数字信号处理实验八

数字信号处理实验八
数字信号处理实验八

实验报告

实验名称:FIR数字滤波器设计及应用

课程名称____数字信号处理________

院系部:电气与电子工程专业班级:信息1002

学生姓名:王萌学号: 11012000219同组人:实验台号:

指导教师:范杰清成绩:

实验日期:

华北电力大学

一、实验目的

加深理解

FIR 数字滤波器的时域特性和频域特性,掌握FIR 数字

滤波器的设计原理与设计方法,以及FIR 数字滤波器的应用。 二、 实验原理

FIR

数字滤波器可以设计成具有线性相位,在数据通信、图像处理、

语音信号处理等实际应用领域得到广泛应用。

M 阶FIR 数字滤波器的系统函数为:

FIR 数字滤波器的单位脉冲响应h [k ]是长度为M +1的有限长因果序列。当满足对称条件时,该FIR 数字滤波器具有线性相位。FIR 数字滤波器设计方法主要有窗口法、频率取样法及优化设计法。

MATLAB 中提供的常用FIR 数字滤波器设计函数有:

fir1 窗函数法设计FIR 数字滤波器(低通、高通、带通、 带阻、多频带滤波器)

fir2 频率取样法设计FIR 数字滤波器:任意频率响应 firls FIR 数字滤波器设计:指定频率响应 firrcos 升余弦型 FIR 数字滤波器设计 intfilt 内插FIR 数字滤波器设计

kaiserord 凯塞(Kaiser)窗函数设计法的阶数估计

firpm Parks-McClellan 算法实现FIR 数字滤波器优化设计 firpmord Parks-McClellan 数字滤波器的阶数选择 cremez 复系数非线性相位FIR 等波纹滤波器设计

1、 窗口法设计FIR 数字滤波器

fir1函数可以很容易地实现FIR 数字滤波器窗口法设计。 可设计低通、高通、带通、带阻滤波器、多频带滤波器。

k

M

k z k h z H -=∑=][)(0

b = fir1(M, Wc)

b = fir1(M, Wc, 'ftype') b = fir1(M, Wc, window)

b = fir1(M, Wc, 'ftype', window) b = fir1(M,Wc,‘ ftype',window)

输出参数:b 为FIR 数字滤波器的M +1个系数构成的矩阵 (即系统的单位脉冲响应)

输入参数:M 为FIR 数字滤波器的阶数。 Wc 为3dB 截频:0 < Wc < 1, 1 对应数字频率。 ftype 指定滤波器类型,当ftype 为: ’high ’, 指定一个截频为Wc 的高通滤波器;

’stop ’ 指定一个带阻滤波器,其阻带截止频率为Wc=[w1,w2]; ’DC-0’ 在多频带滤波器中,使第一个频带0

2. 频率取样法设计FIR 滤波器

fir2函数可以实现FIR 数字滤波器的频率取样法设计。 可设计任意形状频率响应的滤波器。格式如下: b = fir2(M, f, m)

b = fir2(M, f, m, window)

输出参数:b 为FIR 数字滤波器的M +1个系数构成的矩阵。 输入参数:M 为滤波器的阶数。

f 指定归一化的各频带边界频率,从0到1递增, 1对应于f sam /2,即数字频率Ω=π。

m 指定各频带边界频率处的幅度响应, 因此f 和m 的长度相等,即length(f)=length(a)。

window 指定窗函数,若不指定,默认为哈明窗。 三、实验内容

1.分别使用矩形窗、汉明窗、汉宁窗设计一个阶数 M=9的FIR 数字

(rad)

3

π

=

c Ω

低通滤波器,截频为

(1)画出各种方法设计的数字滤波器的单位脉冲响应。

(2)画出它们的幅频响应,并比较各滤波器的通带纹波和阻带纹波,有何结论?

(3)若输入为 计算各滤波器的输出并画出其波形. 解答:

(1)

b1=fir1(9,1/3,boxcar(10)); [H1,w]=freqz(b1,1,512); H1_db=20*log10(abs(H1)); b2=fir1(9,1/3,hamming(10)); [H2,w]=freqz(b2,1,512); H2_db=20*log10(abs(H2)); b3=fir1(9,1/3,hanning(10)); [H3,w]=freqz(b3,1,512); H3_db=20*log10(abs(H3)); subplot(4,1,1); stem(b1);

title('矩形窗得到的FIR 滤波器脉冲响应') subplot(4,1,2); stem(b2);

title('哈明窗得到的FIR 滤波器脉冲响应') subplot(4,1,3); stem(b3);

title('汉宁窗得到的FIR 滤波器脉冲响应')

subplot(4,1,4); plot(w,H1_db,w,H2_db,'r--',w,H3_db,'y--'); title('Frequency response')

legend('rectangular window','hamming window','hanning window') grid on

)2

cos( )4cos(21][k k k x π

π++=

(3)k=0:127;

x=1+2*cos(pi/4*k)+cos(pi/2*k);

b1=fir1(9,1/3,boxcar(10));

H1=freqz(b1,x,128);

b2=fir1(9,1/3,hamming(10));

H2=freqz(b2,x,128);

b3=fir1(9,1/3,hanning(10));

