五年级下册数学试题-思维训练:第9讲《排列组合综合》(无答案)全国通用

合集下载

小学五年级逻辑思维学习—排列组合初步

小学五年级逻辑思维学习—排列组合初步

小学五年级逻辑思维学习—排列组合初步知识定位理解加乘原理的根本,分辨何时使用加法原理、何时使用乘法原理知识梳理一、乘法原理:我们在完成一件事时往往要分为多个步骤,每个步骤又有多种方法,当计算一共有多少种完成方法时就要用到乘法原理.乘法原理:一般地,如果完成一件事需要n个步骤,其中,做第一步有m1种不同的方法,做第二步有m2种不同的方法,…,做第n步有mn种不同的方法,则完成这件事一共有N=m1×m2×…×mn种不同的方法.乘法原理运用的范围:这件事要分几个彼此互不影响....的独立步骤....来完成,这几步是完成这件任务缺一不可的.....,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”.二、加法原理:无论自然界还是学习生活中,事物的组成往往是分门别类的,例如解决一件问题的往往不只一类途径,每一类途径往往又包含多种方法,如果要想知道一共有多少种解决方法,就需要用到加法原理.加法原理:一般地,如果完成一件事有k类方法,第一类方法中有m1种不同做法,第二类方法中有m2种不同做法,…,第k类方法中有mk种不同的做法,则完成这件事共有N= m1+ m2+…+mk种不同的方法.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.加乘原理的区别:加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.乘法原理运用的范围:这件事要分几个彼此互不影响的独立步骤来完成,这几步是完成这件任务缺一不可的,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关。

”例题精讲【题目】用2、4、5、7这4个不同数字可以组成24个互不相同的四位数,将它们从小到大排列,那么7254是第多少个数?【题目】用0、1、2、3、4这5个数字,组成各位数字互不相同的四位数,例如1023、2341等,求全体这样的四位数之和。

排列组合专项思维训练

排列组合专项思维训练

排列组合专项思维训练小升初排列组合专项思维训练一、知识地图1) 加法原理2) 乘法原理3) 排列a) 信号问题b) 数字问题c) 坐法问题d) 照相问题e) 排队问题4) 组合a) 几何计数问题b) 加乘算式问题c) 比赛问题d) 选法问题二、基础知识(一)加法原理:一般地,如果完成一件事有k 类方法,第一类方法中有m 1种不同做法,第二类方法中有m 2种不同做法,…,第k 类方法中有m k 种不同的做法,则完成这件事共有N=k m m m +++ 21种不同的方法。

这就是加法原理。

例如:某人从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津。

那么他在一天中去天津能有多少种不同的走法?解答:分析这个问题发现,此人去天津要么乘火车,要么乘长途汽车,有这两大类走法,并且每种走法都可以直接到达目的地,一步就可以完成任务,可以用加法原理。

如果乘火车,有5种走法,如果乘长途汽车,有4种走法。

上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法。

像这样一步可以完成任务,就用加法原理。

(二)乘法原理:一般地,如果完成一件事需要n 个步骤,其中,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法,…,做第n 步有m n 种不同的方法,那么,完成这件事一共有N=n m m m 21种不同的方法。

这就是乘法原理。

例如:一个口袋内装有3个小球,另一个口袋内装有8个小球,所有这些小球颜色各不相同。

问:从两个口袋内各取一个小球,有多少种不同的取法?解答:要从两个口袋中各取一个小球,则可看成先从第一个口袋中取一个,再从第二个口袋中取一个,分两步完成,要用乘法原理。

共有3×8=24(种)不同的取法。

1.加法原理和乘法原理有什么区别?1) 加法原理:先把方法分类,每一类的方法都能完成这件事。

最后把这些方法相加。

2) 乘法原理:先把方法分步,每一步都不能独立完成这件事,但是完成这件事,这些步骤缺一不可。

中科数学思维训练五年级

中科数学思维训练五年级

中科数学思维训练五年级一、工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还需要多少小时?2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。

如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。

现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。

现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。

乙单独做完这件工作要多少小时?4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。

已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5.师徒俩人加工同样多的零件。

当师傅完成了1/2时,徒弟完成了120个。

当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。

单份给男生栽,平均每人栽几棵?7.一个池上装有3根水管。

甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。

现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?二、鸡兔同笼问题1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,,问鸡与兔各有几只?三、数字数位问题1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?2.A和B是小于100的两个非零的不同自然数。

