水泵变频运行分析
水泵变频运行特性曲线

水泵变频运行特性曲线 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】一、引言水泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。
但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。
二、水泵变频运行分析的误区1.有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律流量比例定律 Q1/Q2=n1/n2扬程比例定律 H1/H2=(n1/n2)2轴功率比例定律 P1/P2=(n1/n2)3并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。
以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题:1)为什么水泵变频运行时频率在30~35Hz以上时才出水2)为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个突跳,后才随着转速的升高而升高2.绘制水泵的性能特性曲线和管道阻力曲线很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示。
图1 水泵的特性曲线图1中,水泵在工频运行的特性曲线为F1,额定工作点为A,额定流量QA,额定扬程HA ,管网理想阻力曲线R1=KQ与流量Q成正比。
采用节流调节时的实际管网阻力曲线R2,工作点为B,流量QB,扬程HB。
采用变频调速且没有节流的特性曲线F2,理想工作点为C,流量QC,扬程HC;这里QB=QC。
按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。
实际水泵变频调速时,频率降到30~35Hz以下时就不出水了,流量已经降到零。
3.变频泵与工频泵并联变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水是否工频泵的水会向变频泵倒灌4.以上分析的误区1)相似定律确实是风机水泵在理论分析当中的一条很重要的定律,它表明相似泵(或风机)在相似工况下运行时,对应各参数之相互关系的计算公式。
空调系统水泵变频运行的节能分析

Q/Q1= /n】;H/H1=( /n】) ;N/N1=( /n】)30由于流 量与 小,则降低频率,减慢水泵转速。控制原理如图 2所示 。
转速成正 比 ,因此 当调节流量 时可 以通过 调节转 速来进行 。 由电
温度传感器
磁学原理 三相异步电动机的转速与供 电电源的频率 有如下关系 : =60f(1 S)/P。
6O%。空调负荷主要 来 自围护结 构传 热 和新 风 负荷 ,是 随 室外 相似理论 ,水泵的 Q— H 性能 曲线将平行 下移 到曲线 n2,n2和设
气象条件 的变化 而变化 。空调 系统设 计通 常 是根据 空调 的最 大 计工况时 的管路特性 曲线 R 的交点 3为调速调节 时水泵的工况 负荷 设计 的 ,且 空调水 系统 流量不 变 ,即按 定流量设 计 。而 在整 点 ,相 应的流量和水泵 的扬程 为 Q2和 H3。由于水 泵的流量 与转
耗的 4O%-60%。文献 [1]表 明 ,大型 中央空调 系统 中冷冻 、冷 用变 频调速时 ,保持 阀门的 开度 不变 ,也 就是管 路 的水利特 性 曲
却水泵 的耗 电量 占整 个 系统 电量 的 30%左 右 ,冷水 机 组 约 占 线不变 ,通过改变水泵 的转速 达到调节 流量的 目的。根 据水泵 的
个空调季节的大部分时间,用户冷负荷都偏离设计状态,为保证 速成正比,而水泵的输入功率与转速成立方关系。当水泵流量为
空调质量 ,必须根据室外气象 条件 的变化而 对空调 系统 的冷 冻水 原来 的 7O%时 ,水 泵消耗功率仅为原来 的 34.3%,节约 65.7%。 供回水温度和循环水量进行调节 ,使用户末 端空调设 备放 出 的冷 故使用水泵变频技术 ,节能效果显 著 。
量与用户负荷 的变化相适应 ,避免 出现 室温过 高或过低 。空调系
水泵变频运行分析报告

水泵变频运行的图解分析方法作者:变频器世界1 引言水泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。
但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。
2 水泵变频运行分析的误区2.1 有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律流量比例定律 Q1/Q2=n1/n2扬程比例定律 H1/H2=(n1/n2)2轴功率比例定律 P1/P2=(n1/n2)3并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。
