水泵变频运行的特性曲线

合集下载

水泵变频运行特性曲线

水泵变频运行特性曲线

水泵变频运行特性曲线 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】一、引言水泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。

但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。

二、水泵变频运行分析的误区1.有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律流量比例定律 Q1/Q2=n1/n2扬程比例定律 H1/H2=(n1/n2)2轴功率比例定律 P1/P2=(n1/n2)3并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。

以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题:1)为什么水泵变频运行时频率在30~35Hz以上时才出水2)为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个突跳,后才随着转速的升高而升高2.绘制水泵的性能特性曲线和管道阻力曲线很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示。

图1 水泵的特性曲线图1中,水泵在工频运行的特性曲线为F1,额定工作点为A,额定流量QA,额定扬程HA ,管网理想阻力曲线R1=KQ与流量Q成正比。

采用节流调节时的实际管网阻力曲线R2,工作点为B,流量QB,扬程HB。

采用变频调速且没有节流的特性曲线F2,理想工作点为C,流量QC,扬程HC;这里QB=QC。

按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。

实际水泵变频调速时,频率降到30~35Hz以下时就不出水了,流量已经降到零。

3.变频泵与工频泵并联变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水是否工频泵的水会向变频泵倒灌4.以上分析的误区1)相似定律确实是风机水泵在理论分析当中的一条很重要的定律,它表明相似泵(或风机)在相似工况下运行时,对应各参数之相互关系的计算公式。

水泵变频运行的特性曲线

水泵变频运行的特性曲线

水泵变频运行的特性曲线(一)1 引言水泵冷油泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。

但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。

2 水泵罗茨真空泵变频运行分析的误区2.1 有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律流量比例定律Q1/Q2=n1/n2扬程比例定律H1/H2=(n1/n2)2轴功率比例定律P1/P2=(n1/n2)3并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。

以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题:(1) 为什么水泵变频运行时频率在30~35Hz以上时才出水?(2) 为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个突跳,然后才随着转速的升高而升高?2.2 绘制水泵的性能特性曲线和管道阻力曲线很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示。

图1 水泵的特性曲线图1中,水泵液下排污泵在工频运行的特性曲线为F1,额定工作点为A,额定流量Q A,额定扬程H A,管网理想阻力曲线R1=K1Q与流量Q成正比。

采用节流调节时的实际管网阻力曲线R2,工作点为B,流量Q B,扬程H B。

采用变频调速且没有节流的特性曲线F2,理想工作点为C,流量Q C,扬程H C;这里Q B=Q C。

按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。

实际水泵变频调速时,频率降到30~35H z以下时就不出水了,流量已经降到零。

2.3 变频泵与工频泵并联变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水?是否工频泵的水会向变频泵倒灌?3 以上分析的误区(1) 相似定律确实是风机水泵在理论分析当中的一条很重要的定律,它表明相似泵(或风机)在相似工况下运行时,对应各参数之相互关系的计算公式。

水泵变频运行特性曲线精编

水泵变频运行特性曲线精编

水泵变频运行特性曲线精编Document number:WTT-LKK-GBB-08921-EIGG-229861 引言水泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。

但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。

2 水泵变频运行分析的误区有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律流量比例定律 Q1/Q2=n1/n2扬程比例定律 H1/H2=(n1/n2)2轴功率比例定律 P1/P2=(n1/n2)3并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。

以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题:(1) 为什么水泵变频运行时频率在30~35Hz以上时才出水(2) 为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个突跳,然后才随着转速的升高而升高绘制水泵的性能特性曲线和管道阻力曲线很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示。