小学五年级逻辑思维学习—排列组合初步

小学五年级逻辑思维学习—排列组合初步

小学五年级逻辑思维学习—排列组合初步知识定位理解加乘原理的根本,分辨何时使用加法原理、何时使用乘法原理知识梳理一、乘法原理:我们在完成一件事时往往要分为多个步骤,每个步骤又有多种方法,当计算一共有多少种完成方法时就要用到乘法原理.乘法原理:一般地,如果完成一件事需要n个步骤,其中,做第一步有m1种不同的方法,做第二步有m2种不同的方法,…,做第n步有mn种不同的方法,则完成这件事一共有N=m1×m2×…×mn种不同的方法.乘法原理运用的范围:这件事要分几个彼此互不影响....的独立步骤....来完成,这几步是完成这件任务缺一不可的.....,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”.二、加法原理:无论自然界还是学习生活中,事物的组成往往是分门别类的,例如解决一件问题的往往不只一类途径,每一类途径往往又包含多种方法,如果要想知道一共有多少种解决方法,就需要用到加法原理.加法原理:一般地,如果完成一件事有k类方法,第一类方法中有m1种不同做法,第二类方法中有m2种不同做法,…,第k类方法中有mk种不同的做法,则完成这件事共有N= m1+ m2+…+mk种不同的方法.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.加乘原理的区别:加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.乘法原理运用的范围:这件事要分几个彼此互不影响的独立步骤来完成,这几步是完成这件任务缺一不可的,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关。

”例题精讲【题目】用2、4、5、7这4个不同数字可以组成24个互不相同的四位数,将它们从小到大排列,那么7254是第多少个数?【题目】用0、1、2、3、4这5个数字,组成各位数字互不相同的四位数,例如1023、2341等,求全体这样的四位数之和。

五年级下册数学奥数试题——排列组合应用

五年级下册数学奥数试题——排列组合应用

第2讲 排列组合应用一、知识点上一讲学习了排列组合的计算公式.这讲主要用排列组合解决一些实际问题.在解决实际问题时,先要判断出顺序对于问题的结果有没有影响,从而确定应该用排列还是组合来计算. 排列与顺序有关,而组合与顺序无关.二、典型例题例1 9支球队进行足球比赛:(1)如果实行单循环制,即每两队之间恰好比赛一场.每场比赛后,胜方得3分,负方不得分,平局双方各得1分,那么一共要举行多少场比赛?9支队伍的得分总和最多为多少?(2)如果实行双循环制,即每两队之间分主、客场.那么一共要举行多少场比赛?例2 围棋兴趣小组一共有8名同学,请问:(1)如果从中选3名同学在第二天的早上、中午、晚上分别做值日,共有多少种选法?(2)如果从中选3名同学去参加一次全市比赛,共有多少种选法?例3 周末大扫除,老师要从10名男生和10名女生中选出5名留下打扫卫生.(1)如果任意选择,一共有多少中选择方法?(2)如果老师决定选出2名男生和3名女生,一共有多少种选择方法?例4 由数字43210、、、、可以组成多少个(1)没有重复数字的三位数?(2)没有重复数字的三位奇数?(3)小于2000的四位数?例5 (1)6个人分成A 、B 两队拔河.要求这两队都是3个人,一共有多少种分队的方法?(2)6个人分成两队拔河.要求这两队都是3个人,一共有多少种分队的方法?例6 五个同学照相,分别求出在下列条件下有几种排法?(1)五个人排成一排;(2)五个人排成一排,某两人必须有一人站在中间;(3)五个人排成一排,某两人必须站在两头;(4)五个人排成一排,某两人不能站在两头;(5)五个人排成一排,某两人必须站在一起.三、水平测试1. 某班毕业生中有10名同学参加聚会,他们互相握了一次手,请问这次聚会大家一共握了多少次手?2. 要从15名士兵中选出2名分别担任正、副班长,共有多少种不同的选法?3. 小明走进一家商店要买些新衣服,现在从他看中的5件上衣和4条裤子中选出3件上衣和2条裤子,一共有多少种选法?4. 将87654321,,,,,,,这8个数排成一行,使得8的两边各数之和相等,那么共有________种不同的排法.A. 1152B. 864C. 576D. 288。

小学数学五年级《排列组合》练习题(含答案)

小学数学五年级《排列组合》练习题(含答案)