以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题:(1) 为什么水泵变频运行时频率在30~35Hz以上时才出水?(2) 为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个突跳,然后才随着转速的升高而升高?2.2 绘制水泵的性能特性曲线和管道阻力曲线很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示。
图1 水泵的特性曲线图1中,水泵在工频运行的特性曲线为F1,额定工作点为A,额定流量QA,额定扬程HA,管网理想阻力曲线R1=KQ与流量Q成正比。
采用节流调节时的实际管网阻力曲线R2,工作点为B,流量QB,扬程HB。
采用变频调速且没有节流的特性曲线F2,理想工作点为C,流量QC,扬程HC;这里QB=QC。
按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。
实际水泵变频调速时,频率降到30~35Hz以下时就不出水了,流量已经降到零。
2.3 变频泵与工频泵并联变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水?是否工频泵的水会向变频泵倒灌?3 以上分析的误区(1) 相似定律确实是风机水泵在理论分析当中的一条很重要的定律,它表明相似泵(或风机)在相似工况下运行时,对应各参数之相互关系的计算公式。
凝结水泵进行变频改造的运行分析

流量 := 7 .1 Q 8 o1 m% 扬程 : = 0 m H32 额 定 转 速 :4 9/ n 18r mi 电机 : KK 5 ( ,= 0 0 W , e6 0 Y L 0O4P 1 0 k U = 0 0
V
口压力 , 经轴加 、 低加加 热后的部分凝结水 叉回 到凝 汽器 , 造成热量 损失 , 增加凝 汽器热负 荷 , 降低 了机组效益 。 采用变频泵运行后 , 除氧器水 位 由变频 器通过改变凝 结水泵 的转 速来调整 , 凝结水主调 门全开 ,大大减小 了凝结水 主调 门 的节流损 失。 凝结水系统的大、 小循环门处于关 闭状态 , 避免了工质的热量损失 。 2 变频 改造 前 凝结 水 母管 压 力 维 持在 . 4 2 —. P , . 3 M a变频改 造后 维持在 1 M a减小 了 3 0 . P, 3 凝结水 系统设备 、 管道承受 的机械应力 , 有利于
一
10 2~
中国新技术新产品
 ̄ 8x 2 - 4 万 元 ) 2 5 2 56 (
f ^
08 . %降低到改造后 的 02%, 电 4 . 降低 3 .1 节 47 %, 单机厂用电率 O 7 . 个百分点 ,可 见节能降耗 明 1
显。
:辄幺1
4结束语
0
由此特性 曲线可 以看出水泵在低速时节 电 比较显著 , 转速越高节电越不明显 , 如果转速到 额定值时 ,不但不节约电能反而浪费能源 。结 论: 变频器不宜超载超速运 行 , 否则将 变为耗 电 设备 , 并使变频器难以承受 。 1 . 2随着我厂凝结水泵变频器 的投运 , 克服 了凝结水泵在运行中存 在的 胜能调节差 ,能耗 高, 效益较低 , 维护工作量大等难题 。凝结水 主 调 门开度平 均只能达到 4 %左右 ,电机 恒速 转 5 动, 约有 5%的能量 白自消耗 在主调 ¨开度上。 0 同时 , 因科技含量 低 、 设备运行 可靠性 不高 , 这 样影 响了机组的安全稳定运行 。 日常维护量大, 影 响了机组的安 全稳定运行 。 通过变频改造 , 水 泵水量 与压力 的调节 ,由通过调节主调 门开度
水泵电机变频改造可行性分析

水泵电机变频改造可行性分析水泵电机的变频改造主要是指将常规的电压和频率固定的AC电机改为变频供电的电机。
通过变频器来调整电机的供电频率和电压,从而实现水泵的流量和扬程的控制。
变频改造可以提高水泵电机的效率和可控性,降低能耗和维护成本。
下面是水泵电机变频改造的可行性分析。
一、变频改造的优势和必要性1.提高能效:传统的水泵电机在启动和运行过程中会产生较大的机械冲击和电能损耗,而变频改造可以利用变频器实现电机的平稳启动和调速控制,减少能耗。
2.提高控制精度:传统的水泵电机控制方式是通过开关或调节阀门来调整流量和扬程,而变频改造可以通过调整变频器的输出频率和电压来实现对水泵的精确控制。
3.减少维护成本:传统的水泵电机在启动时,由于电压和频率的突变,会对电机和传动系统造成较大的冲击和压力,导致设备寿命缩短,而变频改造可以通过平稳启动和减少电机负载,延长设备寿命,减少维护成本。
4.降低噪音和振动:传统的水泵电机在启动和运行时会产生较大的噪音和振动,而变频改造可以通过平稳启动和调速控制,减少噪音和振动。
5.提高系统稳定性:变频改造可以使水泵电机实现平稳启动和调速控制,避免了传统的启动冲击和频率不稳定的问题,提高了系统的稳定性。
二、变频改造应注意的技术问题1.电机功率和转速匹配:在进行变频改造时,应根据水泵的工作条件和要求,选择适当的电机功率和转速,以确保变频电机的工作效率和性能。
2.变频器的选型和设置:合适的变频器选型和参数设置可以有效提高电机的效率和性能,并满足水泵的实际需求。
同时,还需要考虑变频器的可靠性和稳定性,以确保系统的正常运行。