图1 水泵的特性曲线图1中,水泵在工频运行的特性曲线为F1,额定工作点为A,额定流量QA,额定扬程HA,管网理想阻力曲线R1=KQ 与流量Q成正比。

采用节流调节时的实际管网阻力曲线R2,工作点为B,流量QB,扬程HB。

采用变频调速且没有节流的特性曲线F2,理想工作点为C,流量QC,扬程HC;这里QB=QC。

按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。

实际水泵变频调速时,频率降到30~35Hz以下时就不出水了,流量已经降到零。

变频泵与工频泵并联变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水是否工频泵的水会向变频泵倒灌3 以上分析的误区(1) 相似定律确实是风机水泵在理论分析当中的一条很重要的定律,它表明相似泵(或风机)在相似工况下运行时,对应各参数之相互关系的计算公式。

泵性能曲线

泵性能曲线

a 性能曲线的形成b 性能曲线的测试实际上,由于流动损失数据不足,故离心压缩机的性能曲线基本还是依靠机器实测而得(有的用相似换算得到)。

测试装置如图所示,该装置所示调节阀和流量计均安在排气管路上,同样也可以安在进气管路上。

试验时,先稳定在某一转速下运行,用调节阀调节流量。

开始时阀门全开,这时的流量即为压缩机的最大流量,记下各测点的数据,然后把阀门稍微关小,再记各数据。

依次减小流量,直到压缩机出现不正常工作情况,即所谓的喘振工况时试验到此停止,此时的流量即为压缩机的最小流量。

c 性能曲线的特点随着流量的减小,压缩机能提供的压力比将增大。

在最小流量时,压力比达到最大。

离心压缩机有最大流量和最小流量两种极限流量;排除压力也有最大值和最小值。

效率曲线有最高效率点,离开该点的工况效率下降的较快。

功率N与Gh th大致成正比,所以功率曲线一般随Q j增加而向上倾斜,但当ε-Q j曲线向下倾斜很快时,功率曲线也可能先向上倾斜而后逐渐向下倾斜。

d 最佳工况点工况的定义:性能曲线上的某一点即为压缩机的某一运行工作状态(简称工况)。

最佳工况点:通常将曲线上效率最高点称为最佳工况点,一般应是该机器设计计算的工况点。

如图所示,在最佳工况点左右两边的各工况点,其效率均有所降低。

e 稳定工作范围压缩机性能曲线的左边受到喘振工况的限制,右边受到堵塞工况限制,在这两个工况之间的区域称为压缩机的稳定工作范围。

压缩机变工况的稳定工作范围越宽越好。

改变泵性能曲线的方法有哪几种?如何改变?改变泵性能曲线的方法有变速调节、切割叶轮外圆等。

1、变速调节:是在管路特性曲线不变时,用变转速来改变泵的性能曲线,从而改变它们的工作点。

当转速改变后,扬程和流量都会改变,而且随着转速的提高,qv与H都将增大,,用此法来调节流量和扬程,不会产生附加的能量损失,所以这种方法是最经济的。

但对原动机提出了新的要求,即原动机应是可调转速的,如蒸汽机、内燃机等,或增设变速装置,因变速装置投资较大,一般中小型泵很少采用。

水泵特性曲线的关系

水泵特性曲线的关系

主要是由三条特性曲线组成,分别是:H-qv曲线,表示泵的扬程与流量关系。

P-qv曲线,表示泵的轴功率与流量的关系。

n qv曲线,表示泵的效率与流量的关系。

扬程随流量的增加而减少,轴功率随流量的增加而增加;流量为零时,效率为零;流量增加,效率增加,但当流量增大到某一标准值时,流量在增大,效率反而下降1、特性曲线主要是用于选泵使用,不同曲线会极大影响泵的效率,泵并联运行也需要性能曲线,合理配备水泵的台数。

