水泵变频运行的特性曲线

合集下载

水泵变频运行特性曲线

水泵变频运行特性曲线

水泵变频运行特性曲线 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】一、引言水泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。

但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。

二、水泵变频运行分析的误区1.有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律流量比例定律 Q1/Q2=n1/n2扬程比例定律 H1/H2=(n1/n2)2轴功率比例定律 P1/P2=(n1/n2)3并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。

以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题:1)为什么水泵变频运行时频率在30~35Hz以上时才出水2)为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个突跳,后才随着转速的升高而升高2.绘制水泵的性能特性曲线和管道阻力曲线很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示。

图1 水泵的特性曲线图1中,水泵在工频运行的特性曲线为F1,额定工作点为A,额定流量QA,额定扬程HA ,管网理想阻力曲线R1=KQ与流量Q成正比。

采用节流调节时的实际管网阻力曲线R2,工作点为B,流量QB,扬程HB。

采用变频调速且没有节流的特性曲线F2,理想工作点为C,流量QC,扬程HC;这里QB=QC。

按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。

实际水泵变频调速时,频率降到30~35Hz以下时就不出水了,流量已经降到零。

3.变频泵与工频泵并联变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水是否工频泵的水会向变频泵倒灌4.以上分析的误区1)相似定律确实是风机水泵在理论分析当中的一条很重要的定律,它表明相似泵(或风机)在相似工况下运行时,对应各参数之相互关系的计算公式。

实验2 离心泵性能特性曲线测定实验

实验2 离心泵性能特性曲线测定实验

1.2离心泵性能特性曲线测定实验 1.2.1实验目的1).了解离心泵结构与特性,学会离心泵的操作。

2).测定恒定转速条件下离心泵的有效扬程(H)、轴功率(N)、以及总效率(η)与有效流量(V)之间的曲线关系。

3).测定改变转速条件下离心泵的有效扬程(H)、轴功率(N)、以及总效率(η)与有效流量(V)之间的曲线关系。

4).测定串联、并联条件下离心泵的有效扬程(H)、轴功率(N)、以及总效率(η)与有效流量(V)之间的曲线关系。

5).掌握离心泵流量调节的方法(阀门、转速和泵组合方式)和涡轮流量传感器及智能流量积算仪的工作原理和使用方法。

6).学会轴功率的两种测量方法:马达天平法和扭矩法。

7).了解电动调节阀、压力传感器和变频器的工作原理和使用方法。

8).学会化工原理实验软件库(组态软件MCGS 和VB 实验数据处理软件系统)的使用。

1.2.2基本原理离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下扬程H 、轴功率N 及效率η与流量V 之间的关系曲线,它是流体在泵内流动规律的外部表现形式。

由于泵内部流动情况复杂,不能用数学方法计算这一特性曲线,只能依靠实验测定。

1 ) 流量V 的测定与计算采用涡轮流量计测量流量,智能流量积算仪显示流量值V m 3/h 。

2) 扬程H 的测定与计算在泵进、出口取截面列柏努利方程:gu u Z Z g p p H 221221212-+-+-=ρ (1—9) p 1,p 2:分别为泵进、出口的压强 N/m 2 ρ:液体密度 kg/m 3u 1,u 2:分别为泵进、出口的流量m/s g :重力加速度 m/s 2 当泵进、出口管径一样,且压力表和真空表安装在同一高度,上式简化为: gp p H ρ12-=(1—10)由式(1-10)可知:只要直接读出真空表和压力表上的数值,就可以计算出泵的扬程。

本实验中,还采用压力传感器来测量泵进口、出口的真空度和压力,由16路巡检仪显示真空度和压力值。

水泵变频运行分析报告

水泵变频运行分析报告

水泵变频运行的图解分析方法作者:变频器世界1 引言水泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。

但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。

2 水泵变频运行分析的误区2.1 有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律流量比例定律 Q1/Q2=n1/n2扬程比例定律 H1/H2=(n1/n2)2轴功率比例定律 P1/P2=(n1/n2)3并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。

以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题:(1) 为什么水泵变频运行时频率在30~35Hz以上时才出水?(2) 为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个突跳,然后才随着转速的升高而升高?2.2 绘制水泵的性能特性曲线和管道阻力曲线很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示。