3.过流和过载保护:变频改造后,电机的工作状态和负载会发生变化,需要增加相应的过流和过载保护装置,以保护电机和变频器的安全运行。
4.电源和电网适应性:变频器的输入电源需要与电网进行匹配,同时还需要考虑变频器和电网之间的干扰和耦合问题,以确保系统的稳定和可靠。
三、经济效益分析1.能耗降低:由于变频改造可以实现水泵电机的调速控制,降低了流量和扬程的需要,从而降低了能耗。
水泵电机变频改造可行性分析

水泵电机变频改造可行性分析引言:随着工业发展的不断推进,水泵作为一种重要的设备,在许多领域中都扮演着重要的角色。
传统的水泵电机系统采用固定速度驱动,然而,这种系统存在能耗高、控制精度低等问题。
为了提高水泵的效率和能源利用率,水泵电机变频改造应运而生。
本文将从经济性、环境性、节能性三个方面分析水泵电机变频改造的可行性,并探讨其优势和应用前景。
一、经济性分析:1.1 节约运行成本采用变频器对水泵电机进行改造,可以实现电机的无级调速,根据实际负载需求调整转速,从而降低了电机的运行成本。
传统的固定速度电机系统由于在轻负载或部分负载情况下也必须以额定功率运行,造成能源的浪费。
而变频器能够实时跟踪负载变化,将电机的转速和输出功率调整到最佳状态,有效节约运行成本。
1.2 延长设备寿命传统的固定速度电机在启停过程中容易发生冲击,对设备的寿命造成一定影响。
而变频器能够实现平滑启停,减少了启动时的冲击,降低了机械故障的发生概率,从而延长了设备的使用寿命,降低了维护成本。
1.3 提高生产效率水泵电机变频改造可以根据生产需求实现电机的精确控制,使水泵输出的流量和压力能够满足实际生产要求。
通过优化电机的工作状态,提高了水泵的运行效率和生产效率,进而提升了企业的经济效益。
二、环境性分析:2.1 减少噪音污染传统的水泵电机系统在运行时噪音较大,对周围环境及人员造成一定干扰和危害。
而变频器能够根据实际工作负载调整电机的转速,使其工作在低噪音状态下,从而减少了噪音污染,提高了工作环境的舒适度。
2.2 缩小空气污染传统固定转速电机系统由于无法根据实际需求调整转速,导致电机始终以满负荷运行,浪费了大量的能源。
而变频器能够根据负载需求调整电机的转速,使其能够高效运行,减少了能源的浪费,从而缩小了空气污染。
三、节能性分析:3.1 降低能耗水泵电机变频改造能够让电机根据实际需求实时调整转速,避免了固定转速下电机的能耗浪费。
变频器通过改变频率来控制电机的转速,使其工作在高效状态下,节约了大量能源。
水泵变频运行的特性曲线

水泵变频运行的特性曲线(一)1 引言水泵冷油泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。
但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。
2 水泵罗茨真空泵变频运行分析的误区2.1 有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律流量比例定律Q1/Q2=n1/n2扬程比例定律H1/H2=(n1/n2)2轴功率比例定律P1/P2=(n1/n2)3并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。
以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题:(1) 为什么水泵变频运行时频率在30~35Hz以上时才出水?(2) 为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个突跳,然后才随着转速的升高而升高?2.2 绘制水泵的性能特性曲线和管道阻力曲线很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示。
图1 水泵的特性曲线图1中,水泵液下排污泵在工频运行的特性曲线为F1,额定工作点为A,额定流量Q A,额定扬程H A,管网理想阻力曲线R1=K1Q与流量Q成正比。
采用节流调节时的实际管网阻力曲线R2,工作点为B,流量Q B,扬程H B。
采用变频调速且没有节流的特性曲线F2,理想工作点为C,流量Q C,扬程H C;这里Q B=Q C。
按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。
实际水泵变频调速时,频率降到30~35H z以下时就不出水了,流量已经降到零。
2.3 变频泵与工频泵并联变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水?是否工频泵的水会向变频泵倒灌?3 以上分析的误区(1) 相似定律确实是风机水泵在理论分析当中的一条很重要的定律,它表明相似泵(或风机)在相似工况下运行时,对应各参数之相互关系的计算公式。
空调变流量水系统水泵变频运行效率分析

种 是设 置 在供 回水 总 管 处 ; 一 种 是 设 置 在 系统 另
最不 利环 路末 端设 备供 回水 支 管处 。这 两 种 布 置 方 式 的节能 效 果 是 不 同 的 , 者 的节 能 效 果 远 远 优 于 后
前者 [ 。
1 1 最 不 利环路 末 端定压 差控 制原 理 .