2、关闭阀门的原因从试验数据上分析:开阀门意味着扬程极小,这意味着电机功率极大,会烧坏电机。

3、离心泵不灌水很难排掉泵内的空气,导致泵空转而不能排水;泵不启动可能是电路问题或是泵本身已损坏,即使电机的三相电接反了,泵也会启动的。

4、用出口阀门调解流量而不用崩前阀门调解流量保证泵内始终充满水,用泵前阀门调节过度时会造成泵内出现负压,使叶轮氧化,腐蚀泵。

还有的调节方式就是增加变频装置,很好用的。

5、当泵不被损坏时,真空表和压力表读数会恒定不变,水泵不排水空转不受外网特性曲线影响造成的。

6、合理,主要就是检修,否则可以不用阀门。

7、这个问题的条件不充分,如果选用的是同一台水泵,同样的电机功率,外网不变的情况下,那么压力不会变化,轴功率会增加。

&问题的本身就是错误的,有效压头并不一定随着流量的增加而下降,这与叶轮安装角有关,还有可能增加。

但就通常使用的泵而言这个问题也是有问题的,扬程随着流量的增加可以大幅度降低的,这与泵的种类,也就是泵的性能曲线有关。

离心泵的特性曲线是将由实验测定的Q、H、N、n等数据标绘而成的一组曲线。

此图由泵的制造厂家提供,供使用部门选泵和操作时参考。

不同型号泵的特性曲线不同,但均有以下三条曲线:(1) H-Q线表示压头和流量的关系;(2)N-Q线表示泵轴功率和流量的关系;(3)n线表示泵的效率和流量的关系;(4)泵的特性曲线均在一定转速下测定,故特性曲线图上注出转速n值。

离心泵特性曲线上的效率最高点称为设计点,泵在该点对应的压头和流量下工作最为经济。

关于离心水泵性能曲线与参数

关于离心水泵性能曲线与参数

关于离心水泵性能曲线与参数!一、关于离心水泵参数之间必须遵从的关系:1、能量关系:机械能守恒原理:功率N ∝扬程H ³流量Q2、流体动力学原理:A、阻力矩M正比流速v的平方:M ∝ v^2B、速度头与水头的转换关系(流速v的平方与扬程H的转换关系):v^2 /2∝gHC、流量与管网阻力R的关系:H ∝流量Q^23、运动学关系:线速度与角速度成正比 v ∝ω4、功能关系:A、功率N = 转矩M³角速度ωB、功率N ∝角速度ω的立方:N ∝ω^3二、各种曲线:1、流量-扬程曲线(Q-H)2、流量-功率曲线(Q-N)3、流量-效率曲线(Q-η)4、流量-气蚀余量曲线(Q-(NPSH)r)5、意义:A、性能曲线作用是泵的任意的流量点,都可以在曲线上找出一组与其相对的扬程、功率、效率和气蚀余量值;B、这一组参数称为工作状态,简称工况或工况点;C、离心泵取高效率点工况称为最佳工况点;D、最佳工况点一般为设计工况点;E、一般离心泵的额定参数即设计工况点和最佳工况点相重合或很接近;F、在实践中选高效率区间运行、即节能、又能保证泵正常工作,因此了解泵的性能参数相当重要。

要分清几个过程的前提条件:1、管网曲线一定时:1)系统压力增大,流量增大,压力与流量的平方成正比,即H ∝流量Q^22)是一个系统功率增大的过程,或者说泵机转速提高的过程,变频频率升高的过程; 3)管网曲线是一个二次曲线;4)就相当于电路电阻R一定,电压变化、电流变化、功率变化的情况;2、改变管网曲线,增大流量:1)相关物理过程例如打开出水龙头时;2)改变管网曲线减小管网阻力R,系统流量增大,压力减小很少认为恒定,3)压力恒定,系统流量与功率成正比,流量增大,功率增大,电机转子转速在稳定区速度梢微降低,负荷增大;4)这就是泵的实际运行状态,流量大,功率大,流量小功率小,例如风门关小时、回流阀开大时,系统流量减小,功率减小,用电量也小;5)风门关小时、回流阀开大时,系统流量减小,功率减小,用电量也小,此时转子转速在稳定区速度梢微升高,负荷减轻;6)如果这时改变出水管径,就等于改变流量,改变电机运行功率,这就是改变出水管径改变流量的原理;7)相当于电路的电压不变,电阻R变化时,电流、功率变化的情况;3、泵机功率不变:1)相关物理过程如灭火水枪;2)用减小出水管截面,增大管网阻力R,减小流量、增大压力,泵机功率不变;3)目的在于增大压力,增大出口水流速度等;4)也是管网改造,减小流量、增大扬程、不增大系统功率的方法的原理;5)这个过程H-Q曲线,是上翘的双曲线形,流量与压力反比降低,或压力与流量反比升高的曲线;6)这个过程相当于恒流源电路中,外电路变阻器的电阻增大时,电流减小、电压升高、功率不变的情形;1、管网曲线一定时:这种运行情况适宜封闭式流体循环系统;2、改变管网曲线,调节流量:1)这是大部分风机、供水泵的正常工作状态;2)在这种状态下运行时,忽略压力的变化既恒压;3)在这种状态下运行时,流量与电机输出功率成正比,既风门大功率大、风门小功率小,所以用风门调节风量大小并不浪费电。