图1 水泵的特性曲线图1中,水泵在工频运行的特性曲线为F1,额定工作点为A,额定流量QA,额定扬程HA,管网理想阻力曲线R1=KQ与流量Q成正比。

采用节流调节时的实际管网阻力曲线R2,工作点为B,流量QB,扬程HB。

采用变频调速且没有节流的特性曲线F2,理想工作点为C,流量QC,扬程HC;这里QB=QC。

按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。

实际水泵变频调速时,频率降到30~35Hz以下时就不出水了,流量已经降到零。

2.3 变频泵与工频泵并联变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水?是否工频泵的水会向变频泵倒灌?3 以上分析的误区(1) 相似定律确实是风机水泵在理论分析当中的一条很重要的定律,它表明相似泵(或风机)在相似工况下运行时,对应各参数之相互关系的计算公式。

离心泵特性曲线

离心泵特性曲线

离心泵特性曲线首先离心泵的特性曲线图如下接下来是对于这个图的一些解读:离心泵的性能曲线包括流量-扬程(Q-H)曲线、流量-功率曲线(Q-N)、流量-效率曲线(Q-ŋ)以及流量-汽蚀余量(Q-NPSHr)曲线。

水泵的性能参数之间的相互变化关系及相互制约性:首先以该水泵的额顶转速为先决条件的。

水泵性能曲线主要有三条曲线:流量—扬程曲线,流量—功率曲线,流量—效率曲线。

它是离心泵的基本的性能曲线。

比转速小于80的离心泵具有上升和下降的特点称驼峰性能曲线。

比转速在80~150之间的离心泵具有平坦的性能曲线。

比转数在150以上的离心泵具有陡降性能曲线。

一般的说,当流量小时,扬程就高,随着流量的增加扬程就逐渐下降。

上述曲线都是在一定的转速下,以试验的方法求得的。

不同的转速,可以通过公式进行换算。

在性能曲线上,对于一个任意的流量点,都可以找出一组与其相对应的扬程、功率、效率以及汽蚀余量值。

通常,把这一组相对应的参数称为工作状况,简称工况或工况点。

对于离心泵最高效率点的工况称为最佳工况点。

泵在最高效率点工况下运行是最理想的。

但是用户要求的性能千差万别,不一定和最高效率点下的性能相一致。

要想使每一个用户要求的泵都在泵最高效率点下运行,那样做需要的泵规格就太多了。

为此,规定一个范围(通常以效率下降5%~8%为界),称为泵的工作范围。

我们利用叶轮的切割或者变频技术可以扩大泵的工作范围。

我们把同一类型的水泵,将它的各种不同比转数以及相同比转数不同口径的泵的工作区域集中画在同一个Q-H坐标平面上。

为了使图面上大泵的方块不致太大,坐标可以采用对数坐标,于是就得到了该类型泵的系列型谱。

各类型的泵均有各自的型谱,使用户选用水泵十分方便。

每种系列用几种比转数的水力模型,泵的口径按一定的流量间隔比变化。

同一口径的泵扬程也按一定的间隔变化。

ISO 2858规定了标准的型谱。

水泵变频运行的特性曲线

水泵变频运行的特性曲线

水泵变频运行的特性曲线(一)1 引言水泵冷油泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。

但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。

2 水泵罗茨真空泵变频运行分析的误区2.1 有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律流量比例定律Q1/Q2=n1/n2扬程比例定律H1/H2=(n1/n2)2轴功率比例定律P1/P2=(n1/n2)3并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。

以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题:(1) 为什么水泵变频运行时频率在30~35Hz以上时才出水?(2) 为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个突跳,然后才随着转速的升高而升高?2.2 绘制水泵的性能特性曲线和管道阻力曲线很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示。

图1 水泵的特性曲线图1中,水泵液下排污泵在工频运行的特性曲线为F1,额定工作点为A,额定流量Q A,额定扬程H A,管网理想阻力曲线R1=K1Q与流量Q成正比。

采用节流调节时的实际管网阻力曲线R2,工作点为B,流量Q B,扬程H B。

采用变频调速且没有节流的特性曲线F2,理想工作点为C,流量Q C,扬程H C;这里Q B=Q C。

按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。

实际水泵变频调速时,频率降到30~35H z以下时就不出水了,流量已经降到零。

2.3 变频泵与工频泵并联变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水?是否工频泵的水会向变频泵倒灌?3 以上分析的误区(1) 相似定律确实是风机水泵在理论分析当中的一条很重要的定律,它表明相似泵(或风机)在相似工况下运行时,对应各参数之相互关系的计算公式。