《排列组合》练习题(含答案)内容概述加乘原理,排列组合是四年级一个重要的学习内容,在之前的学习中,我们已经对它们有所了解,对于加乘原理我们只需要记住:加法分类,类类独立;乘法分步,步步相关!排列组合的应用具有一定难度.突破难点的关键:首先必须准确、透彻的理解加法原理、乘法原理;即排列组合的基石.其次注意两点:①对问题的分析、考虑是否能归纳为排列、组合问题?若能,再判断是属于排列问题还是组合问题?②对题目所给的条件限制要作仔细推敲认真分析.可利用图示法,可使问题简化便于正确理解与把握.本讲主要巩固加强此部分知识,注重排列组合的综合应用. 排 列在实际生活中常遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法.就是排列问题.在排的过程中,不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关.一般地,从n 个不同的元素中任取出m 个(m ≤n )元素,按照一定的顺序排成一列.叫做从n 个不同元素中取出m 个元素的一个排列.由排列的定义可以看出,两个排列相同,不仅要求这两个排列中的元素完全相同,而且各元素的先后顺序也一样.如果两个排列的元素不完全相同.或者各元素的排列顺序不完全一样,则这就是两个不同的排列.从n 个不同元素中取出m 个(m ≤n )元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,我们把它记做(m ≤n ),.其中.【例1】 4名男生和2名女生去照相,要求两各女生必须紧挨着站在正中间,有几种排法?分析:分两步进行,先安排两个女生有22P 种方法,4个男生站的位置有44P 种方法,共有2424P P ⨯=2×1×4×3×2×1=48(种),故有48种排法.【巩固】停车站划出一排12个停车位置,今有8辆不同的车需要停放,若要求剩余的4个空车位连在一起,一共有多少种不同的停车方案?m np m (1)(2) (1)m n p n n n n m =---+14444244443共个数!(1) (1)n n P n n n ==⨯-⨯⨯分析:把4个空车位看成一个整体,(4个空车位看成一样的)与8辆车一块儿进行排列..【前铺】讲解此部分例题之前,请根据本班情况,将排列公式的计算练习一下!计算:(1)321414P P - ; (2)53633P P - 分析:(1)321414P P -=14×13×12-14×13=2002 ; (2)53633P P -=3×(6×5×4×3×2)-3×2×1=2154 .【例2】 书架上有4本不同的漫画书,5本不同的童话书,3本不同的故事书,全部竖起排成一排,如果同类型的书不要分开,一共有多少种排法?如果同类书可以分开,一共有多少种排法?(只写出表达式,不用计算)分析:每种书内部任意排序,分别有44P ,55P ,33P 种排法,然后再排三种类型的顺序,有33P 种排法,整个过程分4步完成.44P ×55P ×33P ×33P =103680(种).如果同类书可以分开,就相当于4+5+3=12本书随意排,有1212P 种排法.【例3】 用0,1,2,3,4可以组成多少个没重复数字的三位数?分析:(法1)在本题中要注意的是0不能为首位数字,因此,百位上的数字只能从1,2,3,4这四个数字中选择1个,有4种方法;十位和个位上的数字可以从余下的4个数字中任选两个进行排列,有24P 种方法.由分步计数原理得,三位数的个数是:4×24P =48(个). (法2):从0,1,2,3,4中任选三个数字进行排列,再减去其中不合要求的,即首位是0.从0,1,2,3,4这五个数字中任选三个数字的排列数为35P ,其中首位是0的三位数有24P 个.三位数的个数是:35P -24P =5×4×3-4×3=60-12=48(个).不是简单的全排列,有一些其它的限制,这样要么全排列再剔出不合题意的情况,要么直接在排列的时候考虑这些限制因素.【前铺】(1)用1,2,3,4,5可以组成多少个没有重复数字的三位数? (2)用1,2,3,4,5可以组成多少个三位数? 分析:(1)要组成三位数,自然与三个数字的排列顺序有关,所以这是一个从五个元素中取出三个进行排列的问题,可以组成=5×4×3=60种没有重复数字的三位数.(2)没有要求数字不能重复,所以不能直接用来计算,分步考虑,用乘法原理可得:599362880P =35P 35P×5×5=125(个).注意“重复”和“没有重复”的区别!【巩固】用数码0,1,2,3,4可以组成多少个小于1000的没有重复数字的自然数? 分析:小于1000的自然数包括一位数、两位数、三位数,可以分类计算.注意“0”是自然数,且不能作两位数、三位数的首项.11124444569P P P P +⨯+⨯=(个).很自然的知道需要根据位数分类考虑,而且首位非零的限制也需要考虑.【例4】 由4个不同的独唱节目和3个不同的合唱节目组成一台晚会,要求任意两个合唱节目不相邻,开始和最后一个节目必须是合唱,则这台晚会节目的编排方法共有多少种?分析:先排独唱节目,四个节目随意排,有=24种排法;其次在独唱节目的首尾排合唱节目,有三个节目,两个位置,对应=6种排法;再在独唱节目之问的3个位置中排一个合唱节目,有3种排法,由乘法原理,一共有24×6×3=432种不同的编排方法.