离心泵特性曲线的测定实验报告

离心泵特性曲线的测定实验报告

实验二 离心泵特性曲线的测定一、实验目的1、熟悉离心泵的操作,了解离心泵的结构和特性;2、测定一定转速下的离心泵特性曲线;3、测定不同转速下的管路特性曲线。

二、实验原理1、离心泵的特性曲线离心泵是最常用的一种液体输送设备。

它的主要特性参数包括流量Q 、扬程H 、轴功率N 及效率η。

在一定的转速下,H 、N 及η均随实际流量Q 的变化而变化。

通过实验测定出H ~Q 、N ~Q 及η~Q 之间的关系,并以曲线表示之,即为泵的特性曲线。

特性曲线是确定泵的适宜操作条件和选用离心泵的重要依据。

测定泵特性曲线的具体方法为:测得不同流量下泵的入口真空度和出口压强,在泵的吸入口和压出口之间列柏努利方程()出入入出入出入出出入入出出入入入--+-+-+-=+++=+++f f H gu ugP P Z Z H H g u g P Z H g u g P Z 2222222ρρρ上式中出入-f H 是泵的吸入口和压出口之间管路内的流体流动阻力,与柏努力方程中其它项比较,出入-f H 值很小,故可忽略。

于是上式变为:()gu u gP P Z Z H 222入出入出入出-+-+-=ρ 将测得的()入出Z Z -和入出P P -的值以及计算所得的出入u u ,代入上式即可求得H 的值。

功率表测得的功率为电动机的输入功率。

由于泵由电动机直接带动,传动效率可视为1,所以电动机的输出功率等于泵的轴功率。

即:泵的轴功率N=电动机的输出功率,KW电动机的输出功率=电动机的输入功率×电动机的效率。

泵的轴功率=功率表的读数×电动机效率,KW 。

η的测定:KWHQ g HQ Ne N Ne 1021000ρρη===式中:η—泵的效率; N —泵的轴功率,KW Ne —泵的有效功率KW H —泵的有效功率,KWQ —泵的流量,m 3/sρ—水的密度,kg/m 32、管路特性曲线当离心泵安装在特定的管路系统中工作时,实际的工作压头和流量不仅与离心泵本身的性能有关,还与管路特性有关。

水泵并联及变频计算书(个人手写,仅供参考。)

水泵并联及变频计算书(个人手写,仅供参考。)