H3=freqz(b3,x,128);

subplot(3,1,1); stem(H1);

title('矩形窗得到的FIR滤波器输出') subplot(3,1,2); stem(H2);

title('哈明窗得到的FIR滤波器输出') subplot(3,1,3); stem(H3);

title('汉宁窗得到的FIR滤波器输出')

2.利用频率抽样方法设计FIR 数字低通滤波器,并绘出衰耗特性。已知阶数M=15,给定指标为:

改变Ad[4]的值,观察该FIR 低通数字滤波器的衰耗特性的变化。

f=[0 1/(7*pi) 2/(7*pi) 3/(7*pi) 4/(7*pi) 5/(7*pi) 6/(7*pi) 1];

m=[1 1 1 1 0.389 0 0 0]; b=fir2(15,f,m);

[h,w] = freqz(b, 1, 128);

legend('Ideal', 'fir2 Designed') figure(1);

plot(f,m,w/pi,abs(h)) ; grid

title('Comparison of Frequency Response Magnitudes') figure(2); H_db=20*log10(abs(h));plot(w,H_db);

??

?

??====7

,6,504389

.03,2,1,01][m m m m A d

3.利用频率抽样方法设计FIR 数字带通滤波器,并绘出衰耗特性。已知阶数M=15,给定指标为:

改变Ad[2]或Ad[6]的值,观察该FIR 带通数字滤波器的衰耗特性的变化。

f=[0 1/(7*pi) 2/(7*pi) 3/(7*pi) 4/(7*pi) 5/(7*pi) 6/(7*pi) 1]; m=[0 0 0.456 1 1 1 0.456 0]; b=fir2(15,f,m);

[h,w] = freqz(b, 1, 128);

legend('Ideal', 'fir2 Designed') figure(1);

plot(f,m,w/pi,abs(h)) ; grid

title('Comparison of Frequency Response Magnitudes') figure(2);

H_db=20*log10(abs(h)); plot(w,H_db);

grid

??

?

??====5

,4,316,2456

.07,1,000][m m m m A d

%改变A d[2]的值:

f=[0 1/(7*pi) 2/(7*pi) 3/(7*pi) 4/(7*pi) 5/(7*pi) 6/(7*pi) 1]; m=[0 0 0.20 1 1 1 0.456 0];

b=fir2(15,f,m);

[h,w] = freqz(b, 1, 128);

legend('Ideal', 'fir2 Designed')

figure(1);

plot(f,m,w/pi,abs(h)) ;

grid

title('Comparison of Frequency Response Magnitudes') figure(2);

H_db=20*log10(abs(h));

plot(w,H_db);

grid

4. 设计一窄带通FIR数字滤波器,通带中心频率

带宽不大于。

(1)利用fir1函数和kaiser窗设计该滤波器。

(2)利用fir3函数设计该滤波器,达到fir1函数的设计效果。(3)分别画出上述两个滤波器的实现结构,并比较其经济性。

b1=fir1(9, [0.45 0.55]/pi, kaiser(10,0.5));

[H1,w]=freqz(b1,1,512);

H1_db=20*log10(abs(H1));

subplot(2,1,1); stem(b1);

title('矩形窗得到的FIR滤波器脉冲响应|')

subplot(2,1,2); plot(w,H1_db);

title('矩形窗设计的窄带通滤波器');

grid

f=[0 9/(20*pi) 9/(20*pi) 11/(20*pi) 11/(20*pi) 1];

m=[0 0 1 1 0 0];

b=fir2(41,f,m);

[h,w] = freqz(b, 1, 128);

legend('Ideal', 'fir2 Designed')

figure(1);

plot(f,m,w/pi,abs(h)) ;

grid

title('Comparison of Frequency Response Magnitudes') figure(2);

H_db=20*log10(abs(h));

plot(w,H_db);

四、思考题

1.为什么通信应用中需要线性相位?相位失真将会对信号产生

什么影响?

答:线性相位系统稳定;相位失真会部分导致使信号失真

2.为什么FIR滤波器无需考虑稳定性问题?

答:单位脉冲响应是有限长的

3.在相同的设计指标时,为何FIR数字滤波器的阶数远高于IIR

数字滤波器的阶数?

答:FIR是有限长的

4.线性相位的条件是什么?

答:满足h(n)=+或-h(N-1-n)

5.在FIR窗口法设计中,为何采用不同特性的窗函数?选用窗函

数的依据是什么?

答:在满足阻带衰减的前提下,尽可能选择主瓣宽度小的窗函数,减少衰减

6.在频率取样法中,如果阻带衰耗不够,采取什么措施?

答:在通带和阻带间设置幅度非0过渡样本点

7.窗口法和频率取样法的优缺点是什么?

答:窗口法的优点是简单,有闭合的公式可用,性能及参数都有表格资料可查,计算程序简单,较为实用。缺点是当系统函数较为复杂时,hd(n)不容易由反付里叶变换求得。边界频率因为加窗的影响而不易控制。

频率取样法直接从频域进行设计,物理概念清楚直观方便;频率采样设计法对于频率响应只有少数几个非零值取样的窄带选频滤波器特别有效,但对于大型系统不适用。

8.FIR数字滤波器可否设计成非因果离散系统?

