DSP芯片的介绍和选型

合集下载

DSP厂商及选型参考(精)

DSP厂商及选型参考(精)

DSP厂商1.德州仪器公司众所周知,美国德州仪器(Texas Instruments,TI)是世界上最知名的DSP芯片生产厂商,其产品应用也最广泛,TI公司生产的丁MS320系列 DSP芯片广泛应用于各个领域。

TI公司在1982年成功推出了其第一代DSP芯片TMS32010,这是DSP 应用历史上的一个里程碑,从此,DSP芯片开始得到真正的广泛应用。

由于TMS320系列DSP芯片具有价格低廉、简单易用功能强大等特点,所以逐渐成为目前最有影响、最为成功的DSP系列处理器。

目前,TI公司在市场上主要有三大系列产品:(1)面向数字控制、运动控制的TMS320C2000系列,主要包括TMS320C24x/F24x、TMS320LC240x/LF240x、TMS320C24xA/LF240xA、TMS320C28xx 等。

(2)面向低功耗、手持设备、无线终端应用的TMS320C5000系列,主要包括TMS320C54x, TMS320C54xx,TMS320C55x等。

(3)面向高性能、多功能、复杂应用领域的TMS320C6000系列,主要包括TMS320C62xx、TMS320C64xx、TMS320C67xx等。

2.美国模拟器件公司ADI公司在DSP芯片市场上也占有一定的份额,相继推出了一系列具有自己特点的DSP芯片,其定点DSP芯片有ADSP2101/2103/2105、ADSP2111/2115、ADSP2126/2162/2164、ADSP2127/2181、ADSP-BF532以及Blackfin系列,浮点DSP 芯片有ADSP21000/21020、ADSP21060/21062,以及虎鲨TS101、TS201S。

Motorola公司Motorola公司推出的DSP芯片比较晚。

1986年该公司推出了定点DSP处理器MC56001;1990年,又推出了与IEEE浮点格式兼容的的浮点DSP芯片MC96002。

TI DSP选型

TI DSP选型

C6000™ 经过功耗优化的 DSP:
C6000™ DSP 平台提供行业最高性能的定点和浮点DSP,其中包括运行速度高达 1.2GHz 的最快定点DSP。

它是高性能音频、视频、影像和宽带基础设施
应用的理想选择。

系列的主要特点是低功耗,所以最适合个人与便携式上网以及无线通信应用,如手机、PDA、GPS等应用。

处理速度在80MIPS-PI并行接口、定时器、DMA 等外设。

值得注意的是C55XX 提供了EMIF 外部存储器扩展接口,可以直接使用SDRAM,而C54XX则,C28x该系芯片具有大量外设资源,如:A/D、定时器、各种串口(同步和异步),WATCHDOG、CAN 总线/PWM 发生器、数字IO C2000 有FLASH,也只有该系列有异步串口可以和PC 的UART 相连。

适合宽带网络和数字影像应用。

32bit,其中:C62XX 和C64X 是定点系列,C67XX是浮点系列。

该系列提供EMIF扩展存储器接同为浮点系列的C3X 中的VC33现在虽非主流产品,但也仍在广泛使用,但其速度较低,最高在150MIPS。

还提供DSP 的低功耗实时信号处理能力,最适合移动上网设备和多媒体家电。

其他系列的DSP 曾经有过风光,但现在都非TI X 的浮点系列:C30,C31,C32 C2X 和C5X 系列:C20,C25,C50每个系列的DSP 都有其主要应用领域。

DSP芯片介绍(精)

DSP芯片介绍(精)