水泵变频调 速运行工况 计算
已知水泵Q1= H1= Q2= H2=
水泵工作特 性曲线HP=
0.278 m3/s 12.5 m 0.444 m3/s 7.0 m
16.49 -
管路系统特 性曲线H0=
运行工况点 Q= H=
流量下降比 例
变频运行后 流量Q=
变频运行后 扬程H=
8.00 +
0.406 m3/s 8.45 m
Q= 水泵并联出 水实际总流
量Q= 水泵并联出 水流量差Q=
选泵应以水 泵单台运行 工况点为准 。
7.39
DN600
0.54
DN9008.00 +2 Nhomakorabea39 Qn
0.406 m3/s
8.45 m
8.45 m 1.034 m3/s 10.55 m
10.54 m
4384.80 m3/h
3722.40 m3/h 662.40 m3/h
水泵并联工 作计算书
计算单台水 泵工作特性 曲线
HP= Hb-s1*Qn
n=
1.852
已知水泵Q1=
0.278 m3/s
H1=
12.5 m
Q2=
0.444 m3/s
H2=
7.0 m
(H1-H2)/ s1= (Q2n-Q1n)
H1+s1*Q1n=H2 Hb= +s1*Q2n
s1=
42.67
Hb=
16.49
DN600X400
偏心渐缩ζ=
0.26
DN600弯头
ζ=
1.01
DN600蝶阀
ζ=
0.30
DN600伸缩
接头ζ=
0.21
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水泵变频运行的特性曲线(一)1引言水泵冷油泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。

但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。

2水泵罗茨真空泵变频运行分析的误区2.1有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律流量比例定律n1/n2Q1/Q2二扬程比例定律H1/H2=(n1/n2) 2轴功率比例定律P1/P2=(n1/n2) 3并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比, 水泵的输出功率与转速的3次方成正比。

以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题:(1)为什么水泵变频运行时频率在30~35Hz 以上时才出水?(2)为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个突跳,然后才随着转速的升高而升高?2.2绘制水泵的性能特性曲线和管道阻力曲线很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示图1 水泵的特性曲线图1中,水泵液下排污泵在工频运行的特性曲线为F i,额定工作点为A,额定流量Q A,额定扬程H A,管网理想阻力曲线R i=K i Q与流量Q成正比。

采用节流调节时的实际管网阻力曲线R2,工作点为B,流量Q B,扬程H B。

采用变频调速且没有节流的特性曲线F2,理想工作点为C,流量Q C,扬程H C;这里Q B=Q Q O按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。

实际水泵变频调速时,频率降到30~35Hz以下时就不出水了,流量已经降到零。

2.3变频泵与工频泵并联变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水?是否工频泵的水会向变频泵倒灌?3以上分析的误区(1)相似定律确实是风机水泵在理论分析当中的一条很重要的定律,它表明相似泵(或风机)在相似工况下运行时,对应各参数之相互关系的计算公式。

而比例定律是相似定律作为特例演变而来的。

即两台完全相同的泵在相同的工况条件下,输送相同的流体,且泵的直径和输送流体的密度不变,仅仅转速不同时,水泵的流量、扬程和功率与转速之间的关系。

(2)在风机单机运行时,风门挡板不变且温度和密度不变时,管网阻力只与风机的流量有关,阻力系数为常数。

因此其运行工况与标准工况相同,可以应用比例定律。

但在风机并联运行时,由于出口风压受其它风机的风压的影响,出口流量也与总流量不同,造成工况变化,因此比例定律已经不再适用了。

(3)相似定律在引风机中,如果挡板不变但介质温度和密度发生了变化时,作为特例,其形式也发生了变化,与上述比例定律不同,必须进行温度或密度的修正。

(4)在水泵方面,比例定律仅适用于水泵的出水口和进水口之间没有高度差,即没有净扬程的情况。

比如在没有落差的同一水平面上远距离输水,水泵的输出扬程(压力)仅用来克服管道的阻力,在这种情况下,当转速降到零时,扬程(压力)也降到零,流量也正好降到零,这是理想的水泵运行工况。