开度 减小 , 系统 的总流 量 由 Q变 为 Q 。 B段 的综合 阻 力系数 由 . 增大 使 A s 1
到 .。 s 因此 , B段的压差增大, A 变频器变频控制水泵转速由 n变为 n , 减
到真 正节 能 的 目的 。
1 最 不 利 环 路 末 端 定 压 差 控 制 原 理 和 运 行 工 况 分 析
变流 量 系统 的控 制方式 有定 压差 控制 和定 温差 控 制 。 E前 , t 水泵 频率 控 制一般 采用 定压 差控 制方 式 , 在定压 差 控 制 方 式 中, 差 传 感 器 的 布 置 位 置是 水 压 泵 变频 控 制 的关 键 。一 般 传 感 器设 置 有 两 种 方 式 ,
各支 路末 端 的二通 调 节 阀根 据末 端 所 处 理 的 空 气 温度 ( 内 温度 ) 室ห้องสมุดไป่ตู้的变 化 调 节 其 开 度 , 而 导 致 系 从 统 压 差发 生变 化 。布置 在末 端 上 的压 差 传 感 器将 采
集到的压差信号传 给变频控 制装置 , 变频控制装 置 根据所得的压差信号 , 控制变频器的输出信号 , 改变 水泵 的运 行频 率 , 而 改变 系 统 的水 流 量 , 证 测 压 从 保
Vo .3 I 0 No. 1
Ma .2 o r 08
空 调 变 流 量 水 系统 水 泵 变 频 运 行 效 率 分 析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水泵变频运行的图解分析方法作者:变频器世界1 引言水泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。
但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。
2 水泵变频运行分析的误区2.1 有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律流量比例定律Q1/Q2=n1/n2扬程比例定律H1/H2=(n1/n2)2轴功率比例定律P1/P2=(n1/n2)3并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。
以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题:(1) 为什么水泵变频运行时频率在30~35Hz以上时才出水?(2) 为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个突跳,然后才随着转速的升高而升高?2.2 绘制水泵的性能特性曲线和管道阻力曲线很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示。
图1 水泵的特性曲线图1中,水泵在工频运行的特性曲线为F1,额定工作点为A,额定流量QA,额定扬程HA,管网理想阻力曲线R1=KQ与流量Q成正比。
采用节流调节时的实际管网阻力曲线R2,工作点为B,流量QB,扬程HB。
采用变频调速且没有节流的特性曲线F2,理想工作点为C,流量QC,扬程HC;这里QB=QC。
按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。
实际水泵变频调速时,频率降到30~35Hz以下时就不出水了,流量已经降到零。
2.3 变频泵与工频泵并联变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水?是否工频泵的水会向变频泵倒灌?3 以上分析的误区(1) 相似定律确实是风机水泵在理论分析当中的一条很重要的定律,它表明相似泵(或风机)在相似工况下运行时,对应各参数之相互关系的计算公式。
而比例定律是相似定律作为特例演变而来的。
即两台完全相同的泵在相同的工况条件下,输送相同的流体,且泵的直径和输送流体的密度不变,仅仅转速不同时,水泵的流量、扬程和功率与转速之间的关系。
(2) 在风机单机运行时,风门挡板不变且温度和密度不变时,管网阻力只与风机的流量有关,阻力系数为常数。
