中约有2.5×1013个红细胞。这个 数的原数是什么数? 解:25 000 000 000 000个
作业:47页第 4、5题源自课前准备课本 练习本
学习目标
(1)会用科学记数法表示较大的数。 (2)已知用科学记数法表示的数,
写出原来的数。
1.读一读
①太阳的半径约696 000千米 ②光的速度大约是300 000 000米/秒 ③全世界人口数大约是6 100 000 000人
2.计算:102,103,104,105; 解:102 =10×10=100,
(2)1×105
100000
(3)2.02 ×106 2020000
小结
1、本节课你学会了什么知识?
2、科学记数法有什么用途?
3、用科学记数法表示数,你积累 了哪些经验?
6.自我检测
用科学计数法表示下列各数 (1)465000 (2)1200万 (3)1000.001 (4)-789
(5)306 106 (6)0.78051010
7.判断
1、 光的速度300 000 000米/秒用科学记数法表示
初中数学科学计数法试卷.doc

初中数学科学计数法试卷一.选择题(共12小题)1.在“百度”搜索引擎中输入“姚明”,能搜索到与之相关的网页约27000000个,将这个数用科学记数法表示为()A. 2.7×105 B. 2.7×106 C. 2.7×107 D.2.7×1082.餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心,据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为()A.5×109千克B.50×109千克C.5×1010千克D.0.5×1011千克3.地球绕太阳每小时转动经过的路程约为110000米,将110000用科学记数法表示为()A.11×104 B.0.11×107 C.1.1×106 D.1.1×1054.地球的表面积约为510000000km2,将510000000用科学记数法表示为()A.0.51×109 B.5.1×109 C.5.1×108 D.0.51×1075.2015年我国大学生毕业人数将达到7 490 000人,这个数据用科学记数法表示为()A.7.49×107 B.7.49×106 C.74.9×105 D.0.749×1076.月球的半径约为1738000m,1738000这个数用科学记数法可表示为()A.1.738×106 B.1.738×107 C.0.1738×107 D.17.38×1057.移动互联网已经全面进入人们的日常生活.截止2015年3月,全国4G用户总数达到1.62亿,其中1.62亿用科学记数法表示为()A.1.62×104 B.1.62×106 C.1.62×108 D.0.162×1098.用科学记数法表示316000000为()A.3.16×107 B.3.16×108 C.31.6×107 D.31.6×1069.今年5月份在贵阳召开了国际大数据产业博览会,据统计,到5月28日为止,来观展的人数已突破64000人次,64000这个数用科学记数法可表示为6.4×10n,则n的值是()A.3 B.4 C.5 D.610.据报道,2015年全国普通高考报考人数约为9 420 000人,数据9 420 000用科学记数法表示为9.42×10n,则n的值是()A.4 B.5 C.6 D.711.2014年我国的GDP总量为629180亿元,将629180亿用科学记数法表示为()A.6.2918×105元B.6.2918×1014元C.6.2918×1013元D.6.2918×1012元12.下列各数表示正确的是()A.57000000=57×106 B.0.0158(用四舍五入法精确到0.001)=0.015 C.1.804(用四舍五入法精确到十分位)=1.8 D.0.0000257=2.57×10-413.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m,这个数用科学记数法表示正确的是()A.3.4×10-9 B.0.34×10-9 C.3.4×10-10 D.3.4×10-1114.某种细胞的直径是0.000067厘米,将0.000067用科学记数法表示为()A.6.7×10-5 B.6.7×10-6 C.0.67×10-5 D.6.7×10-615.将2.05×10-3用小数表示为()A.0.000205 B.0.0205 C.0.00205 D.-0.0020516.将数字2.03×10-3化为小数是()A.0.203 B.0.0203 C.0.00203 D.0.00020317.我州今年参加中考的学生人数大约为5.08×104人,对于这个用科学记数法表示的近似数,下列说法正确的是()A.精确到百分位,有3个有效数字B.精确到百分位,有5个有效数字C.精确到百位,有3个有效数字D.精确到百位,有5个有效数字18.将260 000用科学记数法表示应为()A.0.2×106 B.26×104 C.2.6×106 D.2.6×10519.地球与月球的距离约为384000千米,这个数据可用科学记数法表示为()A.3.84×104千米B.3.84×105千米C.3.84×106千米D.38.4×104千米20.某种禽流感病毒变异后的直径为0.00000012米,将这个数写成科学记数法是()A.1.2×10-5 B.0.12×10-6 C.1.2×10-7 D.12×10-8二.填空题(共12小题)13.太阳半径大约是696 000千米,用科学记数法表示为_____________米.21.已知地球上海洋面积约为316000000km2,316000000这个数用科学记数法可表示为______________.22.健康成年人心脏全年流过血液总量为2540000000毫升,将2540000000用科学记数法表示应为______.23.2014年我国国内生产总值约为636000亿元,用科学记数法表示生产总值约为______________亿元.24.我国常年参加志愿者服务活动志愿者超过65000000人,把65000000用科学记数法表示为____________.25.将123000000用科学记数法表示为_________________________.26.