水泵变频运行特性曲线精编

水泵变频运行特性曲线精编

水泵变频运行特性曲线精编Document number:WTT-LKK-GBB-08921-EIGG-229861 引言水泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。

但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。

2 水泵变频运行分析的误区有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律流量比例定律 Q1/Q2=n1/n2扬程比例定律 H1/H2=(n1/n2)2轴功率比例定律 P1/P2=(n1/n2)3并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。

以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题:(1) 为什么水泵变频运行时频率在30~35Hz以上时才出水(2) 为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个突跳,然后才随着转速的升高而升高绘制水泵的性能特性曲线和管道阻力曲线很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示。

图1 水泵的特性曲线图1中,水泵在工频运行的特性曲线为F1,额定工作点为A,额定流量QA,额定扬程HA,管网理想阻力曲线R1=KQ 与流量Q成正比。

采用节流调节时的实际管网阻力曲线R2,工作点为B,流量QB,扬程HB。

采用变频调速且没有节流的特性曲线F2,理想工作点为C,流量QC,扬程HC;这里QB=QC。

按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。

实际水泵变频调速时,频率降到30~35Hz以下时就不出水了,流量已经降到零。

变频泵与工频泵并联变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水是否工频泵的水会向变频泵倒灌3 以上分析的误区(1) 相似定律确实是风机水泵在理论分析当中的一条很重要的定律,它表明相似泵(或风机)在相似工况下运行时,对应各参数之相互关系的计算公式。