【例5】 小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法? (1)七个人排成一排;(2)七个人排成一排,小新必须站在中间.(3)七个人排成一排,小新、阿呆必须有一人站在中间. (4)七个人排成一排,小新、阿呆必须都站在两边. (5)七个人排成一排,小新、阿呆都没有站在边上. (6)七个人战成两排,前排三人,后排四人.(7)七个人战成两排,前排三人,后排四人. 小新、阿呆不在同一排.分析:(1)775040P =(种).(2)只需排其余6个人站剩下的6个位置.66720P =(种).(3)先确定中间的位置站谁,冉排剩下的6个位置.2×66P =1440(种).(4)先排两边,再排剩下的5个位置,其中两边的小新和阿呆还可以互换位置.552240P ⨯= (种).(5)先排两边,从除小新、阿呆之外的5个人中选2人,再排剩下的5个人,25552400P P ⨯=(种).(6)七个人排成一排时,7个位置就是各不相同的.现在排成两排,不管前后排各有几个人,7个位置还是各不相同的,所以本题实质就是7个元素的全排列.775040P =(种).(7)可以分为两类情况:“小新在前,阿呆在后”和“小新在前,阿呆在后”,两种情况是对等的,所以只要求出其中一种的排法数,再乘以2即可.4×3×55P ×2=2880(种).排队问题,44P 23P一般先考虑特殊情况再去全排列.【例6】 某管理员忘记了自己小保险柜的密码数字,只记得是由四个非0数码组成,且四个数码之和是9.为确保打开保险柜,至少要试多少次?分析:四个数字之和为9的情况有:l+1+1+6=9;1+1+2+5=9;1+1+3+4=9;1+2+2+4=9;1+2+3+3=9;2+2+2+3=9,分别计算这6种情况.对于“l+1+1+6”这种情况,我们只需考虑6,其它1放那都一样;对于“1+1+2+5”这种情况,只需考虑2和5,其它同理,可得答案:12222144444456()P P P P P P +++++=次【巩固】有3所学校共订300份中国少年报,每所学校订了至少98份,至多102份.问:一共有多少种不同的订法?分析:可以分三种情况来考虑:(1)3所学校订的报纸数量互不相同,有98,100,102;99,100,101两种组合,每种组各有=6种不同的排列,此时有6×2=12种订法.(2)3所学校订的报纸数量有2所相同,有98,101,101;99,99,102两种组合,每种组各有3种不同的排列,此时有3×2=6种订法.(3)3所学校订的报纸数量都相同,只有100,100,100一种订法. 由加法原理,不同的订法一共有12+6+l=19种.组 合一般地,从n 个不同元素中取出m 个(m≤n )元素组成一组不计较组内各元素的次序,叫做从n 个不同元素中取出m 个元素的一个组合.由组合的定义可以看出,两个组合是否相同,只与这两个组合中的元素有关,而与取到这些元素的先后顺序无关.只有当两个组合中的元素不完全相同时,它们才是不同的组合.从n 个不同元素中取出m 个元素(m ≤n )的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数.记作(1)...(1)!m mn n n n m C m ⨯-⨯⨯-+=64444744448个数这就是组合数公式.【例7】 以右图中的8个点中的3个为顶点,共可以画出多少个不同的三角形?分析:从8个点中选3个点,一共有56种不同的选法.但是因为在一条直线上的3个点不能组成三角形,所以应去掉两条直线上不合要求的选法.5个点选3个的选法有10种.4个点选3个的选法有4种.所以一共可以画出56-(10+4)=42不同的三角形.【前铺】右图共有11条射线,那么图中有多少个锐角?33P分析:如图,最大的为锐角,它内部的各个角一定也是锐角,图中共有11条射线,任取两条作为角的两边便可确定一个锐角.因为角的两边不存在顺序关系,所以应该用组合.211C =55.几何题中的数个数问题往往可以采用这样的组合方法来解题.【前铺】讲解例题之前请根据本班情况先将组合公式计算练习一下! 计算:(1)241655,,C C C ,(2)352777,,C C C分析:(1)26651521C ⨯==⨯,45543254321C ⨯⨯⨯==⨯⨯⨯,15551C == ; (2)3776535321C ⨯⨯==⨯⨯ ,57765432154321C ⨯⨯⨯⨯==⨯⨯⨯⨯ ,57765432154321C ⨯⨯⨯⨯==⨯⨯⨯⨯注意:从上发现规律m n mn n C C -=.【巩固】从3、5、7、11这四个质数中任取两个相乘,可以得到多少个不同的乘积?分析:由于3,5,7,11都是质数,因此所得乘积各不相同,因此只要求出不同的质数对的个数就可以了.24C =6.【巩固】一个口袋中有4个球,另一个口袋中有6个球,这些球颜色各不相同.从两个口袋中各取2个球,共有多少种不同结果?分析:分步考虑,224661590C C ⨯=⨯=(种).【例8】 有13个队参加篮球比赛,比赛分两个组,第一组七个队,第二组六个队,各组先进行单循环赛(即每队都要与其它各队比赛一场),然后由各组的前两名共四个队再进行单循环赛决定冠亚军.问:共需比赛多少场?分析:分三部分考虑,第一组预赛、第二组顶赛和最后的决赛.第一组要赛:=21(场),第二组要赛:=15(场),决赛阶段要赛:=6(场),总场数:21+15+6=42(场).