我市2014年固定资产投资约为220 000 000 000元,将220 000 000 000用科学记数法表示为__________.27.地球半径约为6 400 000m,这个数字用科学记数法表示为_____________________m.28.位于我国东海台湾岛是我国第一大岛,面积约36000平方千米,数36000用科学记数法表示为________.29.日前从省教育厅获悉,为改善农村义务教育办学条件,促进教育公平,去年我省共接收163400名随迁子女就学,将163400用科学记数法表示为________________.30.将太阳半径696000km这个数值用科学记数法表示是__________________km.31.根据最新年度报告,全球互联网用户达到3 200 000 000人,请将3 200 000 000用科学记数法表示_______.32.据有关部分统计,截止到2014年5月1日,重庆市私家小轿车达到563000辆,将563000这个数用科学记数法表示为___________.33.我国“钓鱼岛”周围海域面积约170 000km2,该数用科学记数法可表示为_________34.世界文化遗产长城总长约6700 000m,用科学记数法表示这个数为___________35.2012年末统计,杭州市常住人口是880.2万人,用科学记数法表示为___________人.36.昆明库塘蓄水量为58500万立方米,将58500万立方米用科学记数法表示为_________万立方米.37.据相关报道,我国已完成5.78万个农村教学点的建设任务.5.78万可用科学记数法为_____________ 38.已知地球的表面积约为510000000km2,数510000000用科学记数法可表示为_____________39.小星同学在“百度”搜索引擎中输入“中国梦,我的梦”,搜索到与之相关的结果的条数约为617000000,这个数用科学记数法表示为_______________三.解答题(共3小题)40.据测算,我国每天因土地沙漠化造成的经济损失为1.5亿元,若一年按365天计算,我国一年因土地沙漠化造成的经济损失为多少元(用科学记数法表示,且保留两个有效数字)?41.用科学记数法记出的数,原来各是什么数?4.8×1059.7×106 1.0×107 2.75×10442.一天有8.64×104秒,一年按365天计算,一年有多少秒?(用科学记数法表示)。
2023年辽宁省大连市中考数学真题(解析版)

大连市2023年初中毕业升学考试数学注意事项:1.请在答题卡上作答,在试卷上作答无效.2.本试卷共五大题,26小题,满分150分.考试时间为120分钟.参考公式:抛物线()20y ax bx c a ++≠的顶点为24,24b ac b a a −− .一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有1个选项正确)1. -6的绝对值是( )A. -6B. 6C. - 16D. 16【答案】B【解析】【分析】在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值�【详解】负数的绝对值等于它的相反数,所以-6的绝对值是6�故选:B �2. 如图所示的几何体中,主视图是( )A. B. C. D.【分析】根据主视图是从正面看得到的图形解答即可.【详解】解:从正面看看到的是,故选:B .【点睛】本题考查了三视图的知识,属于简单题,熟知主视图是从物体的正面看得到的视图是解题的关键. 3. 如图,直线,45,20AB CD ABE D ∠=∠=°°∥,则E ∠的度数为( )A. 20°B. 25°C. 30°D. 35°【答案】B【解析】 【分析】先根据平行线的性质可得45ABE BCD ∠∠==°,再根据三角形的外角性质即可得.【详解】解:,45AB CD ABE ∠=° ∥, 45ABE BCD ∴=∠=∠°,20D ∠=° ,25BCD D E ∠−∠==∴∠°,故选:B .【点睛】本题考查了平行线的性质、三角形的外角性质,熟练掌握平行线的性质是解题关键.4. 某种离心机的最大离心力为17000g .数据17000g 用科学计数法表示为( )A. 40.1710×B. 51.710×C. 41.710×D. 31710×【分析】用科学记数法表示较大的数时,一般形式为10n a ×,其中1||10a ≤<,n 为整数.【详解】解:417000 1.710=×.故选:C .【点睛】本题考查了科学记数法,科学记数法的表示形式为10n a ×的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原来的数,变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数,确定a 与n 的值是解题的关键. 5. 下列计算正确的是( )A.0=B. +C. =D.)26−=−【答案】D【解析】【分析】根据零指数幂,二次根式的加法以及二次根式的性质,二次根式的混合运算进行计算即可求解.【详解】解:A. )1=,故该选项不正确,不符合题意;B. +,故该选项不正确,不符合题意;C.=D.)26=−,故该选项正确,符合题意; 故选:D .【点睛】本题考查了零指数幂,二次根式的加法以及二次根式的性质,二次根式的混合运算,熟练掌握二次根式的运算法则是解题的关键.6. 将方程13311x x x+=−−去分母,两边同乘()1x −后式子为( ) A. ()1331x x +=− B. ()1313x x +−=− C. 133x x −+=− D. ()1313x x +−=【答案】B【解析】 【分析】根据解分式方程的去分母的方法即可得. 【详解】解:13311x x x+=−−, 的两边同乘()1x −去分母,得()1313x x +−=−, 故选:B .【点睛】本题考查了解分式方程,熟练掌握去分母的方法是解题关键.7. 已知蓄电池两端电压U 为定值,电流I 与R 成反比例函数关系.当4A I =时,10ΩR =,则当5A I =时,R 的值为( )A. 6ΩB. 8ΩC. 10ΩD. 12Ω 【答案】B【解析】【分析】利用待定系数法求出U 的值,由此即可得. 