泵性能曲线

泵性能曲线

a 性能曲线的形成b 性能曲线的测试实际上,由于流动损失数据不足,故离心压缩机的性能曲线基本还是依靠机器实测而得(有的用相似换算得到)。

测试装置如图所示,该装置所示调节阀和流量计均安在排气管路上,同样也可以安在进气管路上。

试验时,先稳定在某一转速下运行,用调节阀调节流量。

开始时阀门全开,这时的流量即为压缩机的最大流量,记下各测点的数据,然后把阀门稍微关小,再记各数据。

依次减小流量,直到压缩机出现不正常工作情况,即所谓的喘振工况时试验到此停止,此时的流量即为压缩机的最小流量。

c 性能曲线的特点随着流量的减小,压缩机能提供的压力比将增大。

在最小流量时,压力比达到最大。

离心压缩机有最大流量和最小流量两种极限流量;排除压力也有最大值和最小值。

效率曲线有最高效率点,离开该点的工况效率下降的较快。

功率N与Gh th大致成正比,所以功率曲线一般随Q j增加而向上倾斜,但当ε-Q j曲线向下倾斜很快时,功率曲线也可能先向上倾斜而后逐渐向下倾斜。

d 最佳工况点工况的定义:性能曲线上的某一点即为压缩机的某一运行工作状态(简称工况)。

最佳工况点:通常将曲线上效率最高点称为最佳工况点,一般应是该机器设计计算的工况点。

如图所示,在最佳工况点左右两边的各工况点,其效率均有所降低。

e 稳定工作范围压缩机性能曲线的左边受到喘振工况的限制,右边受到堵塞工况限制,在这两个工况之间的区域称为压缩机的稳定工作范围。

压缩机变工况的稳定工作范围越宽越好。

改变泵性能曲线的方法有哪几种?如何改变?改变泵性能曲线的方法有变速调节、切割叶轮外圆等。

1、变速调节:是在管路特性曲线不变时,用变转速来改变泵的性能曲线,从而改变它们的工作点。

当转速改变后,扬程和流量都会改变,而且随着转速的提高,qv与H都将增大,,用此法来调节流量和扬程,不会产生附加的能量损失,所以这种方法是最经济的。

但对原动机提出了新的要求,即原动机应是可调转速的,如蒸汽机、内燃机等,或增设变速装置,因变速装置投资较大,一般中小型泵很少采用。

水泵选型及其管道选择相关计算

水泵选型及其管道选择相关计算

• 二、管道循环泵的选型 • 定时循环就是每天在供应热水之前,将管网中已经变冷了的
存水抽回并补充以热水的循环方式。
• Qb≥(2~4)V • Hb≥hp+hx+hj • Qb——循环水泵流量(L/h) • V———循环管网的水容积(L) • Hb——循环水泵扬程(mmH2O) • hp——循环流量通过配水管路的水头损失(mmH2O) • hx——循环流量通过回水管路的水头损失(mmH2O) • hj——加热设备的水头损失 • 循环泵安装在供水管道的旁通上,扬程取供回水管道的沿程
或等于1.5X泵的重量 – 不同功率的泵的安装
THE END
谢谢
• 气压给水设备的水泵,应设自动开关装置。 • 二、气压给水设备的布置要求
• 气压给水设备的罐顶至建筑结构最低点的距离 不得小于1.0m;
• 罐与罐之间及罐壁与墙面的净距不宜小于0.7m。
• 变频供水泵
• 变频供水泵选型注意问题:
• (1)在满足流量的情况下尽量选择两个或 多个水泵,做到一工一变;
• nmax————水泵一小时内最多启动次数,宜采 用6~8次;
• C————安全系数,宜采用1.0~1.5。 • 压力罐的容积一般可为小时供水量的10%~5%,
即若小时供水量10吨,压力罐的容积应为500~ 1000升。
– 气压给水设备,应装设安全阀、压力表、泄水管和 密闭人孔或手孔。
• 气压水罐的工作台数宜选用2~4台并联运行, 使其中一部分水泵连续运行,只有一台水泵经 常启闭。这样可以减少调节水容积。但水泵过 多会增加机电设备费用和泵房面积,因此应通 过技术经济比较确定。
总损失。
• 三、水箱间循环泵选型 • 扬程:两水箱进出口静高差+管道水头损
失 • 循环流量:考虑水箱间循环回水管道的流
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水泵变频运行的特性曲线(一)1 引言水泵冷油泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。

但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。

2 水泵罗茨真空泵变频运行分析的误区2。

1 有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律流量比例定律Q1/Q2=n1/n2扬程比例定律 H1/H2=(n1/n2)2轴功率比例定律P1/P2=(n1/n2)3并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。

以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题:(1) 为什么水泵变频运行时频率在30~35Hz以上时才出水?(2) 为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个突跳,然后才随着转速的升高而升高?2。

2 绘制水泵的性能特性曲线和管道阻力曲线很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示.图1水泵的特性曲线图1中,水泵液下排污泵在工频运行的特性曲线为F1,额定工作点为A,额定流量QA,额定扬程HA,管网理想阻力曲线R1=K1Q与流量Q成正比.采用节流调节时的实际管网阻力曲线R2,工作点为B,流量Q B,扬程HB。

采用变频调速且没有节流的特性曲线F2,理想工作点为C,流量Q C,扬程H C;这里QB=Q C。

按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。

实际水泵变频调速时,频率降到30~35Hz 以下时就不出水了,流量已经降到零。

2.3 变频泵与工频泵并联变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水?是否工频泵的水会向变频泵倒灌?3 以上分析的误区(1)相似定律确实是风机水泵在理论分析当中的一条很重要的定律,它表明相似泵(或风机)在相似工况下运行时,对应各参数之相互关系的计算公式。

而比例定律是相似定律作为特例演变而来的.即两台完全相同的泵在相同的工况条件下,输送相同的流体,且泵的直径和输送流体的密度不变,仅仅转速不同时,水泵的流量、扬程和功率与转速之间的关系.(2)在风机单机运行时,风门挡板不变且温度和密度不变时,管网阻力只与风机的流量有关,阻力系数为常数.因此其运行工况与标准工况相同,可以应用比例定律。

但在风机并联运行时,由于出口风压受其它风机的风压的影响,出口流量也与总流量不同,造成工况变化,因此比例定律已经不再适用了。

(3) 相似定律在引风机中,如果挡板不变但介质温度和密度发生了变化时,作为特例,其形式也发生了变化,与上述比例定律不同,必须进行温度或密度的修正.(4) 在水泵方面,比例定律仅适用于水泵的出水口和进水口之间没有高度差,即没有净扬程的情况。

比如在没有落差的同一水平面上远距离输水,水泵的输出扬程(压力)仅用来克服管道的阻力,在这种情况下,当转速降到零时,扬程(压力)也降到零,流量也正好降到零,这是理想的水泵运行工况。