【拓展】一个盒子装有10个编号依次为1,2,3,…,10的球,从中摸出6个球,使它们的编号之和为奇数,则不同的摸法种数是多少?分析:10个编号中5奇5偶,要使6个球的编号之和为奇数,有以下三种情形:(1)5奇1偶,对奇数只有1种选择,对偶数有5种选择.由乘法原理,有1×5=5种选择; (2)3奇3偶,对奇数有35C =10种选择,对偶数也有35C =10种选择.由乘法原理,有10×10=100种选择;(3)1奇5偶,对奇数有5种选择,对偶数只有1种选择.由乘法原理,有5×1=5种选择. 由加法原理,不同的摸法有:5+100+5=110种.27C 26C 24C【例9】某年级6个班的数学课,分配给甲、乙、丙三名数学老师任教,每人教两个班,分派的方法有多少种?分析:分三步进行:第一步,取两个班分配给甲,与先后顺序无关,是组合问题,有15种选法;第二步,从余下的4个班中选取两个班给6种选法;第三步,剩余的两个班给丙,有1种选法.根据乘法原理,一共有15×6×l=90种不同的分配方法.【拓展】从8名候选人中选出正、副班长各1人,再选出3名班委会成员.一共有多少种不同的选法?分析:先选正、副班长,分别有8种和7种选法.再从剩下的6人中选出3人,有36C=20种选法.由乘法原理,共有8×7×20=1120种不同的选法.【例10】工厂从100件产中任意抽出三件进行检查,问:(1)一共有多少种不同的抽法?(2)如果100件产品有2件次品,抽出的3件中恰好有一件是次品的抽法有多少种?(3)如果100件产品中有2件次品,抽出的3件中至少有一件是次品的抽法有多少种? 、分析:从100件产品中抽出3件检查,与抽出3件产品的顺序无关,是一个组合问题.(1)不同的抽法数就是从100个元素中取3个元素的组合数.3100C=161700(种).(2)可分两步考虑,第一步:从2件次品中抽出一件次品的抽法有12C种;第二步:从98件合格品中抽出2件合格品的抽法有298C种.再用分步计数原理求出总的抽法数,12 2989506C C⨯=.(3)可以从反面考虑,从抽法总数3100C中减去抽出的三件都是合格品的情况,便得到抽出的三件产品中至少有一件是次品的抽法总数.33100981617001520969604C C-=-=.【例11】从10名男生,8名女生中选出8人参加游泳比赛.在下列条件下,分别有多少种选法?(1)恰有3名女生入选;(2)至少有两名女生入选;(3)某两名女生,某两名男生必须入选;(4)某两名女生,某两名男生不能同时入选;(5)某两名女生,某两名男生最多入选两人.分析:(1)恰有3名女生入选,说明男生有5人入选,应为:3581014112C C⨯=;(2)要求至少两名女生人选,那么“只有一名女生入选”和“没有女生入选”都不符合要求.运用包含与排除的方法,从所有可能的选法中减去不符合要求的情况:8871 181010842753C C C C--⨯=.(3)4人必须入选,则从剩下的14人中再选出另外4人. 4141001C =.(4)从所有的选法818C 中减去这4个人同时入选的414C 种可能:818C -414C =42757.(5)分三类情况:4人无人入选,4人仅有1人入选,4人中有2人入选,共:8172614414414C C C C C +⨯+⨯=34749.【例12】 用2个1,2个2,2个3可以组成多少个互不相同的六位数?用2个0,2个1,2个2可以组成多少个互不相同的六位数?分析:先考虑在6个数位上选2个数位放1,这两个1的顺序无所谓,故是组合问题有26C =15种选法;再从剩下的4个数位上选2个放2,有24C =6种选法;剩下的2个数位放3,只有1种选法.由乘法原理,这样的六位数有15×6×l=90个. 在前一问的情况下组成的90个六位数中,首位是1、2、3的各30个.如果将3全部换成0,这30个首位是0的数将不是六位数,所以可以组成互不相同的六位数90—30=60个.【例13】 从1,3,5,7,9中任取三个数字,从2,4,6,8中任取两个数字,组成没有重复数字的五位数,一共可以组成多少个数?分析:整个过程可以分三步完成:第一步,从1,3,5,7,9中任取三个数字,这是一个组合问题,有35C 种方法; 第二步,从2,4,6,8中任取两个数字,也是一个组合问题,有24C 种方法; 第三步,用取出的5个数字组成没有重复数字的五位数,有55P 种方法. 再由分步计数原理求总的个数:35C ×24C ×55P =7200(个).附加题目【附1】小明的书架上原来有6本书,不重新排列,再放上3本书,可以有多少种不同的放法?分析:放第一本书时,有原来的6本书之间和两端的书的外侧共7个位置可以选择;放第二本书时,有已有的7本书之间和两端的书的外侧共8个位置可以选择.同样道理,放第三本书时,有9个位置可以选择.由乘法原理,一共可以有7×8×9=504种不同的放法.【附2】一栋12层楼房备有电梯,第二层至第六层电梯不停.在一楼有3人进了电梯,其中至少有一个要上12楼,则他们到各层的可能情况共有多少种?分析:每个人都可以在第7层至第12层中任何一层下,有6种情况,那么三个人一共有6×6×6=216种情况,其中,都不到12楼的情况有5×5×5=125种.因此,至少有一人要上12楼的情况有216-125=91种.【附3】某校组织进行的一次知识竞赛共有三道题,每道题满分为7分,给分时只能给出自然数l ,2,3,…,7分.