【详解】解:由题意得:U R I=, �当4A I =时,10ΩR =, 104U ∴=, 解得40U =,40R I∴=, 则当5A I =时,()Ω4085R ==, 故选:B . 【点睛】本题考查了反比例函数,熟练掌握待定系数法是解题关键.8. 圆心角为90°,半径为3的扇形弧长为( )A. 2πB. 3πC. 32πD. 12π 【答案】C【解析】 【分析】根据弧长公式180n r l π=(弧长为l ,圆心角度数为n ,圆的半径为r ),由此计算即可� 【详解】解:该扇形的弧长90331801802n r l πππ×===, 故选:C � 【点睛】本题考查了扇形的弧长计算公式180n r l π=(弧长为l ,圆心角度数为n ,圆的半径为r ),正确记忆弧长公式是解答此题的关键�9. 已知抛物线221y x x =−−,则当03x ≤≤时,函数的最大值为( ) A. 2−B. 1−C. 0D. 2【答案】D【解析】 【分析】把抛物线221y x x =−−化为顶点式,得到对称轴为1x =,当1x =时,函数的最小值为2−,再分别求出0x =和3x =时的函数值,即可得到答案.【详解】解:∵()222112y x x x −−−−,∴对称轴为1x =,当1x =时,函数的最小值为2−,当0x =时,2211y x x =−−=−,当3x =时,232312y −×−,∴当03x ≤≤时,函数的最大值为2,故选:D【点睛】此题考查了二次函数的最值,熟练掌握二次函数的性质是解题的关键.10. 某小学开展课后服务,其中在体育类活动中开设了四种运动项目:乒乓球、排球、篮球、足球.为了解学生最喜欢哪一种运动项目,随机选取100名学生进行问卷调查(每位学生仅选一种),并将调查结果绘制成如下的扇形统计图.下列说法错误的是( )A. 本次调查的样本容量为100B. 最喜欢篮球的人数占被调查人数的30%C. 最喜欢足球的学生为40人D. “排球”对应扇形的圆心角为10°【答案】D【解析】 【分析】A.随机选取100名学生进行问卷调查,数量100就是样本容量,据此解答;B.由扇形统计图中喜欢篮球的占比解答;C.用总人数乘以40%即可解答;D.先用1减去足球、篮球、乒乓球的占比得到排球的占比,再利用360°乘以排球的占比即可解答.【详解】解:A. 随机选取100名学生进行问卷调查,数量100就是样本容量,故A 正确;B.由统计图可知, 最喜欢篮球的人数占被调查人数的30%,故B 正确;C. 最喜欢足球的学生为10040%40×=(人),故C正确;D. “排球”对应扇形的圆心角为360(140%30%20%)36010%36°×−−−=°×=°,故D错误故选:D.【点睛】本题考查扇形统计图及其相关计算、总体、个体、样本容量、样本、用样本估计总体等知识,是基础考点,掌握相关知识是解题关键.二、填空题(本题共6小题,每小题3分,共18分)11. 93x>−的解集为_______________.【答案】3x>−【解析】【分析】根据不等式的性质解不等式即可求解.【详解】解:93x>−,解得:3x>−,故答案为:3x>−.【点睛】本题考查了求不等式的解集,熟练掌握不等式的性质是解题的关键.12. 一个袋子中装有两个标号为“1”“2”的球.从中任意摸出一个球,记下标号后放回并再次摸出一个球,记下标号后放回.则两次标号之和为3的概率为_______________.【答案】1 2【解析】【分析】先画出树状图,从而可得两次摸球的所有等可能的结果,再找出两次标号之和为3的结果,然后利用概率公式求解即可得.【详解】解:由题意,画出树状图如下:由图可知,两次摸球的所有等可能的结果共有4种,其中,两次标号之和为3的结果有2种,则两次标号之和为3概率为2142P==, 故答案为:12. 【点睛】本题考查了利用列举法求概率,熟练掌握列举法解题关键.13. 如图,在菱形ABCD 中,AC BD 、为菱形的对角线,60,10DBC BD °∠==,点F 为BC 中点,则EF 的长为_______________.【答案】5【解析】【分析】根据题意得出BDC 是等边三角形,进而得出10DC BD ==,根据中位线的性质即可求解.【详解】解:∵在菱形ABCD 中,AC BD 、为菱形的对角线,∴AB AD DC BC ===,AC BD ⊥,∵60DBC ∠=°,∴BDC 是等边三角形,∵10BD =,�10DC BD ==,�E 是BD 的中点,点F 为BC 中点, ∴152EF DC ==, 故答案为:5.【点睛】本题考查了菱形的性质,等边三角形的性质与判定,中位线的性质,熟练掌握以上知识是解题的关键.14. 如图,在数轴上,1OB =,过O 作直线l OB ⊥于点O ,在直线l 上截取2OA =,且A 在OC 上方.连接AB ,以点B 为圆心,AB 为半径作弧交直线OB 于点C ,则C 点的横坐标为_______________. 的是【答案】11【解析】【分析】根据勾股定理求得AB ,根据题意可得BC AB ==,进而即可求解. 【详解】解:�l OB ⊥,1OB =,2OA =,在Rt AOB △中,AB ===,∴BC AB ==,∴1OC OB BC =+=,O 为原点,OC 为正方向,则C 点的横坐标为1+;故答案为:1+.【点睛】本题考查了勾股定理与无理数,实数与数轴,熟练掌握勾股定理是解题的关键.15. 我国的《九章算术》中记载道:“今有共买物,人出八,盈三;人出七,不足四.问有几人.”大意是:今有人合伙购物,每人出8元钱,会多3钱;每人出7元钱,又差4钱,问人数有多少.设有x 人,则可列方程为:_______________.【答案】8374x x −+【解析】【分析】设有x 人,每人出8元钱,会多3钱,则物品的钱数为:()83x −元,每人出7元钱,又差4钱,则物品的钱数为:()74+x 元,根据题意列出一元一次方程即可求解.【详解】设有x 人,每人出8元钱,会多3钱,则物品的钱数为:()83x −元,每人出7元钱,又差4钱,则物品的钱数为:()74+x 元,则可列方程为:8374x x −+故答案为:8374x x −+.【点睛】本题考查了一元一次方程的应用,根据题意列出一元一次方程是解题的关键.16. 如图,在正方形ABCD 中,3AB =,延长BC 至E ,使2CE =,连接AE ,CF 平分DCE ∠交AE 于F ,连接DF ,则DF 的长为_______________.