DSP 芯片介绍1 什么是DSP 芯片DSP 芯片,也称数字信号处理器,是一种具有特殊结构的微处理器。

DSP芯片的内部采用程序和数据分开的哈佛结构,具有专门的硬件乘法器,广泛采用流水线操作,提供特殊的DSP 指令,可以用来快速地实现各种数字信号处理算法。

根据数字信号处理的要求,DSP芯片一般具有如下的一些主要特点:(1)在一个指令周期内可完成一次乘法和一次加法。

(2)程序和数据空间分开,可以同时访问指令和数据。

(3)片内具有快速RAM,通常可通过独立的数据总线在两块中同时访问。

(4)具有低开销或无开销循环及跳转的硬件支持。

(5)快速的中断处理和硬件I/O支持。

(6)具有在单周期内操作的多个硬件地址产生器。

(7)可以并行执行多个操作。

(8)支持流水线操作,使取指、译码和执行等操作可以重叠执行。

与通用微处理器相比,DSP芯片的其他通用功能相对较弱些。

2 DSP芯片的发展世界上第一个单片DSP 芯片是1978年AMI 公司宣布的S2811,1979年美国Iintel 公司发布的商用可编程期间2920是DSP 芯片的一个主要里程碑。

这两种芯片内部都没有现代DSP 芯片所必须的单周期芯片。

1980年。

日本NEC 公司推出的μPD7720是第一个具有乘法器的商用DSP 芯片。

第一个采用CMOS 工艺生产浮点DSP 芯片的是日本的Hitachi 公司,它于1982年推出了浮点DSP 芯片。

1983年,日本的Fujitsu 公司推出的MB8764,其指令周期为120ns ,且具有双内部总线,从而处理的吞吐量发生了一个大的飞跃。

而第一个高性能的浮点DSP 芯片应是AT&T公司于1984年推出的DSP32。

在这么多的DSP 芯片种类中,最成功的是美国德克萨斯仪器公司(Texas Instruments,简称TI)的一系列产品。

TI公司灾982年成功推出启迪一代DSP 芯片TMS32010及其系列产品TMS32011、TMS32C10/C14/C15/C16/C17等,之后相继推出了第二代DSP 芯片TMS32020、TMS320C25/C26/C28,第三代DSP 芯片TMS32C30/C31/C32,第四代DSP 芯片TMS32C40/C44,第五代DSP 芯片TMS32C50/C51/C52/C53以及集多个DSP 于一体的高性能DSP 芯片TMS32C80/C82等。

DSP芯片特点及选择(精)

DSP芯片特点及选择(精)

6 ∆∑∏芯片特点及选择∆∑∏(∆ιγιταλ ∑ιγναλ ∏ροχεχχινγ芯片也称为数字信号处理器,它是仿真系统硬件构成的核心器件,它的性能对仿真功能的实现非常重要。

只有选定3∆∑∏芯片,才能设计其外围电路及系统的其它电路。

总的来说,∆∑∏芯片的选择应根据仿真系统的规模,运算速度、存贮容量而定,但一般来说,选择∆∑∏芯片时应考虑到如下因素[2](1)∆∑∏芯片的运算速度。

运算速度是∆∑∏芯片的一个最重要的性能指标,也是选择∆∑∏芯片时所需要考虑的一个主要因素。

∆∑∏芯片的运算速度可以用以下几种性能指标来衡量:a. 指令周期(执行一条指令所需的时间)。

b. MAX时间(一次乘法加上一次加法的时间)。

c. ΦΦT执行时间(运行一个N点ΦΦT程序所需的时间)。

d. MI∏∑(每秒执行百万条指令)。

e. MO∏∑(每秒执行百万次操作)。

f. MΦΛO∏T∑(每秒执行百万次浮点操作)。

g. BO∏∑(每秒执行十亿次操作)。

(2)∆∑∏芯片的价格。

(3)∆∑∏芯片的硬件资源。

(4)∆∑∏芯片的运算精度。

(5)∆∑∏芯片的开发工具。

(6)∆∑∏芯片的功耗。

一般而言,定点∆∑∏芯片的价格较便宜,功耗较低,但运算精度稍低。

而浮点∆∑∏芯片的优点是运称精度高,用X语言编程方便,开发周期短,但价格和功耗相对较高。

6.1 DSP芯片的特点和种类∆∑∏芯片是一种特别适合于进行数字信号处理运算的微处理器,其主要应用是实时快速地实现各种数字信号处理算法,一般具有如下主要特点[2]:(1)在一个指令周期内可完成一次乘法和一次加法;(2)程序和数据空间分开,可以同时访问指令和数据;(3)片内具有快速PAM,通常可通过独立的数据总线在两块中同时访问;(4)具有低开销或无开销循环及跳转的硬件支持;(5)快速的中断处理和硬件I/O支持;(6)具有在单周期内操作的多个硬件地址产生器;(7)可以并行执行多个操作;(8)支持流水线操作,使取指、译码和执行等操作可以重叠执行。