已知参加竞赛者每人三道题的得分的乘积都是36,而且任意二人各题得分不完全相同,那么请问参加竞赛的最多有多少人?分析:将36分解为不大于7的三个数的乘积,有1×6×6;3×3×4;2×3×6三种情况.考虑到因数的先后顺序,第一种情况,考虑1有三个位置可选择,其余位置放6,有3种顺序;第二种情况与第一种情况相似,有3种顺序;最后一种情况,有3×2×l=6种顺序.由加法原理,一共有12种顺序,所以参赛的最多有12人.【附4】某市的电视台有八个节目准备分两天播出,每天播出四个,其中某动画片和某新闻播报必须在第一天播出一场,体育比赛必须在第二天播出,那么一共有多少种不同的播放节目方案?分析:某动画片和某新闻播报在第一天播放,对于动画片而言,可以选择当天四个节目时段的任何一个时段,一共有4种选择,对于新闻播报可以选择动画片之外的三个时段中的任何一个时段,一共有3种选择,体育比赛可以在第二天的四个节目时段中任选一个,一共有4种选择.剩下的5个节目随意安排顺序,有=120种选择.由乘法原理,一共有4×3×4×120=5760种不同的播放节目方案.【附5】某旅社有导游9人,其中3人只会英语,2人只会日语,其余4个既会英语又会日语.现要从中选6人,其中3人做英语导游,另外3人做日语导游.则不同的选择方法有多少种?分析:此题若从“多面手”出发来做,不太简便,由于只会日语的人较少,所以针对只会日语的人讨论,分三类:(1)只会日语的2人都出场,则还需1个多面手做日语导游,有4种选择.从剩下的只会英语的人和多面手共6人中选3人做英语导游,有36C =20种,由乘法原理,有4×20=80种选择.(2)只会日语的2人中有1人出场,有2种选择.还需从多面手中选2人做日语导游,有24C =6种选择.剩下的只会英语的人和多面手共5人中选3人做英语导游,有35C =10种选择.由乘法原理,有2×6×10=120种选择.(3)只会日语的人不出场,需从多面手中选3人做日语导游,有34C =4种选择.剩下的只会英语的人和多面手共4人中选3人做英语导游,有34C =4种选择.由乘法原理,有4×4=1655P种选择.根据加法原理,不同的选择方法一共有80+120+16=216种.【附6】五个瓶子都贴了标签,其中恰好贴错了三个,贴错的可能情况共有多少个? 分析:首先考虑哪三个瓶子贴错了,有35C 种可能,3个瓶子贴错后互相贴错标签又分成两种不同情况.所以共有35C ×2=20(种).此题容易出错的是三个出错的瓶子确定后,他们之间错误的可能情况数目,有的同学很容易忽略这一环节,而有的会不假思索的把它当作一个全排列,这都是不正确的.【附7】马路上有编号为1,2,3,…,l0的十只路灯,为节约用电又能看清路面,可以把其中的三只灯关掉,但又不能同时关掉相邻的两只或三只,在两端的灯也不能关掉的情况下,求满足条件的关灯方法有多少种?分析:l0只灯关掉3只,实际上还亮7只灯,而又要求不关掉两端的灯和相邻的灯,此题可以转化为在7只亮着的路灯之问的六个空档中插入三只熄灭的灯,有36C =20种插法.练习十二1.给出1,2,3,4四个数字,试求:(1)可组成多少个数字不重复的四位数? (2)可组成多少个数字不重复的自然数? (3)可组成多少个不超过四位的自然数?分析:(1)44P =4×3×2×1=24个数字不重复的四位数.(2)利用1,2,3,4可组成数字不重复的一位、两位、三位、四位自然数,分类考虑:12344444P P P P +++=64个.(3)此题数位上的数字允许重复,利用1,2,3,4可组成一位、两位、三位、四位自然数.进一步考虑,一位数有4个,两位数有4×4=16个,三位数有4×4×4=64个,四位数有4×4×4×4=256个.故共有4+16+64+256=340个.2.由四个不同的非0数字组成的所有四位数中,数字和等于12的共有多少个?分析:四个数字都不同而数字和为12的数字有1,2,3,6和1,2,4,5两种情况,对于每种情况,可以组成=24个不同的四位数.对于所以,共可以组成24+24=48个不同的四位数.3.桌子上有3张红卡片,2张黄卡片,和1张蓝卡片,如果将它们横着排成一排,同种颜色的卡片不分开,一共有多少种排法?分析:32133213P P P P ⨯⨯⨯=72种.4.在1~100中任意取出两个不同的数相加,其和是偶数的共有多少种不同的取法?44P分析:两个数的和是偶数,这两个数必然同是奇数或同是偶数,而取出的两个数与顺序无关,所以是组合问题;从50个偶数中取出2个,有250C =1225种取法;从50个奇数中取出2个,也有250C =l225种取法.根据加法原理,一共有1225+1225=2450种不同的取法. 5.在一个口袋内装有大小相同的7个白球和1个黑球. (1)从口袋内取出3个球,共有多少种取法?(2)从口袋取出3个球,使其中含有1个黑球,有多少种取法? (3)从口袋内取出3个球,使其中不含黑球,有多少种取法?分析:(1)从口袋内的8个球中取出3个球,与顺序无关,是组合问题,其取法种数是56种. (2)从口袋内取出的3个球中有1个是黑球,于是还要从7个白球中再取出2个,其取法种数是21种.(3)由于所取出的3个球中不含黑球,也就是要从7个白球中取出3个球,其取法种数是35种.6.在6名女同学,5名男同学中选出4名女同学,3名男同学站成一排,有多少种排法?分析:男女同学分别考虑,再整体排列.437657C C P ⨯⨯ =756000(种).。