【解析】【分析】如图,过F 作FM BE ⊥于M ,FN CD ⊥于N ,由CF 平分DCE ∠,可知45FCM FCN ∠=∠=°,可得四边形CMFN 是正方形,FM AB ∥,设FM CM NF CN a ====,则2ME a =−,证明EFM EAB ∽,则FM ME AB BE =,即2332a a −=+,解得34a =,94DN CD CN =−=,由勾股定理得DF =,计算求解即可.【详解】解:如图,过F 作FM BE ⊥于M ,FN CD ⊥于N ,则四边形CMFN 是矩形,FM AB ∥,∵CF 平分DCE ∠,∴45FCM FCN ∠=∠=°,∴=CM FM ,∴四边形CMFN 是正方形,设FM CM NF CN a ====,则2ME a =−,∵FM AB ∥,∴EFM EAB ∽,∴FM ME AB BE =,即2332a a −=+,解得34a =, ∴94DN CD CN =−=,由勾股定理得DF =,【点睛】本题考查了正方形的判定与性质,勾股定理,相似三角形的判定与性质.解题的关键在于对知识的熟练掌握与灵活运用.三、解答题(本题共4小题,其中17题9分,18、19、20题各10分,共39分)17. 计算:21123926a a a a − +÷+−+ . 【答案】23a − 【解析】【分析】先计算括号内的加法,再计算除法即可. 【详解】解:21123926a a a a − +÷ +−+()()()()()312333323a a a a a a a −−=+÷ +−+−+()()()223323a a a a a −−÷+−+ ()()()232332a a a a a +−⋅+−− 23a =− 【点睛】此题考查了分式的混合运算,熟练掌握分式的运算法则和顺序是解题的关键.18. 某服装店的某件衣服最近销售火爆.现有A B 、两家供应商到服装店推销服装,两家服装价格相同,品质相近.服装店决定通过检查材料的纯度来确定选购哪家的服装.检查人员从两家提供的材料样品中分别随机抽取15块相同的材料,通过特殊操作检验出其纯度(单位:%),并对数据进行整理、描述和分析.部分信息如下:Ⅰ.A供应商供应材料的纯度(单位:%)如下:A72 73 74 75 76 78 79频数 1 1 5 3 3 1 1Ⅱ.B供应商供应材料的纯度(单位:%)如下:72 75 72 75 78 77 73 75 76 77 71 78 79 72 75Ⅲ.A B、两供应商供应材料纯度的平均数、中位数、众数和方差如下:平均数中位数众数方差A75 75 74 3.07B a75 b c根据以上信息,回答下列问题:(1)表格中的=a_______________,b=_______________,c=_______________;(2)你认为服装店应选择哪个供应商供应服装?为什么?【答案】(1)75,75,6(2)服装店应选择A供应商供应服装.理由见解析.【解析】【分析】(1)根据平均数、众数、方差的计算公式分别进行解答即可;(2)根据方差的定义,方差越小数据越稳定即可得出答案.【小问1详解】解:B供应商供应材料纯度的平均数为1(72375478277273767179)75 15××+×+×+×++++=,故75a=,75出现的次数最多,故众数75b=,方差22222222 1[3(7275)4(7575)2(7875)2(7775)(7375)(7675)(7175)(7975)]6 15c=−+−+−+−+−+−+−+−=故答案为:75,75,6【小问2详解】解:服装店应选择A供应商供应服装.理由如下:由于A、B平均值一样,B的方差比A的大,故A更稳定,所以选A供应商供应服装.【点睛】本题考查了方差、平均数、中位数、众数,熟悉相关的统计量的计算公式和意义是解答此题的关键.19. 如图,在ABC 和ADE V 中,延长BC 交DE 于F ,,BC DEAC AE == ,180ACF AED ∠+∠=°.求证:AB AD =.【答案】证明见解析 【解析】【分析】由180ACF AED ∠+∠=°,180ACF ACB ∠+∠=°,可得ACB AED ∠=∠,证明()SAS ABC ADE △≌△,进而结论得证.【详解】证明:∵180ACF AED ∠+∠=°,180ACF ACB ∠+∠=°, ∴ACB AED ∠=∠, ∵BC DE =,ACB AED ∠=∠,AC AE =, ∴()SAS ABC ADE △≌△, ∴AB AD =.【点睛】本题考查了全等三角形的判定与性质.解题的关键在于对知识的熟练掌握与灵活运用. 20. 为了让学生养成热爱图书的习惯,某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元,2022年用于购买图书的费用是7200元,求20202022−年买书资金的平均增长率.【答案】20% 【解析】【分析】设20202022−年买书资金的平均增长率为x ,根据2022年买书资金=2020年买书资金()21x ×+建立方程,解方程即可得.【详解】解:设20202022−年买书资金的平均增长率为x , 由题意得:()2500017200x +=,解得0.220%x ==或 2.20x =−<(不符合题意,舍去),答:20202022−年买书资金的平均增长率为20%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确建立方程是解题关键.四、解答题(本题共3小题,其中21题9分,22、23题各10分,共29分)21. 如图所示是消防员攀爬云梯到小明家的场景.已知,,AE BE BC BE CD BE ⊥⊥∥,10.4m, 1.26m AC BC ==,点A 关于点C 的仰角为70°,则楼AE 的高度为多少m (结果保留整数.参考数据:sin700.94,cos700.34,tan70 2.75°°≈°≈≈)【答案】楼AE 的高度为11m 【解析】【分析】延长CD 交AE 于点F ,依题意可得 1.26m EF BC ==,在Rt ACF ,根据sin AF AC ACF =⋅∠,求得AF ,进而根据AE AF EF =+,即可求解. 