DSP芯片型号,DSP芯片选型

DSP芯片型号,DSP芯片选型

DSP芯片型号,DSP芯片选型现在市面上的DSP产品很多,定点DSP有200多种,浮点DSP有100多种。

主要生产:TI 公司、AD公司、Lucent、Motorola和LSI Logic公司。

主导产品:TI 公司的TMS320C54xx(16bit 定点)、TMS320C55xx(16bit 定点)、TMS320C62xx(32bit 定点)、TMS320C67xx(16bit 浮点)、Motorola公司的DSP68000系列。

我们在DSP选型时需要注意什么?1、DSP芯片概述16bit定点DSP:最早以TMS320C10/C2X为代表,现在以TM320C2XX/C54XX为代表。

32 bit浮点DSP:代表产品ADSP21020、TMS320C3X通用DSP芯片的代表性产品包括TI公司的TMS320系列、AD公司ADSP21xx系列、MOTOROLA公司的DSP56xx系列和DSP96xx系列、AT&T公司的DSP16/16A 和DSP32/32C等单片器件。

TI的三大主力DSP产品系列为C2000系列主要用于数字控制系统;C5000(C54x、C55x)系列主要用于低功耗、便携的无线通信终端产品;C6000系列主要用于高性能复杂的通信系统。

C5000系列中的TMS320C54x系列DSP芯片被广泛应用于通信和个人消费电子领域。

在DSP系统的设计流程中,选择合适的器件非常重要,在确定了系统功能需求之后,通过先期的算法确定及性能模拟,我们要选择性价比最高的器件才能够为下一步开发提供便利。

DSP系统的设计流程图2,DSP芯片的选择方法一般而言,定点DSP芯片的价格较便宜,功耗较低,但运算精度稍低。

而浮点DSP芯片的优点是运算精度高,且C语言编程调试方便,但价格稍贵,功耗也较大。

例如TI 的TMS320C2XX/C54X系列属于定点DSP芯片,低功耗和低成本是其主要的特点。

而TMS320C3X/C4X/C67X属于浮点DSP芯片,运算精度高,用C语言编程方便,开发周期短,但同时其价格和功耗也相对较高。

什么是数字信号处理芯片如何选择合适的数字信号处理芯片

什么是数字信号处理芯片如何选择合适的数字信号处理芯片

什么是数字信号处理芯片如何选择合适的数字信号处理芯片数字信号处理芯片 (Digital Signal Processing Chip,简称DSP芯片)是一种硬件设备,能够对数字信号进行高效的处理与分析。