五年级下册数学试题-竞赛思维能力训练:01排列组合(5年级竞赛)学生版

五年级下册数学试题-竞赛思维能力训练:01排列组合(5年级竞赛)学生版

一般地,从n 个不同的元素中取出m (n m ≤)个元素的所有排列的个数,叫做从n 个不同的元素的排列中取出m 个元素的排列数,我们把它记做mn P 。

)1()2()1(+-⋅⋅-⋅-⋅=m n n n n P m n ΛΛ一般地,对于n m =的情况,表示从n 个不同元素中取n 个元素排成一列所构成排列的排列数.这种n 个排列全部取出的排列,叫做n 个不同元素的全排列,记做nn P 。

123)2()1(⨯⨯⋅⋅-⋅-⋅=ΛΛn n n P m n一般地,从n 个不同元素中取出m (n m ≤)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数,记作mn C 。

123)2()1()1()2()1(⨯⨯⋅⋅-⋅-⋅+-⋅⋅-⋅-⋅==ΛΛΛΛm mm m n n n n P P C m m m n m n组合数有下面的重要性质:m n n m n C C -=(n m ≤); 1=n n C ; 10=n C ; n C n =1 。

插板法一般用来解决求分解一定数量的无差别物体的方法的总数,使用插板法一般有三个要求:①所要分解的物体一般是相同的;②所要分解的物体必须全部分完;③参与分物体的组至少都分到1个物体,不能有没分到物体的组出现。