【详解】解:如图所示,延长CD 交AE 于点F ,�,,AE BE BC BE CD BE ⊥⊥∥, ∴ 1.26m EF BC ==在Rt ACF 中,70ACF ∠=°,10.4m AC =, �sin AFACF AC∠=,�sin 10.4sin 7010.40.949.776m AF AC ACF =⋅∠=×°≈×= ∴9.776 1.2611m AE AF EF =+=+≈, 答:楼AE 的高度为11m .【点睛】本题考查了解直角三角形的应用,熟练掌握三角函数的定义是解题的关键.22. 为了增强学生身体素质,学校要求男女同学练习跑步.开始时男生跑了50m ,女生跑了80m ,然后男生女生都开始匀速跑步.已知男生的跑步速度为4.5m /s ,当到达终点时男、女均停止跑步,男生从开始匀速跑步到停止跑步共用时120s .已知x 轴表示从开始匀速跑步到停止跑步的时间,y 轴代表跑过的路程,则:(1)男女跑步的总路程为_______________.(2)当男、女相遇时,求此时男、女同学距离终点的距离. 【答案】(1)1000m (2)315m 【解析】【分析】(1)根据男女同学跑步的路程相等,求得男生跑步的路程,乘以2,即可求解(2)根据题意男生从开始匀速跑步到停止跑步的直线解析式为:50 4.5y x =+,求得女生的速度,进而得出解析式为3.580y x =+, 联立求得30s x =,进而即可求解. 【小问1详解】解:∵开始时男生跑了50m ,男生的跑步速度为4.5m /s ,从开始匀速跑步到停止跑步共用时100s . ∴男生跑步的路程为50 4.5100500+×=m , �男女跑步的总路程为50021000m ×=, 故答案为:1000m . 【小问2详解】解:男生从开始匀速跑步到停止跑步的直线解析式为:50 4.5y x =+, 设女生从开始匀速跑步到停止跑步的直线解析式为:80y kx =+, 依题意,女生匀速跑了50080420−=m ,用了120s ,则速度为420120 3.5÷=m/s , �3.580y x =+,联立50 4.53.580y x y x =+=+解得:30x =将30x =代入50 4.5y x =+ 解得:185y =,∴此时男、女同学距离终点的距离为500185315−=m .【点睛】本题考查了一次函数的应用,根据题意求得函数解析式是解题的关键.23. 如图1,在O 中,AB 为O 的直径,点C 为O 上一点,AD 为CAB ∠的平分线交O 于点D ,连接OD 交BC 于点E .(1)求BED ∠的度数;(2)如图2,过点A 作O 的切线交BC 延长线于点F ,过点D 作DGAF 交AB 于点G.若4AD DE =,求DG 的长.【答案】(1)90°;(2). 【解析】【分析】(1)根据圆周角定理证明两直线平行,再利用平行线性质证明角度相等即可; (2)由勾股定理找到边的关系,求出线段长,再利用等面积法求解即可. 【小问1详解】 �AB 是O 的直径, �90ACB ∠=°, �AD 平分CAB ∠,的�12BAD BAC ∠=∠,即2BAC BAD ∠=∠, �OA OD =, �BAD ODA ∠=∠,�2BOD BAD ODA BAD ∠=∠+∠=∠, �BOD BAC ∠=∠, �OD AC ,�90OEB ACB ∠=∠=°, �90BED ∠=°, 【小问2详解】如图,连接BD ,设OA OB OD r ===,则4OE r =−,228AC OE r ==−,2AB r =, �AB 是O 的直径, �90ADB ∠=°,在Rt ADB 中,有勾股定理得:222BD AB AD =−由(1)得:90BED ∠=°, �90BED BEO ∠=∠=°,由勾股定理得:222BE OB OE =−,222BE BD DE =−,�22222222BD AB AD BE DE OB OE DE =−=+=−+,�()(()22222244r r r −=−−+,整理得:22350r r −−=,解得:7r =或5r =−(舍去), �214AB r ==,�BD ===,�AF 是O 的切线, �AF AB ⊥,�DG AF , �DG AB ⊥,�11··22ABDS AD BD AB DG == ,�·AD BD DG AB ==. 【点睛】此题考查了圆周角定理和勾股定理,三角形中位线定理,切线的性质,解一元二次方程,熟练掌握圆周角定理和勾股定理是解题的关键.五、解答题(本题共3小题,其中24、25题各11分,26题12分,共34分)24. 如图1,在平面直角坐标系xOy 中,直线y x =与直线BC 相交于点A ,(),0P t 为线段OB 上一动点(不与点B 重合),过点P 作PD x ⊥轴交直线BC 于点D .OAB 与DPB 的重叠面积为S .S 关于t 的函数图象如图2所示.(1)OB 的长为_______________;OAB 的面积为_______________. (2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围. 【答案】(1)4,83(2)2218402331424443t t S t t t −+≤≤=−+<≤ 【解析】【分析】(1)根据函数图象即可求解. (2)根据(1)的结论,分403t ≤≤,443t <≤,根据OAB 与DPB 的重叠面积为S ,分别求解即可.【小问1详解】解:当0=t 时,P 点与O 重合,此时83ABO SS == ,当4t =时,0S =,即P 点与B 点重合, �4OB =,则()4,0B , 故答案为:4,83. 【小问2详解】�A 在y x =上,则45OAB ∠=°设(),A a a ,∴1184223AOB S OB a a =××=××= ∴43a =,则44,33A 当403t ≤≤时,如图所示,设DP 交OA 于点E , �45OAB ∠=°,DP OB ⊥, 则EP OP t == ∴28132S t =−当443t <≤时,如图所示,�()4,0B ,44,33A 设直线AB 的解析式为y kx b =+, �404433k b k b +=+=解得:212b k = =−,∴直线AB 的解析式为122y x =−+, 当0x =时,2y =,则()0,2C , ∴2OC =,∵21tan 42DP OC CBO PD OB ∠====, ∵4BP t =−,则122DP t =−, ∴12DPBS S DP BP ==× ()()222111144242244t t t t =××−=−=−+, 综上所述:2218402331424443t t S t t t −+≤≤=−+<≤.