因此其运行工况与标准工况相同,可以应用比例定律。
但在风机并联运行时,由于出口风压受其它风机的风压的影响,出口流量也与总流量不同,造成工况变化,因此比例定律已经不再适用了。
(3) 相似定律在引风机中,如果挡板不变但介质温度和密度发生了变化时,作为特例,其形式也发生了变化,与上述比例定律不同,必须进行温度或密度的修正。
(4) 在水泵方面,比例定律仅适用于水泵的出水口和进水口之间没有高度差,即没有净扬程的情况。
比如在没有落差的同一水平面上远距离输水,水泵的输出扬程(压力)仅用来克服管道的阻力,在这种情况下,当转速降到零时,扬程(压力)也降到零,流量也正好降到零,这是理想的水泵运行工况。
图1中工作点A和C就完全适合这种工况,可以使用比例定律。
(5) 但实际水泵运行工况不可能达到理想工况,水泵的出水口和进水口之间是有高度差的,有时还很大。
在水泵并联运行时,水泵的出水口压力还要受到其它水泵运行压力的影响。
并联运行的泵要想出水,水其扬程必须大于其他水泵当时的压力。
水泵出口流量并不是总管网流量,总管网流量为所有运行的水泵的流量和。
由于管网总流量增大和阻力增大,因此并联运行的水泵扬程更高,工况发生变化,因此比例定律在此也不再适用。
4 单台水泵变频运行的图解分析(1) 单台水泵变频运行分析的关键,在于水泵进出口水位的高度差,也就是水泵的净扬程H0。
水泵的扬程只有大于净扬程时才能出水。
因此管网阻力曲线的起始点就是该净扬程的高度,见图2。
图2 单台水泵变频运行特性曲线图2中,额定工作点仍然为A,理想管网阻力曲线R1与流量成正比。
变频后的特性曲线F2,工作点B。
流量为零时的净扬程H0,变频运行实际工作点HB与净扬程的差△H=HB-H0,为克服管网阻力达到所需流量QB时的附加扬程。
由于管网阻力曲线与图1不同,因此不满足相似定律。
(2) 图2中的工作点A为水泵额定工作点,满足水泵的额定扬程和额定流量。
因此R1成为理想的管网阻力曲线。
但是由于实际管网阻力曲线不可能为理想曲线,因此实际的最大工作点一定要偏离A点。
如果实际最大工作点向A点右下方偏移,则由于流量增加较大,容易造成水泵过载。
因此实际额定工作点应该向A点左上方偏移,见图3。
图3实际工作点向A点偏移(3) 图3中,在节流阀门全部打开,管网阻力曲线R2为实际管网阻力曲线。
变频器在50Hz 下运行时的实际最大工作点C,实际最大流量QC(比水泵的额定流量QA小),最大流量时的扬程HC(比水泵实际额定扬程HA高)。
实际工作点C的参数只能通过实际测试才能得出。
当在变频器频率为F2时的特性曲线F2,实际工作点B。
实际工作点与净扬程的差△H=HB-H0=K2QB2,为克服实际管网阻力达到所需流量QB时的附加扬程。
工作点B的实际扬程HB=K2QB2+H0。
5 相同性能曲线水泵工频并联运行时的图解分析(1) 两台或两台以上的泵向同一压力管道输送流体时的运行方式称为并联运行。
并联运行的目的是为了增加流体的流量,适用于流量变化较大,采用一台大型泵的运行经济性差的场合。
同时水泵并联运行时可以有备用泵,来保证系统运行的安全可靠性。
(2) 水泵并联运行工况的工作点,由并联运行的总性能曲线和总的管道特性曲线的交点来确定。
并联运行的总性能曲线,是根据并联运行时工作扬程相等,流量相加的原则,在同一坐标扬程下,将每台泵性能曲线上相应的横坐标流量相加绘制而成的,见图4。
相加的原则,在同一坐标扬程下,将每台泵性能曲线上相应的横坐标流量相加绘制而成的,见图4。
图4水泵并联运行特性(3) 图4为两台相同性能泵并联工作的总性能曲线与工作点。
其中A为任意一台泵单泵运行时的工作点,净扬程H0。
B为两台泵并联运行时单台泵的工作点。
F2为两台泵并联运行时的总的性能曲线,在纵坐标相同的情况下,横坐标为单台泵性能曲线的两倍。
并联运行的工作点C点的流量QC=2QB,扬程HC=HB。
管网阻力曲线不变,只是两台泵并联运行时,流量为两台泵的流量和。
(4) 两台相同性能的水泵并联运行有如下特点:l HC=HB>HA:即两台泵并联运行时扬程相同,且一定大于单台泵运行时的扬程。