在有些题目中,已知条件与上面的三个要求并不一定完全相符,对此应当对已知条件进行适当的变形,使得它与一般的要求相符,再适用插板法。

使用插板法一般有如下三种类型:(1)m 个人分n 个东西,要求每个人至少有一个。

这个时候我们只需要把所有的东西排成一排,在其中的)1(-n 个空隙中放上)1(-m 个插板,所以分法的数目为11--m n C ;(2)m 个人分n 个东西,要求每个人至少有a 个。

这个时候,我们先发给每个人)1(-a 个,还剩下)]1([--a m n 个东西,这个时候,我们把剩下的东西按照类型(1)来处理就可以了,所以分法的数目为11)1(----m a m n C ;(3)m 个人分n 个东西,允许有人没有分到。

五年级思维专项训练10 排列与组合(原卷+解析版)全国通用

五年级思维专项训练10  排列与组合(原卷+解析版)全国通用

五年级思维训练10 排列与组合1、奥运吉祥物中的5个“福娃”—贝贝、京京、欢欢、迎迎、妮妮取“北京欢迎您”的谐音。

如果在盒子中从左向右放5个不同的“福娃”,有多少种不同的放法。

2、5家企业中的每两家都签订了一份合同,那么他们共签订了多少份合同?3、如果一个自然数中任一数位上的数字都大于其左边的每个数字,则称这个数是“上升数”。

由1,2,3,4,5这5个数字组成的4位数中“上升数”共有多少个。

4、某次宴会共有n个人参加,每个人都与其他的人互相恰好握手一次,若在此宴会中总共握手231次,请问n的值为多少?5、一种号码有4位,其中前两位上取26个字母中的字母,后两位取0~9这10个数字中的数字,没有相同的数字的四位号码的个数有多少个?6、从6双不同的鞋中取出2只,其中没有成双的鞋,共有多少种不同取法?7、将A、B、C、D、E、F、G七位学生在操场排成一列,其中学生B与C必须相邻,请问共有多少种不同的排列方法?8、6位小朋友玩游戏,他们打算分成3组,每组2人,请问共有多少种不同的分法?9、4个男孩和4个女孩参加歌唱比赛,他们一下接着一个地唱。

如果假定两个女孩不能连着唱,必须隔开,那么能排成多少种不同的顺序?10、新年晚会共有8个节目,其中有3个非歌唱类节目,排列节目单时规定,非歌唱类节目相邻,而且第一个和最后一个节目都是歌唱类节目,则节目单可有多少种不同的排法?11、有4名同学约定去上网,现只有3台电脑,只好有两个同学上同一台电脑,则共有种不同的上网方式。

A.64B.81C.36D.7212、把同一排6张座位编号为1、2、3、4、5、6的电影票全部分给4个人,每人至少分一张最多分2张,且这2张具有连续的编号,那么不同的分法为多少种?13、A、B和C被安排坐入排成一列的6个座位中,若任意二个人都不可以相邻而坐,共有多少种不同的入座方式?14、请问由1,2,3,4,5五个数字所构成的所有不同的五位数之总和(不允许数字重复)等于多少?15、从0、1、2、3、4、5这6个数字中,任取3个组成三位数,共可组成多少个不同的三位数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7 人站成一排 ,其中甲乙相邻, 共有多少种不同的排法?
7 人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法?
7 人并排站成一行,如果甲乙两个必须不相邻,那么共有多少种不同的排法?
一个晚会的节目有 4 个舞蹈,2 个相声,3 个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?
捆绑法
插空法
(1)6 本不同的书,甲分 1 本,乙分 2 本,丙 3 本,共有多少种分法?
(2)6 本不同的书,一个人分 1 本,一个人分 2 本,一个人分 3 本,共有多少种分法?(3)6 本不同的书,平均分成三堆,共有多少种分法?
3 名男生和
4 名女生排成一排,在下列不同要求下,求排法数
(1)甲不在最中间,也不在两端
综合练习
分组与定序
(2)甲、乙两人必须排在两端
(3)男生必须相邻,女生必须相邻
(4)男生不能相邻
(5)男女相间
(6)如果这 7 个人排成两排,前面 3 人,后面 4 人
作业与复习
【必做】 r 【选做】 【必做】
7 人站成一排 ,其中甲乙相邻且丙丁戊相邻, 共有多少种不同的排法?
【必做】
6 人并排站成一行,如果甲乙两个必须不相邻,那么共有多少种不同的排法?
10 本不同的书,甲分 2 本,乙分 3 本,丙 5 本,共有多少种分法?
10 本不同的书,一个人分 2 本,一个人分 3 本,一个人分 5 本,共有多少种分法?。

相关文档
最新文档