【点睛】本题考查了正切的定义,动点问题的函数图象,一次函数与坐标轴交点问题,从函数图象获取信息是解题的关键. 25. 综合与实践问题情境:数学活动课上,王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.已知,90ABAC A =∠>°,点E 为AC 上一动点,将ABE 以BE 为对称轴翻折.同学们经过思考后进行如下探究:独立思考:小明:“当点D 落在BC 上时,2EDC ACB ∠=∠.” 小红:“若点E 为AC 中点,给出AC 与DC 的长,就可求出BE 的长.” 实践探究:奋进小组的同学们经过探究后提出问题1,请你回答:问题1:在等腰ABC 中,,90,ABAC A BDE =∠>°△由ABE 翻折得到. (1)如图1,当点D 落在BC 上时,求证:2EDC ACB ∠=∠;(2)如图2,若点E 为AC 中点,43AC CD ==,,求BE 的长. 问题解决:小明经过探究发现:若将问题1中的等腰三角形换成90A ∠<°的等腰三角形,可以将问题进一步拓展.问题2:如图3,在等腰ABC 中,90,4,2A AB AC BD D ABD ∠<===∠=∠°.若1CD =,则求BC 的长.【答案】(1)见解析;(2;问题2:BC = 【解析】【分析】(1)根据等边对等角可得ABC C ∠=∠,根据折叠以及三角形内角和定理,可得BDE A∠=∠1802C =°−∠,根据邻补角互补可得180EDC BDE ∠+∠=°,即可得证; (2)连接AD ,交BE 于点F ,则EF 是ADC △的中位线,勾股定理求得,AF BF ,根据BE BF EF =+即可求解;问题2:连接AD ,过点B 作BM AD ⊥于点M ,过点C 作CG BM ⊥于点G ,根据已知条件可得BM CD ∥,则四边形CGMD 是矩形,勾股定理求得AD ,根据三线合一得出,MD CG ,根据勾股定理求得BC 的长,即可求解.【详解】(1)∵等腰ABC 中,,90,ABAC A BDE =∠>°△由ABE 翻折得到∴ABC C ∠=∠,BDE A ∠=∠1802C =°−∠,∵180EDC BDE ∠+∠=°,∴2EDC ACB ∠=∠;(2)如图所示,连接AD ,交BE 于点F ,�折叠,�EA ED =,AF FD =,122AE AC ==,AD BE ⊥,�E 是AC 的中点,�EA EC =, �1322EF CD ==,在Rt AEF 中,AF在Rt ABF 中,BF ,∴BE BF EF =+=问题2:如图所示,连接AD ,过点B 作BM AD ⊥于点M ,过点C 作CG BM ⊥于点G ,�AB BD =,�AM MD =,12ABM DBM ABD ∠=∠=∠,�2BDC ABD ∠=∠,�BDC DBM ∠=∠,∴BM CD ∥,∴CD AD ⊥,又CG BM ⊥,∴四边形CGMD 是矩形,则CD GM =,在Rt ACD △中,1CD =,4=AD ,AD =,∴AM MD ==,CG MD ==在Rt BDM 中,72BM =, ∴75122BG BM GM BM CD =−=−=−=,在Rt BCG 中,BC【点睛】本题考查了等腰三角形的性质,折叠的性质,勾股定理,矩形的性质与判定,熟练掌握以上知识是解题的关键.26. 如图,在平面直角坐标系中,抛物线21:C y x =上有两点A B 、,其中点A 的横坐标为2−,点B 的横坐标为1,抛物线22:C y x bx c =−++过点A B 、.过A 作AC x ∥轴交抛物线1C 另一点为点C .以12AC AC 、长为边向上构造矩形ACDE .(1)求抛物线2C 的解析式;(2)将矩形ACDE 向左平移m 个单位,向下平移n 个单位得到矩形A C D E ′′′′,点C 的对应点C ′落在抛物线1C 上.①求n 关于m 的函数关系式,并直接写出自变量m 的取值范围;②直线A E ′′交抛物线1C 于点P ,交抛物线2C 于点Q .当点E ′为线段PQ 中点时,求m 的值; ③抛物线2C 与边E D A C ′′′′、分别相交于点M N 、,点M N 、在抛物线2C的对称轴同侧,当MN =时,求点C ′的坐标. 【答案】(1)224y x x =−−+(2)①()2404n m m m =−+<<;②m =5936C ′或5936C ′ 【解析】【分析】(1)根据题意得出点()2,4A −,()1,1B ,待定系数法求解析式即可求解;(2)①根据平移的性质得出()2,4C m n ′−−,根据点C 的对应点C ′落在抛物线1C 上,可得()224m n −=−,进而即可求解;②根据题意得出()()222,442,24,P m m m Q m m m −−++−−−−+,求得中点坐标,根据题意即可求解;�连接MN ,过点N 作NG E D ′′⊥于点G ,勾股定理求得23MG =,设N 点的坐标为()2,24a a a −−+,的则22,263M a a a−−−+ ,将22,263M a a a −−−+代入224y x x =−−+,求得56a =,求得559,636N,进而根据C ′落在抛物线1C 上,将5936y =代入21:C y x =,即可求解. 