图1中工作点A和C就完全适合这种工况,可以使用比例定律。

(5)但实际水泵运行工况不可能达到理想工况,水泵的出水口和进水口之间是有高度差的,有时还很大。

在水泵并联运行时,水泵的出水口压力还要受到其它水泵运行压力的影响。

并联运行的泵要想出水,水其扬程必须大于其他水泵当时的压力。

水泵出口流量并不是总管网流量,总管网流量为所有运行的水泵的流量和。

由于管网总流量增大和阻力增大,因此并联运行的水泵扬程更高,工况发生变化,因此比例定律在此也不再适用。

4单台水泵变频运行的图解分析(1)单台水泵变频运行分析的关键,在于水泵进出口水位的高度差,也就是水泵的净扬程H o。

水泵的扬程只有大于净扬程时才能出水。

因此管网阻力曲线的起始点就是该净扬程的高度,见图2。

01 --------- r—Q 赫图2 单台水泵变频运行特性曲线图2中,额定工作点仍然为A,理想管网阻力曲线R i与流量成正比。

变频后的特性曲线F2,工作点B。

流量为零时的净扬程H。

,变频运行实际工作点H B与净扬程的差厶H=H B-H°,为克服管网阻力达到所需流量Q B时的附加扬程。

由于管网阻力曲线与图1不同,因此不满足相似定律。

(2)图2中的工作点A为水泵额定工作点,满足水泵的额定扬程和额定流量。

因此R i成为理想的管网阻力曲线。

但是由于实际管网阻力曲线不可能为理想曲线,因此实际的最大工作点一定要偏离A点。

如果实际最大工作点向A点右下方偏移,则由于流量增加较大,容易造成水泵过载。

因此实际额定工作点应该向A点左上方偏移,见图3。

图3 实际工作点向A点偏移(3)图3中,在节流阀门全部打开,管网阻力曲线R2为实际管网阻力曲线。

变频器在50Hz下运行时的实际最大工作点C,实际最大流量Q C(比水泵的额定流量Q A小),最大流量时的扬程H c(比水泵实际额定扬程H A高)。

实际工作点C的参数只能通过实际测试才能得出。

当在变频器频率为F2时的特性曲线F2,实际工作点B。

实际工作点与净扬程的差△ H=H B-H O=K2Q B2,为克服实际管网阻力达到所需流量QB时的附加扬程。

工作点B的实际扬程H B=K2Q B2+H O。

5相同性能曲线水泵工频并联运行时的图解分析(1)两台或两台以上的泵向同一压力管道输送流体时的运行方式称为并联运行。

并联运行的目的是为了增加流体的流量,适用于流量变化较大,采用一台大型泵的运行经济性差的场合。

同时水泵并联运行时可以有备用泵,来保证系统运行的安全可靠性。

(2)水泵并联运行工况的工作点,由并联运行的总性能曲线和总的管道特性曲线的交点来确定。

并联运行的总性能曲线,是根据并联运行时工作扬程相等,流量相加的原则,在同一坐标扬程下,将每台泵性能曲线上相应的横坐标流量相加绘制而成的,见图4。

相加的原则,在同一坐标扬程下,将每台泵性能曲线上相应的横坐标流量相加绘制而成的,见图4。

图4 水泵并联运行特性(3)图4为两台相同性能泵并联工作的总性能曲线与工作点。

其中A为任意一台泵单泵运行时的工作点,净扬程H。

B为两台泵并联运行时单台泵的工作点。

F2 为两台泵并联运行时的总的性能曲线,在纵坐标相同的情况下,横坐标为单台泵性能曲线的两倍。

并联运行的工作点C点的流量Q C=2Q B,扬程H e二H B。

管网阻力曲线不变,只是两台泵并联运行时,流量为两台泵的流量和。

⑷ 两台相同性能的水泵并联运行有如下特点H e=H B>H A:即两台泵并联运行时扬程相同,且一定大于单台泵运行时的扬程Q c=2Q B<2Q A:即两台并联运行的总输出流量为两台单泵输出流量之和,每台泵的流量一定小于单泵运行时的流量。

因此并联运行时的总流量,不能达到两台单泵的流量和。

管网阻力曲线越陡,泵的性能曲线越平坦,并联后的每台泵的流量同单泵运行时的流量比较就越小,并联工作的效果越差。

并联运行适合于性能曲线较陡,以及管网阻力曲线较平坦的场合。

6不同性能水泵并联运行的图解分析6.1关死点扬程(或最大扬程)相同,流量不同的水泵并联运行时的性能曲线图5中:R-KQIIJ ■ * r » * * * ■ r ■ i + ■ ■ * AHiff#Q4Q附Q图5 扬程不同的水泵并联运行特性曲线(1)F i 为大泵的性能曲线,大泵单泵运行时的工作点 Ai 。