答:否

数字信号处理实验(吴镇扬)答案-2

(1) 观察高斯序列的时域和幅频特性,固定信号)(n x a 中参数p=8,改变q 的 值,使q 分别等于2、4、8,观察他们的时域和幅频特性,了解当q 取不同值时,对信号序列的时域和幅频特性的影响;固定q=8,改变p,使p 分别等于8、13、14,观察参数p 变化对信号序列的时域和幅频特性的影响,注意p 等于多少时会发生明显的泄漏现象,混叠是否也随之出现?记录实验中观察到的现象,绘出相应的时域序列和幅频特性曲线。 ()() ?????≤≤=-其他0150,2n e n x q p n a 解:程序见附录程序一: P=8,q 变化时: t/T x a (n ) k X a (k ) t/T x a (n ) p=8 q=4 k X a (k ) p=8 q=4 t/T x a (n ) p=8 q=8 k X a (k ) p=8 q=8 幅频特性 时域特性

t/T x a (n ) p=8 q=8 k X a (k ) p=8 q=8 t/T x a (n ) 5 10 15 k X a (k ) p=13 q=8 t/T x a (n ) p=14 q=8 5 10 15 k X a (k ) p=14 q=8 时域特性幅频特性 分析: 由高斯序列表达式知n=p 为期对称轴; 当p 取固定值时,时域图都关于n=8对称截取长度为周期的整数倍,没有发生明显的泄漏现象;但存在混叠,当q 由2增加至8过程中,时域图形变化越来越平缓,中间包络越来越大,可能函数周期开始增加,频率降低,渐渐小于fs/2,混叠减弱; 当q 值固定不变,p 变化时,时域对称中轴右移,截取的时域长度渐渐地不再是周期的整数倍,开始无法代表一个周期,泄漏现象也来越明显,因而图形越来越偏离真实值, p=14时的泄漏现象最为明显,混叠可能也随之出现;

数字信号处理实验一

实验一 离散时间信号分析 班级 信息131班 学号 201312030103 姓名 陈娇 日期 一、实验目的 掌握两个序列的相加、相乘、移位、反褶、卷积等基本运算。 二、实验原理 1.序列的基本概念 离散时间信号在数学上可用时间序列)}({n x 来表示,其中)(n x 代表序列的第n 个数字,n 代表时间的序列,n 的取值范围为+∞<<∞-n 的整数,n 取其它值)(n x 没有意义。离散时间信号可以是由模拟信号通过采样得到,例如对模拟信号)(t x a 进行等间隔采样,采样间隔为T ,得到)}({nT x a 一个有序的数字序列就是离散时间信号,简称序列。 2.常用序列 常用序列有:单位脉冲序列(单位抽样)) (n δ、单位阶跃序列)(n u 、矩形序列)(n R N 、实指数序列、复指数序列、正弦型序列等。 3.序列的基本运算 序列的运算包括移位、反褶、和、积、标乘、累加、差分运算等。 4.序列的卷积运算 ∑∞ -∞==-= m n h n x m n h m x n y )(*)()()()( 上式的运算关系称为卷积运算,式中代表两个序列卷积运算。两个序列的卷积是一个序列与另一个序列反褶后逐次移位乘积之和,故称为离散卷积,也称两序列的线性卷积。其计算的过程包括以下4个步骤。 (1)反褶:先将)(n x 和)(n h 的变量n 换成m ,变成)(m x 和)(m h ,再将)(m h 以纵轴为对称轴反褶成)(m h -。

(2)移位:将)(m h -移位n ,得)(m n h -。当n 为正数时,右移n 位;当n 为负数时,左移n 位。 (3)相乘:将)(m n h -和)(m x 的对应点值相乘。 (4)求和:将以上所有对应点的乘积累加起来,即得)(n y 。 三、主要实验仪器及材料 微型计算机、Matlab6.5 教学版、TC 编程环境。 四、实验内容 (1)用Matlab 或C 语言编制两个序列的相加、相乘、移位、反褶、卷积等的程序; (2)画出两个序列运算以后的图形; (3)对结果进行分析; (4)完成实验报告。 五、实验结果 六、实验总结

数字信号处理实验

实验一: 系统及响应时域采样及频域采样 1. 实验目的 (1)掌握用卷积求系统响应及卷积定理的验证; (2)掌握连续信号经理想采样前后的频谱变化关系, 加深对时域采样定理的理解。 (3)掌握频域采样引起时域周期化概念, 加深对频域采样定理的理解。 (4) 掌握序列傅里叶变换的计算机实现方法, 利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。 3. 实验内容及步骤 (1) 认真复习卷积定理、 时域采样和频域采样理论。 (2) 编制实验用主程序及相应子程序。 ①系统单位脉冲响应序列产生子程序。 有限长序列线性卷积子程序, 用于完成两个给定长度的序列的卷积。 可以直接调用MATLAB 语言中的卷积函数conv 。 conv 用于两个有限长度序列的卷积,它假定两个序列 都从n=0开始。调用格式如下: y=conv (x, h) ② 卷积定理的验证。 (3)时域采样定理的验证:信号产生子程序, 用于产生实验中要用到的下列信号序列: x a (t)=Ae -at sin(Ω0t)u(t) 进行采样, 可得到采样序列 x a (n)=x a (nT)=Ae -anT sin(Ω0nT)u(n), 0≤n<50 其中A 为幅度因子, a 为衰减因子, Ω0是模拟角频率, T 为采样间隔。 这些参数都要在实验过程中由键盘输入, 产生不同的x a (t)和x a (n)。 >> %1时域采样序列分析 A=400;a=200;w=200; n=0:50-1;fs=1000; xa=A*exp((-a)*n/fs).*sin(w*n/fs); k=-200:200;w=(pi/100)*k; Xk=fft(xa,length(k));magX=abs(Xk);angX=angle(Xk); subplot(2,1,1); stem(n,xa,'.');xlabel('n');ylabel('xa(n)'); title('信号的类型'); )()(10n R n h a =) 3()2(5.2)1(5.2)()(-+-+-+=n n n n n h b δδδδ1 ,,2,1,0,)()()(-==M k e H e X e Y k k k j j a j ωωω