图1中工作点A和C就完全适合这种工况,可以使用比例定律。

(5)但实际水泵运行工况不可能达到理想工况,水泵的出水口和进水口之间是有高度差的,有时还很大。

在水泵并联运行时,水泵的出水口压力还要受到其它水泵运行压力的影响。

并联运行的泵要想出水,水其扬程必须大于其他水泵当时的压力.水泵出口流量并不是总管网流量,总管网流量为所有运行的水泵的流量和.由于管网总流量增大和阻力增大,因此并联运行的水泵扬程更高,工况发生变化,因此比例定律在此也不再适用。

4 单台水泵变频运行的图解分析(1) 单台水泵变频运行分析的关键,在于水泵进出口水位的高度差,也就是水泵的净扬程H0.水泵的扬程只有大于净扬程时才能出水。

因此管网阻力曲线的起始点就是该净扬程的高度,见图2.图2 单台水泵变频运行特性曲线图2中,额定工作点仍然为A,理想管网阻力曲线R1与流量成正比。

变频后的特性曲线F2,工作点B。

流量为零时的净扬程H0,变频运行实际工作点HB与净扬程的差△H=HB-H0,为克服管网阻力达到所需流量Q B时的附加扬程.由于管网阻力曲线与图1不同,因此不满足相似定律.(2)图2中的工作点A为水泵额定工作点,满足水泵的额定扬程和额定流量。

因此R1成为理想的管网阻力曲线.但是由于实际管网阻力曲线不可能为理想曲线,因此实际的最大工作点一定要偏离A点。

如果实际最大工作点向A点右下方偏移,则由于流量增加较大,容易造成水泵过载.因此实际额定工作点应该向A点左上方偏移,见图3。

图3 实际工作点向A点偏移(3)图3中,在节流阀门全部打开,管网阻力曲线R2为实际管网阻力曲线。

变频器在50Hz下运行时的实际最大工作点C,实际最大流量Q C(比水泵的额定流量QA小),最大流量时的扬程HC(比水泵实际额定扬程HA高)。

实际工作点C的参数只能通过实际测试才能得出。

当在变频器频率为F2时的特性曲线F2,实际工作点B。

实际工作点与净扬程的差△H=HB—H0=K2Q B2,为克服实际管网阻力达到所需流量QB时的附加扬程。

工作点B的实际扬程HB=K2Q B2+H0。

5 相同性能曲线水泵工频并联运行时的图解分析(1)两台或两台以上的泵向同一压力管道输送流体时的运行方式称为并联运行.并联运行的目的是为了增加流体的流量,适用于流量变化较大,采用一台大型泵的运行经济性差的场合.同时水泵并联运行时可以有备用泵,来保证系统运行的安全可靠性。

(2)水泵并联运行工况的工作点,由并联运行的总性能曲线和总的管道特性曲线的交点来确定.并联运行的总性能曲线,是根据并联运行时工作扬程相等,流量相加的原则,在同一坐标扬程下,将每台泵性能曲线上相应的横坐标流量相加绘制而成的,见图4。

相加的原则,在同一坐标扬程下,将每台泵性能曲线上相应的横坐标流量相加绘制而成的,见图4。

图4水泵并联运行特性(3)图4为两台相同性能泵并联工作的总性能曲线与工作点。

其中A为任意一台泵单泵运行时的工作点,净扬程H0.B为两台泵并联运行时单台泵的工作点.F2为两台泵并联运行时的总的性能曲线,在纵坐标相同的情况下,横坐标为单台泵性能曲线的两倍。

并联运行的工作点C点的流量QC=2QB,扬程HC=H B。

管网阻力曲线不变,只是两台泵并联运行时,流量为两台泵的流量和.(4)两台相同性能的水泵并联运行有如下特点:HC=H B>H A:即两台泵并联运行时扬程相同,且一定大于单台泵运行时的扬程.QC=2Q B<2Q A:即两台并联运行的总输出流量为两台单泵输出流量之和,每台泵的流量一定小于单泵运行时的流量。

因此并联运行时的总流量,不能达到两台单泵的流量和.管网阻力曲线越陡,泵的性能曲线越平坦,并联后的每台泵的流量同单泵运行时的流量比较就越小,并联工作的效果越差。

并联运行适合于性能曲线较陡,以及管网阻力曲线较平坦的场合。

6 不同性能水泵并联运行的图解分析6。

1 关死点扬程(或最大扬程)相同,流量不同的水泵并联运行时的性能曲线图5中:图5 扬程不同的水泵并联运行特性曲线(1)F1为大泵的性能曲线,大泵单泵运行时的工作点A1。