(2) F 2为小泵的性能曲线,小泵单独运行时的工作点 B1。

(3) F s 为并联水泵的总性能曲线,工作点 C ,扬程H e ,流量Q C = Q A2+ Q B26.2关死点扬程(或最大扬程)相同,流量不同的水泵并联运行的特点(1) H e =H B2 = H A2>H A1>H B1:即两台泵并联运行时扬程相同,且一定大于每台 泵单泵运行时的扬程。

(2) Q C =Q A 2+Q B2<Q AI +Q B1:即两台泵并联运行的总输出流量为两台泵输出 流量之和;每台泵的流量一定小于该泵单泵运行时的流量。

因此并联运行时的总流 量,不能达到每台泵单泵运行的流量和。

关死点扬程(或最大扬程)不同,流量也不同的水泵并联运行时的性能曲线如图 6所示。

II/ l ■■ ■* i*■4«■ «I !*■«'* A ft A图6 扬程不同、流量不同水泵并联特性曲线(1) F i为大泵的性能曲线,大泵单泵运行时的工作点A i。

(2) F2为小泵的性能曲线,小泵单独运行时的工作点B i。

(3) F3为并联水泵的总的性能曲线,工作点C,扬程%,流量Q C=Q A2+Q B26.4关死点扬程(或最大扬程)不同,流量也不同的水泵运行时特点(1)H C=H B2=H A2>H A1>H B1:即两台泵并联运行时扬程相同,且一定大于大泵单泵运行时的扬程H AI,更大于小泵单泵运行时的扬程H BI。

(2)Q C=Q A2+Q B2<Q AI+Q BI:即两台泵并联运行的总输出流量为两台泵输出流量之和;每台泵的流量一定小于该泵单泵运行时的流量。

因此并联运行时的总流量,不能达到每台泵单泵运行的流量和。

(3)两泵并联运行时,扬程低的水泵并联运行时流量减少更快。

(4)当管网阻力曲线变化时,容易发生工作点在D的位置,该点的扬程高于小泵的最大扬程,造成小泵因扬程不足不出水,严重时会发生汽蚀现象。

7变频泵与工频泵并联运行时的图解分析7.1变频泵与工频泵并联运行时总的性能曲线,与关死点扬程(最大扬程)不同,流量也不同的水泵并联运行时的情况非常类似,可以用相同的方法来分析。

图7 变频泵与工频泵并联运行特性曲线图7中:(1)F i为工频泵的性能曲线,也是变频泵在50Hz下满负荷运行时的性能曲线(假定变频泵与工频泵性能相同),工频泵单泵运行时的工作点A i。

(2)F2为变频泵在频率F2时的性能曲线,变频泵在频率F2单独运行时的工作点B i。

(3)F3为变频和工频水泵并联运行的总的性能曲线,工作点c,扬程H e,流量Q c=Q A2 +Q B2。

7.2变频泵与工频泵并联运行时的特点(1) F2不仅仅是一条曲线,而是F i性能曲线下方偏左的一系列曲线族。

F3也不仅仅是一条曲线,而是在F i性能曲线右方偏上的一系列曲线族。

(2) F 2变化时,F 3也随着变化。

工作点C 也跟着变化。

因此变频泵的扬程 HB2,流量Q B2,工频泵扬程H A2,流量Q A2,以及总的扬程H C 二H B2二H A2,和总流量QC = Q A 2+Q B2都会随着频率F 2的变化而变化。

(3)随着变频泵频率F 2的降低,变频泵的扬程逐渐降低,变频泵流量Q B 2快 速减少;工作点C 的扬程也随着降低,使总的流量 Q C 减少;因此工频泵的扬程也降 低,使工频泵流量Q A 2反而略有增加,此时要警惕工频泵过载。

相关文档
最新文档