【小问1详解】解:依题意,点A 的横坐标为2−,点B 的横坐标为1,代入抛物线21:C y x =∴当2x =−时,()224y =−=,则()2,4A −, 当1x =时,1y =,则()1,1B ,将点()2,4A −,()1,1B ,代入抛物线22:C y x bx c =−++, �()222411b c b c −−−+= −++=解得:24b c =− =∴抛物线2C 的解析式为224y x x =−−+;【小问2详解】①解:∵AC x ∥轴交抛物线21:C y x =另一点为点C ,当4y =时,2x =±,∴()2,4C ,∵矩形ACDE 向左平移m 个单位,向下平移n 个单位得到矩形A C D E ′′′′,点C 的对应点C ′落在抛物线1C 上 ∴()2,4C m n ′−−,()224m n −=−整理得24n m m =−+∵0,0m n >>∴04m << ∴()2404n m m m =−+<<; ②如图所示,∵()2,4A −,()2,4C∴4AC =, ∵122AE AC ==∴()2,6E −,由①可得()22,44A m m m ′−−−+,()22,46E m m m ′−−−+∴P ,Q 的横坐标为2m −−,分别代入 21:C y x =,224y x x =−−+∴()()222,442,24,P m m m Q m m m −−++−−−−+, ∴22442442m m m m m ++−−+=+∴PQ 的中点坐标为()2,4m m −−+�点E ′为线段PQ 的中点,∴2464m m m −+=+解得:m =m =(大于4,舍去)③如图所示,连接MN ,过点N 作NG E D ′′⊥于点G ,则2NG =,�MN =∴23MG =,设N 点的坐标为()2,24a a a −−+,则22,263M a a a −−−+ ,将22,263M a a a −−−+ 代入224y x x =−−+,2222242633a a a a −−−×−+=−−+ , 解得:56a =, 当56a =,22555924246636a a −−+=−−×+= �559,636N, 将5936y =代入21:C y x =解得:12x x ==,∴5936C′ 或5936C′.【点睛】本题考查了二次函数综合运用,矩形的性质,平移的性质,熟练掌握二次函数的性质是解题的关键.。
七上数学科学计数法

七上数学科学计数法
摘要:
一、科学计数法的概念
二、科学计数法的表示方法
三、科学计数法的运算规则
四、科学计数法在实际问题中的应用
五、科学计数法与其他计数法的比较
正文:
七上数学科学计数法,是指一种表示非常大或非常小的数的计数方法。
这种方法使用10 的幂来表示数字的值,例如10 的3 次方表示1000,10 的-3 次方表示0.001。
科学计数法的表示方法为a × 10^n,其中1 ≤ |a| < 10,n 为整数。
科学计数法的运算规则主要包括加、减、乘、除四则运算。
在进行运算时,首先要对科学计数法进行正常的四则运算,然后将结果表示为科学计数法。
例如,(2.5 × 10^3) + (3 × 10^2) = 2.8 × 10^3,(4.8 × 10^-2) × (3 × 10^3) = 1.44 × 10^1。
科学计数法在实际问题中的应用非常广泛。
例如,在物理学中,表示电子的电荷量;在化学中,表示原子的半径、电离能等;在地理学中,表示地球的大小、地球与太阳的距离等。
科学计数法使得这些数值的表示更加简洁明了。
科学计数法与其他计数法相比,具有表示范围广、简洁明了等优点。
初中数学——(3)科学计数法

初中数学——(3)科学计数法
一、科学计数法
(一)把一些数表示为 a·10n的形式(1≤|a|≤10,n 为整数)(二)大于1的整数:位数减1,例:168700000表示为 1.687·108(三)小于1的小数:数0个数,例:0.0001687表示为 1.687·10-4二、有效数字
从一个数的左边第一个非0数字起,到末位数字止,所有的数字(包括0,科学计数法不计10的N次方)都是这个数的有效数字。
例 1:0.618 的有效数字有三个,分别是 6,1,8
例 2:5.2*106,只有 5 和 2 是有效数字。
例 3:0.0109,前面两个0不是有效数字,后面109为有效数字例 4:0.0230,前面两个0不是有效数字,后面230为有效数字三、练习题
(一)我国拟设计建造的长江三峡电站,估计总装机容量将达16780000千瓦,用科学记数法表示总装机容量是()
A、1678·104千瓦
B、16.78·106千瓦
C、1.678·107千瓦
D、0.1678·108千瓦。
初中数学知识点题库010科学计数法、近似数与有效数字

1.2010年4月20日晚,“支援青海玉树抗震救灾义演晚会”在莱芜市政府广场成功举行,热心企业和现场观众踊跃捐款31083.58元.将31083.58元保留两位有效数字可记为()A.3.1×106元B.3.11×104元C.3.1×104元D.3.10×105元答案:C解析:先将31083.58用科学记数法表示,再保留两位有效数字取近似值.题干评注:科学计数法问题评注:一个大于10的数可以写成a×10 n的形式,其中1≤a<10,n是正整数。
这种记数法称为科学记数法。
2.据统计,今年我市参加初中毕业学业考试的学生约为38 000人,这个数据用科学记数法表示为人.答案:3.4×104解析:38 000=3.4×104.题干评注:科学计数法问题评注:一个大于10的数可以写成a×10 n的形式,其中1≤a<10,n是正整数。
这种记数法称为科学记数法。
3.山西有着丰富的旅游资源,如五台山、平遥古城、乔家大院等著名景点,吸引了众多的海内外游客,2008年全省旅游总收入739.3亿元,这个数据用科学记数法可表示为元。
答案:7.393×1010解析:739.3亿元=73 930 000 000元=7.393×1010元.题干评注:科学计数法问题评注:一个大于10的数可以写成a×10 n的形式,其中1≤a<10,n是正整数。
这种记数法称为科学记数法。
4.宝岛台湾的面积约为36 000平方公里,用科学记数法表示约为平方公里.答案:3.6×104解析:36 000=3.6×104平方公里.题干评注:科学计数法问题评注:一个大于10的数可以写成a×10 n的形式,其中1≤a<10,n是正整数。
这种记数法称为科学记数法。
5.我国首个火星探测器“萤火一号”已通过研制阶段的考核和验证,并将于今年下半年发射升空,预计历经约10个月,行程约380 000 000公里抵达火星轨道并定位.将380 000 000公里用科学记数法可表示为公里.答案:3.8×108解析:根据题意380 000 000公里=3.8×108公里.题干评注:科学计数法问题评注:一个大于10的数可以写成a×10 n的形式,其中1≤a<10,n是正整数。
中考中科学记数法

中考中的科学记数法科学记数法在日常生活中有着广泛的应用,体现出数学与自然及人类社会的密切联系,是数学的价值体现之一。
新课程标准提出“会用科学记数法表示数”。
正因如此,在每年的中考中都会以科学记数法为考点。