数字信号处理(Digital Signal Processing,简称DSP)是指对数字信号进行滤波、变换、降噪、编码等一系列算法的处理。

数字信号处理芯片由专门的处理器和相关硬件构成,广泛应用于音频、视频、通信、雷达以及医疗设备等领域。

数字信号处理芯片的选择非常重要,因为不同的芯片具有不同的性能、功耗、价格等方面的特点。

以下是选择合适的数字信号处理芯片时需要考虑的几个因素:1. 性能:性能是选择数字信号处理芯片的关键因素之一。

性能包括芯片的处理速度、噪声性能、精度、频率响应等。

在选择芯片时,需要根据具体的应用需求来确定所需的性能指标。

2. 功耗:功耗也是选择数字信号处理芯片时需要考虑的一个重要因素。

功耗的高低会直接影响设备的运行时间和使用寿命。

通常情况下,功耗越低越好,但需要根据具体的应用场景来平衡性能和功耗之间的关系。

3. 接口:数字信号处理芯片与其他设备之间的通信需要通过接口来实现。

在选择芯片时,需要确保芯片具有与其他设备兼容的接口,如UART、I2C、SPI等。

4. 支持的算法:不同的应用场景需要用到不同的算法。

在选择芯片时,需要确保芯片支持所需的算法,如滤波、变换、编码等。

5. 可编程性:可编程性是指芯片是否具备可以自定义算法的能力。

对于一些特殊需求或者未来可能会有新的算法需求的应用,可编程性是一个重要的考虑因素。

6. 价格:价格是选择数字信号处理芯片时需要考虑的一个重要因素。

不同的芯片价格可能会有较大的差异,需要根据预算来选择合适的芯片。

在选择数字信号处理芯片时,可以参考厂商提供的技术文档和产品手册,了解芯片的性能参数、功能特点等。

同时,还可以查阅相关的评测和用户反馈,获取更多的信息。

综上所述,选择合适的数字信号处理芯片需要综合考虑性能、功耗、接口、算法支持、可编程性以及价格等因素。

第二章典型DSP芯片介绍

第二章典型DSP芯片介绍
❖ 位反序寻址方式:用于快速傅立叶变换(FFT),使输出地 址单元都是相应输入地址单元的位反序,以二进制地址为例: 输入X[1]=0001, 则输出X[1]=1000 输入X[2]=1100, 则输出X[2]=0011 注:通过设置MODE1寄存器的BR0和BR8位(对应DAG1中 的i0和i8),就可以使能位反序寻址模式。
对于定点和小数操作,只有高32位数据有效, 程序设计中标为:
PEx内部的寄存器组:R0-R15; PEy内部的寄存器组:S0-S15; 对于浮点操作,所有的40位数据都有效,程序 设计中标为: PEx内部的寄存器组:F0-F15; PEy内部的寄存器组:SF0-SF15 。
图2.1 ADSP21160内部结构图
M0—M7
M8—M15
B0—B7 L0—L7
B8—B15 L8—L15
地址修改方式的指令操作过程
M + I 只输出地址M +I,I寄存器 值不更新
预修改示例: r1=pm(m1,i5) //有效地址m1+i5 dm(4,i5)=addr_1 //有效地址4+i5
I +M
I 先输出I寄存器 中的地址,后
PM和DM总线与PX寄存器
❖ PX寄存器又称为总线连接器(BUS connect); ❖ PX寄存器为PM数据总线和DM数据总线之间的
数据传输提供通道(扩展哈佛结构)。 ❖ 另外利用PX寄存器,还可以与40位的通用数据
寄存器传递数据; ❖ 对于ADSP21160其PX寄存器长达64位,由PX1
寄存器(低32位)和PX2(高32位)组成。
PEx和PEy-(SIMD)
处理 处理器 DAG 程序4 器 核2 3
利用通用数据寄存器实现高度并行的指令操作
❖ 每个周期能实现多达9次的数据传输 (一句内)例如: F12=F0×F4,F8=F8+F12,F9=F8-F12, F0=DM(I1,M1),F4=PM(I8,M8);

DSP的选型

DSP的选型

1、TI DSP的选型主要考虑处理速度、功耗、程序存储器和数据存储器的容量、片内的资源,如定时器的数量、I/O口数量、中断数量、DMA通道数等。

DSP的主要供应商有TI,ADI,Motorola,Lucent和Zilog等,其中TI占有最大的市场份额。

TI公司现在主推四大系列DSP1)C5000系列(定点、低功耗):C54X,C54XX,C55X 相比其它系列的主要特点是低功耗,所以最适合个人与便携式上网以及无线通信应用,如手机、PDA、GPS等应用。

处理速度在80MIPS--400MIPS之间。

C54XX和C55XX一般只具有McBSP同步串口、HPI并行接口、定时器、DMA等外设。

值得注意的是C55XX提供了EMIF外部存储器扩展接口,可以直接使用SDRAM,而C54XX则不能直接使用。

两个系列的数字IO都只有两条。

2)C2000系列(定点、控制器):C20X,F20X,F24X,F24XX ,C28x该系列芯片具有大量外设资源,如:A/D、定时器、各种串口(同步和异步),WA TCHDOG、CAN总线/PWM 发生器、数字IO脚等。