(2) F2为小泵的性能曲线,小泵单独运行时的工作点B1.(3) F3为并联水泵的总性能曲线,工作点C,扬程HC,流量Q C= QA2+ Q B2。

6.2 关死点扬程(或最大扬程)相同,流量不同的水泵并联运行的特点(1) HC=H B2=H A2>HA1〉H B1:即两台泵并联运行时扬程相同,且一定大于每台泵单泵运行时的扬程.(2) Q C=Q A2+Q B2<Q A1+QB1:即两台泵并联运行的总输出流量为两台泵输出流量之和;每台泵的流量一定小于该泵单泵运行时的流量.因此并联运行时的总流量,不能达到每台泵单泵运行的流量和。

关死点扬程(或最大扬程)不同,流量也不同的水泵并联运行时的性能曲线如图6所示。

图6 扬程不同、流量不同水泵并联特性曲线(1) F1为大泵的性能曲线,大泵单泵运行时的工作点A1。

(2) F2为小泵的性能曲线,小泵单独运行时的工作点B1。

(3)F3为并联水泵的总的性能曲线,工作点C,扬程HC,流量QC=QA2+QB2。

6.4 关死点扬程(或最大扬程)不同,流量也不同的水泵运行时特点(1) H C=HB2=H A2>H A1〉H B1:即两台泵并联运行时扬程相同,且一定大于大泵单泵运行时的扬程H A1,更大于小泵单泵运行时的扬程HB1。

(2) QC=QA2+QB2<QA1+Q B1:即两台泵并联运行的总输出流量为两台泵输出流量之和;每台泵的流量一定小于该泵单泵运行时的流量。

因此并联运行时的总流量,不能达到每台泵单泵运行的流量和。

(3) 两泵并联运行时,扬程低的水泵并联运行时流量减少更快。

(4) 当管网阻力曲线变化时,容易发生工作点在D的位置,该点的扬程高于小泵的最大扬程,造成小泵因扬程不足不出水,严重时会发生汽蚀现象.7 变频泵与工频泵并联运行时的图解分析7.1 变频泵与工频泵并联运行时总的性能曲线,与关死点扬程(最大扬程)不同,流量也不同的水泵并联运行时的情况非常类似,可以用相同的方法来分析。

图7 变频泵与工频泵并联运行特性曲线图7中:(1)F1为工频泵的性能曲线,也是变频泵在50Hz下满负荷运行时的性能曲线(假定变频泵与工频泵性能相同),工频泵单泵运行时的工作点A1.(2) F2为变频泵在频率F2时的性能曲线,变频泵在频率F2单独运行时的工作点B1。

(3) F3为变频和工频水泵并联运行的总的性能曲线,工作点C,扬程H C,流量QC=Q A2+Q B2.7。

2变频泵与工频泵并联运行时的特点(1) F2不仅仅是一条曲线,而是F1性能曲线下方偏左的一系列曲线族.F3也不仅仅是一条曲线,而是在F1性能曲线右方偏上的一系列曲线族.(2) F2变化时,F3也随着变化。

工作点C也跟着变化。

因此变频泵的扬程H B2,流量QB2,工频泵扬程HA2,流量QA2,以及总的扬程HC=H B2=H A2,和总流量Q C= Q A2+QF2的变化而变化。

B2都会随着频率(3)随着变频泵频率F2的降低,变频泵的扬程逐渐降低,变频泵流量QB2快速减少;工作点C的扬程也随着降低,使总的流量Q C减少;因此工频泵的扬程也降低,使工频泵流量QA2反而略有增加,此时要警惕工频泵过载。

8 水泵运行时的特例8。

1 变频泵与工频泵并联运行特例之一,是频率F2= F1=50Hz图8 变频泵在50Hz时与工频泵并联运行特性曲线图8中:F1为工频泵的性能曲线,也是变频泵F2= F1=50Hz下满负荷运行时的性能曲线(假定变频泵与工频泵性能相同),工频泵和变频泵单泵运行时的工作点A1。

相关文档
最新文档