数字信号处理实验一

一、实验目的 1. 通过本次实验回忆并熟悉MATLAB这个软件。 2. 通过本次实验学会如何利用MATLAB进行序列的简单运算。 3. 通过本次实验深刻理解理论课上的数字信号处理的一个常见方法——对时刻n的样本附近的一些样本求平均,产生所需的输出信号。 3. 通过振幅调制信号的产生来理解载波信号与调制信号之间的关系。 二、实验内容 1. 编写程序在MATLAB中实现从被加性噪声污染的信号中移除噪声的算法,本次试验采用三点滑动平均算法,可直接输入程序P1.5。 2. 通过运行程序得出的结果回答习题Q1.31-Q1.33的问题,加深对算法思想的理解。 3. 编写程序在MATLAB中实现振幅调制信号产生的算法,可直接输入程序P1.6。 4. 通过运行程序得出的结果回答习题Q1.34-Q1.35的问题,加深对算法思想的理解。 三、主要算法与程序 1. 三点滑动平均算法的核心程序: %程序P1.5 %通过平均的信号平滑 clf; R=51; d=0.8*(rand(R,1)-0.5);%产生随噪声 m=0:R-1; s=2*m.*(0.9.^m);%产生为污染的信号 x=s+d';%产生被噪音污染的信号 subplot(2,1,1); plot(m,d','r-',m,s,'g--',m,x,'b-.');

xlabel('时间序号n');ylabel('振幅'); legend('d[n]','s[n]','x[n]'); x1=[0 0 x];x2=[0 x 0];x3=[x 0 0]; y=(x1+x2+x3)/3; subplot(2,1,2); plot(m,y(2:R+1),'r-',m,s,'g--'); legend('y[n]','s[n]'); xlabel('时间序号n');ylabel('振幅'); 2. 振幅调制信号的产生核心程序:(由于要几个结果,因此利用subplot函数画图) %程序P1.6 %振幅调制信号的产生 n=0:100; m=0.1;fH=0.1;fL=0.01; m1=0.3;fH1=0.3;fL1=0.03; xH=sin(2*pi*fH*n); xL=sin(2*pi*fL*n); y=(1+m*xL).*xH; xH1=sin(2*pi*fH1*n); xL1=sin(2*pi*fL1*n); y1=(1+m1*xL).*xH; y2=(1+m*xL).*xH1; y3=(1+m*xL1).*xH; subplot(2,2,1); stem(n,y); grid; xlabel('时间序号n');ylabel('振幅');title('m=0.1;fH=0.1;fL=0.01;'); subplot(2,2,2); stem(n,y1); grid; xlabel('时间序号n');ylabel('振幅');title('m=0.3;fH=0.1;fL=0.01;'); subplot(2,2,3); stem(n,y2); grid; xlabel('时间序号n');ylabel('振幅');title('m=0.3;fH=0.3;fL=0.01;'); subplot(2,2,4); stem(n,y3); grid;

数字信号处理实验报告(实验1_4)

实验一 MATLAB 仿真软件的基本操作命令和使用方法 实验容 1、帮助命令 使用 help 命令,查找 sqrt (开方)函数的使用方法; 2、MATLAB 命令窗口 (1)在MATLAB 命令窗口直接输入命令行计算3 1)5.0sin(21+=πy 的值; (2)求多项式 p(x) = x3 + 2x+ 4的根; 3、矩阵运算 (1)矩阵的乘法 已知 A=[1 2;3 4], B=[5 5;7 8],求 A^2*B

(2)矩阵的行列式 已知A=[1 2 3;4 5 6;7 8 9],求A (3)矩阵的转置及共轭转置 已知A=[1 2 3;4 5 6;7 8 9],求A' 已知B=[5+i,2-i,1;6*i,4,9-i], 求B.' , B' (4)特征值、特征向量、特征多项式 已知A=[1.2 3 5 0.9;5 1.7 5 6;3 9 0 1;1 2 3 4] ,求矩阵A的特征值、特征向量、特征多项式;

(5)使用冒号选出指定元素 已知:A=[1 2 3;4 5 6;7 8 9];求A 中第3 列前2 个元素;A 中所有列第2,3 行的元素; 4、Matlab 基本编程方法 (1)编写命令文件:计算1+2+…+n<2000 时的最大n 值;