科学记数法一般形式为:a×10n,其中1≤∣a∣<10,n为整数.一般中考中多数以选择题、填空题出现。
重点考查a和n的确定。
对于a,只要注意1≤∣a∣<10即可。
对于n,可以这样确定:(1)当一个数大于10时,n等于这个数的整数位的位数减1。
例如:123.4整数位的位数是3,4是小数位,n=2,所以123.4=1.234×102 。
(2)当一个数小于1时,∣n∣等于从左面数到第一个有效数字之前的0的个数。
如:0.00012 第一个有效数字是1,它的前面共有4个0 ,所以0.00012=1.2×10-4。
掌握了科学记数法的方法,我们就来看看中考中不论什么样的中考题,并没有什么可害怕的。
不信,试试看。
一、以国家大事为背景的题此类考题以当年国家发生的重大事件为背景,在考查学生知识的同时,学生也从这里了解到国事,一举两得。
例1:(济南市2010中考第4题)作为历史上第一个正式提出“低碳世博”理念的世博会,上海世博会从一开始就确定以“低碳、和谐、可持续发展的城市”为主题.如今在世博场馆和周边共运行着一千多辆新能源汽车,为目前世界上规模最大的新能源汽车示范运行,预计将减少温室气体排放约28400吨。
将28400吨用科学记数法表示为()a.0.284×105吨 b.2.84×104吨c.28.4×103吨d.284×102吨分析:a.c.d两项中乘号前的数显然不符合大于1小于10的条件。
又28400的整数位位数为5,故选择b。
例2:(2009宁德市)未来三年,国家将投入8500亿元用于缓解群众“看病难,看病贵”问题.将8500亿元用科学记数法表示为(b)a.0.85×104亿元 b.8.5×103亿元c.8.5×104亿元 d.85×102亿元二、以省市的地方社会生活为背景的题例3:(2009年宁波市)据《宁波市休闲旅游基地和商务会议基地建设五年行动计划》,预计到2012年,宁波市接待游客容量将达到4640万人次。
中考试题专题02科学计数法和估算(原卷版)-微研究之必考概念

学易初中数学微精品团队
够简洁,但用起来并不复杂。
下边举例详细分析一下:
如:2750041075.2⨯=中a =2.75整数部份只有1位是2,因为27500的小数点与2.75的小
数点两数小数点之间有4位,且原数的整数部份不为0,所以n =4。
再如:0.00027541075.2-⨯=中a =2.75整数部份只有1位是2,因为0.000275与2.75两数
小数点之间有4位,且原数的整数部份为0,所以n =4-。
例1:请用科学计数法表示45万。
解:45万=450000,将小数点放在原数左边第一位不是0的数字后得a =4.5。
因为原数的整数部份不为0,450000的小数点与4.5的小数点之间有5位数字,所以n =5
故,45万=5105.4⨯。
例2:请将5.2厘米用科学计数法表示多少千米。
解:5.2厘米=0.000052千米,将小数点放在原数左边第一位不是0的数字后得a =5.2。
因为原数的整数部份为0,0.000052的小数点与5.2的小数点之间有5位数字,所以n =5-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学中考题中的科学记数法
中考数学试题中有关科学记数法的题目,有以下四种题型:
一、直接考查科学记数法
例1 (2006年江苏省南京市)去年南京市接待入境的旅游者约为876000人,这个数可用科学记数法表示为( )
A 、61087.0⨯
B 、51076.8⨯
C 、4106.87⨯
D 、310876⨯
解析:此题考查了科学记数法的定义:n 10a ⨯±(其中10a 1<≤,n 为整数)称为科学记数法。
把数876000的小数点向左移动5位,即得51076.8876000⨯=。
故选B 。
二、计算后的结果考查科学记数法
例2 (2006年新疆)要把质量为1千克的物体送入太空,火箭需要消耗质量为62千克的燃料。
“神舟6号”实验飞船质量达8吨,要把“神舟6号”送入太空,火箭需消耗燃料的质量用科学记数法表示为( )。
A 、610496.0⨯千克
B 、4106.49⨯千克
C 、61096.4⨯千克
D 、51096.4⨯千克 解析:火箭需消耗燃料的质量为51096.449600062)10008(⨯==⨯⨯(千克)。
故选D 。
三、规定有效数字的科学记数法
例3 (2006年陕西省)2005年11月1日0时,全国总人口为130628万人。
60岁及以上的人口占总人口的11.03%,则全国60岁及以上的人口用科学记数法表示(保留3位有效数字)约为( )。
A 、81044.1⨯人
B 、81045.1⨯人
C 、7104.14⨯人
D 、41044.1⨯人
解析:%03.11)10000130628(⨯⨯
810
44082684.1144082684
⨯==
81044.1⨯≈(人)
故选A 。
四、小数转化成科学记数法
例4 (2006年江苏省徐州市)肥皂泡表面厚度大约是0.0007mm ,这个数用科学记数法表示为_________。
解析:此题属于小数的类型,要把它用科学记数法表示出来,小数点的移动按从左向右依次移动即可,41070007.0-⨯=。
[练习]
1. (2006年湖南省岳阳市中考试题)三峡电站是目前世界上最大的电厂,装机总容量为1820万kw ,这个数用科学记数法表示为( )。
A. kw 10182.08⨯
B. kw 1082.17⨯
C. kw 1082.16⨯
D. kw 1018204⨯
2. (2006年江苏省淮安市中考试题)已知某种型号的纸100张厚度约为1cm ,那么这种型号的纸13亿张厚度约为( )。
A 、km 103.17⨯
B 、km 103.13⨯
C 、km 103.12⨯
D 、km 103.1⨯
3. (2006年四川省内江市中考试题)台湾是我国最大的岛屿,总面积为35989.76平方千米。
用科学记数法表示为(保留3个有效数字)( )。
A 、61059.3⨯平方千米
B 、61060.3⨯平方千米
C 、41059.3⨯平方千米
D 、41060.3⨯平方千米
4. 生物学家发现一种病毒的长度约为0.000043mm ,用科学记数法表示0.000043的结果为________。
答案:1. B
2. C
3. D
4. 5103.4-⨯。