是针对控制应用最佳化的DSP,在TI所有的DSP中,只有C2000有FLASH,也只有该系列有异步串口可以和PC的UART相连。

3)C6000系列:C62XX,C67XX,C64X 该系列以高性能著称,最适合宽带网络和数字影像应用。

32bit,其中:C62XX和C64X是定点系列,C67XX是浮点系列。

该系列提供EMIF 扩展存储器接口。

该系列只提供BGA封装,只能制作多层PCB。

且功耗较大。

同为浮点系列的C3X中的VC33现在虽非主流产品,但也仍在广泛使用,但其速度较低,最高在150MIPS。

4)OMAP系列:OMAP处理器集成ARM的命令及控制功能,另外还提供DSP的低功耗实时信号处理能力,最适合移动上网设备和多媒体家电。

其他系列的DSP曾经有过风光,但现在都非TI主推产品了,除了C3X系列外,其他基本处于淘汰阶段,如:C3X的浮点系列(C30,C31,C32),C2X和C5X系列(C20,C25,C50),每个系列的DSP都有其主要应用领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

引言DSP芯片也称数字信号处理器,是一种特别适合于进行数字信号处理运算的微处理器具,其主机应用是实时快速地实现各种数字信号处理算法。

根据数字信号处理的要求,DSP芯片一般具有如下主要特点:(1)在一个指令周期可完成一次乘法和一次加法;(2)程序和数据空间分开,可以同时访问指令和数据;(3)片具有快速RAM,通常可通过独立的数据总线在两块中同时访问;(4)具有低开销或无开销循环及跳转的硬件支持;(5)快速的中断处理和硬件I/O支持;(6)具有在单周期操作的多个硬件地址产生器;(7)可以并行执行多个操作;(8)支持流水线操作,使取指、译码和执行等操作可以重叠执行。

在我们设计DSP应用系统时,DSP芯片选型是非常重要的一个环节。

在DSP系统硬件设计中只有选定了DSP芯片,才能进一步设计其外围电路及系统的其他电路。

因此说,DSP芯片的选择应根据应用系统的实际需要而确定,做到既能满足使用要求,又不浪费资源,从而也达到成本最小化的目的。

DSP实时系统设计和开发流程如图1所示。

主要DSP芯片厂商及其产品仪器公司众所周知,美国仪器(Texas Instruments,TI)是世界上最知名的DSP芯片生产厂商,其产品应用也最广泛,TI公司生产的TMS320系列DSP芯片广泛应用于各个领域。

TI公司在1982年成功推出了其第一代DSP芯片TMS32010,这是DSP应用历史上的一个里程碑,从此,DSP芯片开始得到真正的广泛应用。

由于TMS320系列DSP芯片具有价格低廉、简单易用、功能强大等特点,所以逐渐成为目前最有影响、最为成功的DSP系列处理器。

目前,TI公司在市场上主要有三大系列产品:(1)面向数字控制、运动控制的TMS320C2000系列,主要包括TMS320C24x/F24x、TMS320LC240x/LF240x、TMS320C24xA/LF240xA、TMS320C28xx等。

(2)面向低功耗、手持设备、无线终端应用的TMS320C5000系列,主要包括TMS320C54x、TMS320C54xx、TMS320C55x等。

(3)面向高性能、多功能、复杂应用领域的TMS320C6000系列,主要包括TMS320C62xx、TMS320C64xx、TMS320C67xx等。

美国模拟器件公司ADI公司在DSP芯片市场上也占有一定的份额,相继推出了一系列具有自己特点的DSP芯片,其定点DSP芯片有ADSP2101/2103/2105、ADSP2111/2115、ADSP2126/2162/2164、ADSP2127/2181 、ADSP-BF532以及Blackfin系列,浮点DSP芯片有ADSP21000/21020、ADSP21060/21062,以及虎鲨TS101,TS201S。