(2)编写函数文件:分别用for 和while 循环结构编写程序,求 2 的0 到15 次幂的和。

5、MATLAB基本绘图命令 (1)绘制余弦曲线 y=cos(t),t∈[0,2π]

(2)在同一坐标系中绘制余弦曲线 y=cos(t-0.25)和正弦曲线 y=sin(t-0.5), t∈[0,2π] (3)绘制[0,4π]区间上的 x1=10sint 曲线,并要求: (a)线形为点划线、颜色为红色、数据点标记为加号; (b)坐标轴控制:显示围、刻度线、比例、网络线 (c)标注控制:坐标轴名称、标题、相应文本; >> clear;

数字信号处理实验

实验一 离散傅里叶变换(DFT )对确定信号进行谱分析 一.实验目的 1.加深对DFT 算法原理和基本性质的理解。 2.熟悉DFT 算法和原理的编程方法。 3.学习用DFT 对信号进行谱分析的方法,了解可能出现的误差及其原因,以便在实际中正确利用。 二.实验原理 一个连续信号)(t x a 的频谱可以用其傅里叶变换表示,即 dt e t x j X t j a a Ω-∞ ∞ -? = Ω)()( 若对)(t x a 进行理想采样可得采样序列 )(|)()(nT x t x n x a nT t a === 对)(n x 进行DTFT ,可得其频谱为: ∑∞ -∞ =-= n n j j e n x e X ωω )()( 其中数字频率ω与模拟频率Ω的关系为: s f T Ω = Ω=ω )(n x 的DFT 为∑∞ -∞ =-= n nk N j e n x k X π 2)()( 若)(t x a 是限带信号,且在满足采样定理的条件下,)(ω j e X 是)(Ωj X a 的周期延拓, )(k X 是)(ωj e X 在单位圆上的等间隔采样值,即k N j e X k X πωω2| )()(= =。 为在计算机上分析计算方便,常用)(k X 来近似)(ω j e X ,这样对于长度为N 的有限 长序列(无限长序列也可用有限长序列来逼近),便可通过DFT 求其离散频谱。 三.实验内容 1.用DFT 对下列序列进行谱分析。 (1))()04.0sin(3)(100n R n n x π=

1 (2)]0,0,0,0,0,0,0,0,1,1,1,1[)(=n x 2.为了说明高密度频谱和高分辨率频谱之间的区别,考察序列 )52.0cos()48.0cos()(n n n x ππ+= (1)当0≤n ≤10时,确定并画出x(n)的离散傅里叶变换。 (2)当0≤n ≤100时,确定并画出x(n)的离散傅里叶变换。 四.实验结果 1. (1) (2)

数字信号处理实验答案完整版

数字信号处理实验答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

实验一熟悉Matlab环境 一、实验目的 1.熟悉MATLAB的主要操作命令。 2.学会简单的矩阵输入和数据读写。 3.掌握简单的绘图命令。 4.用MATLAB编程并学会创建函数。 5.观察离散系统的频率响应。 二、实验内容 认真阅读本章附录,在MATLAB环境下重新做一遍附录中的例子,体会各条命令的含义。在熟悉了MATLAB基本命令的基础上,完成以下实验。 上机实验内容: (1)数组的加、减、乘、除和乘方运算。输入A=[1 2 3 4],B=[3 4 5 6],求C=A+B,D=A-B,E=A.*B,F=A./B,G=A.^B并用stem语句画出A、B、C、D、E、F、G。 clear all; a=[1 2 3 4]; b=[3 4 5 6]; c=a+b; d=a-b; e=a.*b; f=a./b; g=a.^b; n=1:4; subplot(4,2,1);stem(n,a); xlabel('n');xlim([0 5]);ylabel('A'); subplot(4,2,2);stem(n,b); xlabel('n');xlim([0 5]);ylabel('B'); subplot(4,2,3);stem(n,c); xlabel('n');xlim([0 5]);ylabel('C'); subplot(4,2,4);stem(n,d); xlabel('n');xlim([0 5]);ylabel('D'); subplot(4,2,5);stem(n,e); xlabel('n');xlim([0 5]);ylabel('E'); subplot(4,2,6);stem(n,f); xlabel('n');xlim([0 5]);ylabel('F'); subplot(4,2,7);stem(n,g); xlabel('n');xlim([0 5]);ylabel('G'); (2)用MATLAB实现下列序列: a) x(n)= 0≤n≤15 b) x(n)=e+3j)n 0≤n≤15 c) x(n)=3cosπn+π)+2sinπn+π) 0≤n≤15 d) 将c)中的x(n)扩展为以16为周期的函数x(n)=x(n+16),绘出四个周期。

数字信号处理实验五

实验五:FIR数字滤波器设计与软件实现 信息学院 10电本2班王楚炘 2010304224 10.5.1 实验指导 1.实验目的 (1)掌握用窗函数法设计FIR数字滤波器的原理和方法。 (2)掌握用等波纹最佳逼近法设计FIR数字滤波器的原理和方法。 (3)掌握FIR滤波器的快速卷积实现原理。 (4)学会调用MATLAB函数设计与实现FIR滤波器。 2.实验内容及步骤 (1)认真复习第七章中用窗函数法和等波纹最佳逼近法设计FIR数字滤波器的原理; (2)调用信号产生函数xtg产生具有加性噪声的信号xt,并自动显示xt及其频谱,如图10.5.1所示; 图10.5.1 具有加性噪声的信号x(t)及其频谱如图(3)请设计低通滤波器,从高频噪声中提取xt中的单频调幅信号,要求信号幅频失真小于0.1dB,将噪声频谱衰减60dB。先观察xt的频谱,确定滤波器指标参数。 (4)根据滤波器指标选择合适的窗函数,计算窗函数的长度N,