l QC=2QB<2QA:即两台并联运行的总输出流量为两台单泵输出流量之和,每台泵的流量一定小于单泵运行时的流量。
因此并联运行时的总流量,不能达到两台单泵的流量和。
l 管网阻力曲线越陡,泵的性能曲线越平坦,并联后的每台泵的流量同单泵运行时的流量比较就越小,并联工作的效果越差。
l 并联运行适合于性能曲线较陡,以及管网阻力曲线较平坦的场合。
6 不同性能水泵并联运行的图解分析6.1 关死点扬程(或最大扬程)相同,流量不同的水泵并联运行时的性能曲线图5 扬程不同的水泵并联运行特性曲线图5中:(1) F1为大泵的性能曲线,大泵单泵运行时的工作点A1。
(2) F2为小泵的性能曲线,小泵单独运行时的工作点B1。
(3) F3为并联水泵的总性能曲线,工作点C,扬程HC,流量QC= QA2+ QB2。
6.2 关死点扬程(或最大扬程)相同,流量不同的水泵并联运行的特点(1) HC=HB2=HA2>HA1>HB1:即两台泵并联运行时扬程相同,且一定大于每台泵单泵运行时的扬程。
(2) QC=QA2+QB2关死点扬程(或最大扬程)不同,流量也不同的水泵并联运行时的性能曲线如图6所示。
图6 扬程不同、流量不同水泵并联特性曲线(1) F1为大泵的性能曲线,大泵单泵运行时的工作点A1。
(2) F2为小泵的性能曲线,小泵单独运行时的工作点B1。
(3) F3为并联水泵的总的性能曲线,工作点C,扬程HC,流量QC=QA2+QB2。
6.4 关死点扬程(或最大扬程)不同,流量也不同的水泵运行时特点(1) HC=HB2=HA2>HA1>HB1:即两台泵并联运行时扬程相同,且一定大于大泵单泵运行时的扬程HA1,更大于小泵单泵运行时的扬程HB1。
(2) QC=QA2+QB2(3) 两泵并联运行时,扬程低的水泵并联运行时流量减少更快。
(4) 当管网阻力曲线变化时,容易发生工作点在D的位置,该点的扬程高于小泵的最大扬程,造成小泵因扬程不足不出水,严重时会发生汽蚀现象。
7 变频泵与工频泵并联运行时的图解分析7.1 变频泵与工频泵并联运行时总的性能曲线,与关死点扬程(最大扬程)不同,流量也不同的水泵并联运行时的情况非常类似,可以用相同的方法来分析。
图7 变频泵与工频泵并联运行特性曲线(1) F1为工频泵的性能曲线,也是变频泵在50Hz下满负荷运行时的性能曲线(假定变频泵与工频泵性能相同),工频泵单泵运行时的工作点A1。
(2) F2为变频泵在频率F2时的性能曲线,变频泵在频率F2单独运行时的工作点B1。
(3) F3为变频和工频水泵并联运行的总的性能曲线,工作点C,扬程HC,流量QC=QA2+QB2。
7.2 变频泵与工频泵并联运行时的特点(1) F2不仅仅是一条曲线,而是F1性能曲线下方偏左的一系列曲线族。
F3也不仅仅是一条曲线,而是在F1性能曲线右方偏上的一系列曲线族。
(2) F2变化时,F3也随着变化。
工作点C也跟着变化。
因此变频泵的扬程HB2,流量QB2,工频泵扬程HA2,流量QA2,以及总的扬程HC=HB2=HA2,和总流量QC= QA2+QB2都会随着频率F2的变化而变化。
(3) 随着变频泵频率F2的降低,变频泵的扬程逐渐降低,变频泵流量QB2快速减少;工作点C的扬程也随着降低,使总的流量QC减少;因此工频泵的扬程也降低,使工频泵流量QA2反而略有增加,此时要警惕工频泵过载。
8 水泵运行时的特例8.1 变频泵与工频泵并联运行特例之一,是频率F2= F1=50Hz图8 变频泵在50Hz时与工频泵并联运行特性曲线(1) F1为工频泵的性能曲线,也是变频泵F2= F1=50Hz下满负荷运行时的性能曲线(假定变频泵与工频泵性能相同),工频泵和变频泵单泵运行时的工作点A1。
(2) F3为变频和工频泵并联运行时总的性能曲线。
工作点C,扬程HC=HB2=HA2等于每台泵的扬程,每台泵的流量QA2=QB2,总流量QC=QA2+QB2=2QA2。
即当F2= F1=50Hz 时,变频泵与工频泵并联运行时的特性,与两台性能相同的泵并联运行时完全一样。
8.2 变频泵与工频泵并联运行特例之二是F2=MIN图9变频泵在最低频率下与工频泵并联运行特性曲线(1) F1为工频泵的性能曲线,工频泵单泵运行时的工作点A1。