Motorola公司Motorola 公司推出的DSP芯片比较晚。

1986年该公司推出了定点DSP 处理器MC56001;1990年,又推出了与IEEE浮点格式兼容的的浮点DSP芯片MC96002。

还有DSP53611、16位DSP56800、24位的DSP563XX和MSC8101等产品。

杰尔公司杰尔公司的SC1000和SC2000两大系列的嵌入式DSP核,主要面向电信基础设施、移动通信、多媒体服务器及其它新兴应用。

DSP芯片的选型参数根据应用场合和设计目标的不同,选择DSP芯片的侧重点也各不相同,其主要参数包括以下几个方面:(1)运算速度:首先我们要确定数字信号处理的算法,算法确定以后其运算量和完成时间也就大体确定了,根据运算量及其时间要求就可以估算DSP芯片运算速度的下限。

在选择DSP芯片时,各个芯片运算速度的衡量标准主要有:MIPS(Millions of Instructions Per Second),百万条指令/秒,一般DSP为20~100MIPS,使用超长指令字的TMS320B2XX为2400MIPS。

必须指出的是这是定点DSP芯片运算速度的衡量指标,应注意的是,厂家提供的该指标一般是指峰值指标,因此,系统设计时应留有一定的裕量。

MOPS(Millions of Operations Per Second),每秒执行百万操作。

这个指标的问题是什么是一次操作,通常操作包括CPU操作外,还包括地址计算、DMA访问数据传输、I/O操作等。

一般说MOPS越高意味着乘积-累加和运算速度越快。

MOPS可以对DSP 芯片的性能进行综合描述。

MFLOPS(Million Floating Point Operations Per Second),百万次浮点操作/秒,这是衡量浮点DSP芯片的重要指标。

例如TMS320C31在主频为40MHz时,处理能力为40MFLOPS,TMS320C6701在指令周期为6ns时,单精度运算可达1GFLOPS。

浮点操作包括浮点乘法、加法、减法、存储等操作。

应注意的是,厂家提供的该指标一般是指峰值指标,因此,系统设计时应注意留有一定的裕量。

MBPS(Million Bit Per Second),它是对总线和I/O口数据吞吐率的度量,也就是某个总线或I/O的带宽。

例如对TMS320C6XXX、200MHz时钟、32bit总线时,总线数据吞吐率则为800Mbyte/s或6400MBPS。

ACS(Multiply-Accumulates Per Second),例如TMS320C6XXX乘加速度达300MMACS~600MMACS。

指令周期,即执行一条指令所需的时间,通常以ns(纳秒)为单位,如TMS320LC549-80在主频为80MHz是的指令周期为12.5ns。

MAC时间,执行一次乘法和加法运算所花费的时间:大多数DSP芯片可以在一个指令周期完成一次MAC运算。

FFT/FIR执行时间,运行一个N点FFT或N点FIR程序的运算时间。

由于FFT运算/FIR运算是数字信号处理的一个典型算法,因此,该指标可以作为衡量芯片性能的综合指标。

表1是基于上述某些参数对一些DSP芯片所作的比较。

(2)运算精度:一般情况下,浮点DSP芯片的运算精度要高于定点DSP芯片的运算精度,但是功耗和价格也随之上升。

一般定点DSP芯片的字长为16位、24位或者32位,浮点芯片的字长为32位。

累加器一般都为32位或40位。

定点DSP的特点是主频高、速度快、成本低、功耗小,主要用于计算复杂度不高的控制、通信、语音/图像、消费电子产品等领域。

通常可以用定点器件解决的问题,尽量用定点器件,因为它经济、速度快、成本低,功耗小。

但是在编程时要关注信号的动态围,在代码中增加限制信号动态围的定标运算,虽然我们可以通过改进算法来提高运算精度,但是这样做会相应增加程序的复杂度和运算量。

浮点DSP的速度一般比定点DSP处理速度低,其成本和功耗都比定点DSP高,但是由于其采用了浮点数据格式,因而处理精度,动态围都远高于定点DSP,适合于运算复杂度高,精度要求高的应用场合;即使是一般的应用,在对浮点DSP进行编程时,不必考虑数据溢出和精度不够的问题,因而编程要比定点DSP方便、容易。