调用MATLAB函数fir1设计一个FIR低通滤波器。并编写程序,调用MATLAB快速卷积函数fftfilt实现对xt的滤波。绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。 (4)重复(3),滤波器指标不变,但改用等波纹最佳逼近法,调用MATLAB函数remezord和remez设计FIR数字滤波器。并比较两种设计方法设计的滤波器阶数。 提示:MATLAB函数fir1和fftfilt的功能及其调用格式请查阅本书 第7章和第?章; 采样频率Fs=1000Hz,采样周期T=1/Fs; 根据图10.6.1(b)和实验要求,可选择滤波器指标参数:通带截止频率fp=120Hz,阻带截至频率fs=150Hz,换算成数字频率,通带截止频率,通带最大衰为0.1dB,阻带截至频率,阻带最小衰为60dB。]实验程序框图如图10.5.2所示,供读者参考。 Fs=1000,T=1/Fs xt=xtg 产生信号xt, 并显示xt及其频谱 用窗函数法或等波纹最佳逼近法 设计FIR滤波器hn 对信号xt滤波:yt=fftfilt(hn,xt) 1、计算并绘图显示滤波器损耗函数 2、绘图显示滤波器输出信号yt End 图10.5.2 实验程序框图 4.思考题 (1)如果给定通带截止频率和阻带截止频率以及阻带最小衰减,如何用窗函数法设计线性相位低通滤波器?请写出设计步骤. 答:用窗函数法设计线性相位低通滤波器的设计步骤: a.根据对阻带衰减及过渡带的指标要求,选择窗函数的类型,并估计窗口的长度N; b.构造希望逼近的频率响应函数; c.计算h d(n); d.加窗得到设计结果h(n)=h d(n)w(n)。 (2)如果要求用窗函数法设计带通滤波器,且给定通带上、下截止频率为和,阻带上、下截止频率为和,试求理想带通滤波器的截止频率。 答:希望逼近的理想带通滤波器的截止频率分别为:

数字信号处理实验(吴镇扬)答案-4

实验四 有限长单位脉冲响应滤波器设计 朱方方 0806020433 通信四班 (1) 设计一个线性相位FIR 高通滤波器,通带边界频率为0.6π,阻带边界频率为0.4π,阻 带衰减不小于40dB 。要求给出h(n)的解析式,并用MATLAB 绘出时域波形和幅频特性。 解: (1) 求数字边界频率: 0.6 , .c r ωπωπ== (2) 求理想滤波器的边界频率: 0.5n ωπ= (3) 求理想单位脉冲响应: []d s i n ()s i n [()] () ()1n n n n n n h n n παωαα παωα π?-- -≠??-=? ? -=?? (4) 选择窗函数。阻带最小衰减为-40dB ,因此选择海明窗(其阻带最小衰减为-44dB);滤 波器的过渡带宽为0.6π-0.4π=0.2π,因此 6.21 0.231 , 152 N N N ππα-=?=== (5) 求FIR 滤波器的单位脉冲响应h(n): []31d sin (15)sin[0.5(15)] 1cos ()15()()()15(15)1 15 n n n R n n h n w n h n n n ππππ?---????-? ?≠? ???==-???? ? ?=? 程序: clear; N=31; n=0:N-1; hd=(sin(pi*(n-15))-sin(0.5*pi*(n-15)))./(pi *(n-15)); hd(16)=0.5; win=hanning(N); h=win'.*hd; figure; stem(n,h); xlabel('n'); ylabel('h(n)'); grid; title('FIR 高通滤波单位脉冲响应h(n)'); [H,w]=freqz(h,1); H=20*log10(abs(H)); figure;3 plot(w/pi,H); axis([0 1 -100 10]); xlabel('\omega/\pi'); ylabel('幅度/dB'); grid; title('FIR 高通滤波器,hanning 窗,N=31');

数字信号处理实验三

实验三:离散LSI 系统的频域分析 一、实验内容 2、求以下各序列的z 变换: 12030() ()sin() ()sin()n an x n na x n n x n e n ωω-=== 程序清单如下: syms w0 n z a; x1=n*a^n;X1=ztrans(x1) x2=sin(w0*n);X2=ztrans(x2) x3= exp(-a*n)*sin(w0*n);X3=ztrans(x3) 程序运行结果如下: X1 =z/(a*(z/a - 1)^2) X2 =(z*sin(w0))/(z^2 - 2*cos(w0)*z + 1) X3 =(z*exp(a)*sin(w0))/(exp(2*a)*z^2 - 2*exp(a)*cos(w0)*z + 1) 3、求下列函数的逆z 变换 0 312342 1 1() () () ()() 1j z z z z X z X z X z X z z a z a z e z ω---= = = = ---- 程序清单如下: syms w0 n z a; X1=z/(z-a);x1=iztrans(X1) X2= z/(a-z)^2;x2=iztrans(X2) X3=z/ z-exp(j*w0);x3=iztrans(X3) X4=(1-z^-3)/(1-z^-1);x4=iztrans(X4) 程序运行结果如下: x1 =a^n x2 =n*a^n/a 课程名称 数字信号 实验成绩 指导教师 实 验 报 告 院系 信息工程学院 班级 学号 姓名 日期