因此说,运算精度要一个折衷的问题,需要根据经验等来确定一个最佳的结合点。

(3)字长的选择:一般浮点DSP芯片都用32位的数据字,大多数定点DSP芯片是16位数据字。

而Motorola公司定点芯片用24位数据字,以便在定点和浮点精度之间取得折衷。

字长大小是影响成本的重要因素,它影响芯片的大小、引脚数以及存储器的大小,设计时在满足性能指标的条件下,尽可能选用最小的数据字。

(4)存储器等片硬件资源安排:包括存储器的大小,片存储器的数量,总线寻址空间等。

片存储器的大小决定了芯片运行速度和成本,例如TI公司同一系列的DSP芯片,不同种类芯片存储器的配置等硬件资源各不相同。

通过对算法程序和应用目标的仔细分析可以大体判定对DSP芯片片资源的要求。

几个重要的考虑因素是片RAM和ROM的数量、可否外扩存储器、总线接口/中断/串行口等是否够用、是否具有A/D转换等。

(5)开发调试工具:完善、方便的的开发工具和相关支持软件是开发大型、复杂DSP 系统的必备条件,对缩短产品的开发周期有很重要的作用。

开发工具包括软件和硬件两部分。

软件开发工具主要包括:C编译器、汇编器、器、程序库、软件仿真器等,在确定DSP算法后,编写的程序代码通过软件仿真器进行仿真运行,来确定必要的性能指标。

硬件开发工具包括在线硬件仿真器和系统开发板。

在线硬件仿真器通常是JTAG周边扫描接口板,可以对设计的硬件进行在线调试;在硬件系统完成之前,不同功能的开发板上实时运行设计的DSP软件,可以提高开发效率。

甚至在有的数量小的产品中,直接将开发板当作最终产品。

(6)功耗与电源管理:一般来说个人数字产品、便携设备和户外设备等对功耗有特殊要求,因此这也是一个该考虑的问题。

它通常包括供电电压的选择和电源的管理功能。

供电电压一般取得比较低,实施芯片的低电压供电,通常有3.3V、2.5V,1.8V,0.9V 等,在同样的时钟频率下,它们的功耗将远远低于5V供电电压的芯片。

加强了对电源的管理后,通常用休眠、等待模式等方式节省功率消耗。

例如TI公司提供了详细的、功能随指令类型和处理器配置而改变的应用说明。

(7)价格及厂家的售后服务因素:价格包括DSP芯片的价格和开发工具的价格。

如果采用昂贵的DSP芯片,即使性能再高,其应用围也肯定受到一定的限制。

但低价位的芯片必然是功能较少、片存储器少、性能上差一些的,这就带给编程一定的困难。

因此,要根据实际系统的应用情况,确定一个价格适中的DSP芯片。

还要充分考虑厂家提供的的售后服务等因素,良好的售后技术支持也是开发过程中重要资源。

(8)其他因素:包括DSP芯片的封装形式、环境要求、供货周期、生命周期等。

DSP应用选型举例面向数字控制、运动控制的DSP 系统开发的DSP芯片选型面向数字控制、运动控制主要有磁盘驱动控制、引擎控制、激光打印机控制、喷绘机控制、马达控制、电力系统控制、机器人控制、高精度伺服系统控制、数控机床等。

当然这些主要是针对数字运动控制系统设计的应用,在这些系统的控制中,不仅要求有专门用于数字控制系统的外设电路,而且要求芯片具有数字信号处理器的一般特征。

例如在控制直流无刷电动机的DSP控制系统中,直流无刷电机运行过程要进行两种控制,一种是转速控制,也即控制提供给定子线圈的电流;另一种是换相控制,在转子到达指定位置改变定子导通相,实现定子磁场改变,这种控制实际上实现了物理电刷的机制。

因此这种电机需要有位置反馈机制,比如霍尔元件、光电码盘,或者利用梯形反电动势特点进行反电动势过零检测等。

电机速度控制也是根据位置反馈信号,计算出转子速度,再利用PI或PID等控制方法,实时调整PWM占空比等来实现定子电流调节。

相关文档
最新文档