x3 =charfcn[0](n)-iztrans(exp(i*w0),w0,n) x4 =charfcn[2](n)+charfcn[1](n)+charfcn[0](n) 4、求一下系统函数所描述的离散系统的零极点分布图,并判断系统的稳定性 (1) (0.3)()(1)(1) z z H z z j z j -= +-++ z1=[0,0.3]';p1=[-1+j,-1-j]';k=1; [b1,a1]=zp2tf(z1,p1,k); subplot(1,2,1);zplane(z1,p1); title('极点在单位圆外); subplot(1,2,2);impz(b1,a1,20); 由图可见:当极点位于单位圆内,系统的单位序列响应随着频率的增大而收敛;当极点位于单位圆上,系统的单位序列响应为等幅振荡;当极点位于单位圆外,系统的单位序列响应随着频率的增大而发散。由此可知系统为不稳定系统。 -1 -0.5 00.51 -2 -1.5-1-0.500.511.5 2Real Part I m a g i n a r y P a r t 极点在单位圆外 n (samples) A m p l i t u d e Impulse Response

数字信处理上机实验答案全

数字信处理上机实验答 案全 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

第十章 上机实验 数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。 实验一系统响应及系统稳定性。 实验二时域采样与频域采样。 实验三用FFT对信号作频谱分析。 实验四 IIR数字滤波器设计及软件实现。 实验五 FIR数字滤波器设计与软件实现 实验六应用实验——数字信号处理在双音多频拨号系统中的应用 任课教师根据教学进度,安排学生上机进行实验。建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR数字滤波器设计及软件实现在。学习完第六章进行;实验五在学习完第七章后进行。实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。 实验一: 系统响应及系统稳定性 1.实验目的 (1)掌握求系统响应的方法。 (2)掌握时域离散系统的时域特性。 (3)分析、观察及检验系统的稳定性。 2.实验原理与方法 在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。在计算机上适合用递推法求差分方程的解,最简单的方法是采用MATLAB语言的工具箱函数filter函数。也可以用MATLAB语言的工具箱函数conv函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。 系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。 系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。或者系统的单位脉冲响应满足绝对可和的条件。系统的稳定性由其差分方程的系数决定。 实际中检查系统是否稳定,不可能检查系统对所有有界的输入信号,输出是否都是有界输出,或者检查系统的单位脉冲响应满足绝对可和的条件。可行的方法是在系统的输入端加入单位阶跃序列,如果系统的输出趋近一个常数(包括零),就可以断定系统是稳定的[19]。系统的稳态输出是指当∞ n时,系统的输出。如果系统稳定,信号加入 → 系统后,系统输出的开始一段称为暂态效应,随n的加大,幅度趋于稳定,达到稳态输出。 注意在以下实验中均假设系统的初始状态为零。 3.实验内容及步骤

数字信号处理实验4

数字信号处理实验四 第一题结果: (1)没有增加过渡点 源码如下: N = 15; H = [1 1 1 0.5 zeros(1,7) 0.5 1 1 1]; %确定抽样点的幅度大小 %H(3,13) = 0.75;H(5,11) = 0.25; %设置过渡点 k = 0:N-1; A = exp(-j*pi*k*(N-1)/N); %抽样点相位大小 HK = H.*A; %求抽样点的H(k) hn = ifft(HK,N); %求出FIR的单位冲激响应h(n) freqz(hn,1,256); %画出幅频相频曲线figure(2); stem(real(hn),'.'); %绘制单位冲激响应的实部 line([0,35],[0,0]);xlabel('n');ylabel('Real(h(n))'); 单位脉冲响应曲线 幅频和相频特性曲线

(2)增加过渡点 源码如下: N = 15; H = [1 1 1 0.5 zeros(1,7) 0.5 1 1 1]; %确定抽样点的幅度大小 H(3) = 0.75;H(13) = 0.75;H(5) = 0.25;H(11) = 0.25; %设置过渡点 k = 0:N-1; A = exp(-j*pi*k*(N-1)/N); %抽样点相位大小 HK = H.*A; %求抽样点的H(k) hn = ifft(HK,N); %求出FIR的单位冲激响应h(n) freqz(hn,1,256); %画出幅频相频曲线figure(2); stem(real(hn),'.'); %绘制单位冲激响应的实部 line([0,35],[0,0]);xlabel('n');ylabel('Real(h(n))'); 单位脉冲响应曲线 幅频和相频特性曲线 第二题结果:

matlab数字信号处理实验指导

电工电子实验中心实验指导书 数字信号处理 实验教程 二○○九年三月

高等学校电工电子实验系列 数字信号处理实验教程 主编石海霞周玉荣 攀枝花学院电气信息工程学院 电工电子实验中心

内容简介 数字信号处理是一门理论与实践紧密联系的课程,适当的上机实验有助于深入理解和巩固验证基本理论知识,了解并体会数字信号处理的CAD手段和方法,锻炼初学者用计算机和MATLAB语言及其工具箱函数解决数字信号处理算法的仿真和滤波器设计问题的能力。 本实验指导书结合数字信号处理的基本理论和基本内容设计了八个上机实验,每个实验对应一个主题内容,包括常见离散信号的MATLAB产生和图形显示、离散时间系统的时域分析、离散时间信号的DTFT、离散时间信号的Z变换、离散傅立叶变换DFT、快速傅立叶变换FFT及其应用、基于MATLAB的IIR和FIR数字滤波器设计等。此外,在附录中,还简单介绍了MATLAB的基本用法。每个实验中,均给出了实验方法和步骤,还有部分的MATLAB程序,通过实验可以使学生掌握数字信号处理的基本原理和方法。

目录 绪论 (1) 实验一常见离散信号的MATLAB产生和图形显示 (2) 实验二离散时间系统的时域分析 (6) 实验三离散时间信号的DTFT (9) 实验四离散时间信号的Z变换 (14) 实验五离散傅立叶变换DFT (18) 实验六快速傅立叶变换FFT及其应用 (24) 实验七基于MATLAB的IIR数字滤波器设计 (30) 实验八基于MATLAB的FIR数字滤波器设计 (33) 附录 (37) 参考文献 (40)

绪论 绪论 随着电子技术迅速地向数字化发展,《数字信号处理》越来越成为广大理工科,特别是IT领域的学生和技术人员的必修内容。 数字信号处理是把信号用数字或符号表示成序列,通过计算机或通用(专用)信号处理设备,用数值计算方法进行各种处理,达到提取有用信息便于应用的目的。数字信号处理的理论和技术一出现就受到人们的极大关注,发展非常迅速。而且随着各种电子技术及计算机技术的飞速发展,数字信号处理的理论和技术还在不断丰富和完善,新的理论和技术层出不穷。目前数字信号处理已广泛地应用在语音、雷达、声纳、地震、图象、通信、控制、生物医学、遥感遥测、地质勘探、航空航天、故障检测、自动化仪表等领域。 数字信号处理是一门理论和实践、原理和应用结合紧密的课程,由于信号处理涉及大量的运算,可以说离开了计算机及相应的软件,就不可能解决任何稍微复杂的实际应用问题。Matlab是1984年美国Math Works公司的产品,MATLAB 语言具备高效、可视化及推理能力强等特点,它的推出得到了各个领域专家学者的广泛关注,其强大的扩展功能为各个领域的应用提供了基础,是目前工程界流行最广的科学计算语言。早在20世纪90年代中期,MATLAB就己成为国际公认的信号处理的标准软件和开发平台。从1996年后,美国新出版的信号处理教材就没有一本是不用MATLAB的。 本实验指导书结合数字信号处理的基本理论和基本内容,用科学计算语言MATLAB实现数字信号处理的方法和实践,通过实验用所学理论来分析解释程序的运行结果,进一步验证、理解和巩固学到的理论知识,从而达到掌握数字信号处理的基本原理和方法的目的。

数字信号处理实验7

Laboratory Exercise 7 DIGITAL FILTER DESIGN 7.1 DESIGN OF IIR FILTERS Project 7.1 Estimation of IIR Filter Order Answers: Q7.1The normalized passband edge angular frequency Wp is -0.2 The normalized stopband edge angular frequency Ws is -0.4 The desired passband ripple Rp is -0.5dB The desired stopband ripple Rs is -40dB (1) Using these values and buttord we get the lowest order for a Butterworth lowpass filter to be - 8 The corresponding normalized passband edge frequency Wn is - 0.2469 or 0.2469pi (2) Using these values and cheb1ord we get the lowest order for a Type 1 Chebyshev lowpass filter to be -5 The corresponding normalized passband edge frequency Wn is - 0.2000 (3) Using these values and cheb2ord we get the lowest order for a Type 2 Chebyshev lowpass filter to be -5 [N, Wn] = cheb2ord(0.2,0.4,0.5,40). The corresponding normalized passband edge frequency Wn is - 0.4000 (4) Using these values and ellipord we get the lowest order for an elliptic lowpass filter to be – 4 [N, Wn] = ellipord(0.2,0.4,0.5,40).

习题集-02 数字信号处理习题答案

§ Z 变换 ? Z 变换的定义及收敛域 【习题】 1. 假如)(n x 的z 变换代数表示式是下式,问)(z X 可能有多少不同的收敛域。 )83451)(411(411)(2122----+++- =z z z z z X 【分析】 )要单独讨论,(环状、圆外、圆内:有三种收敛域:双边序列的收敛域为:特殊情况有:左边序列的收敛域为:因果序列的收敛域为:右边序列的收敛域为:特殊情况有:有限长序列的收敛域为 0 0 , , 0 0 , , 0 , 0 0 , 0 , 0 22 11 212 1∞==<<≤≤<≤<<≥≥∞≤<≥∞<<≤∞<≤≥∞≤<≤≤∞<<+ -++--z z R z R n n R z n n R z n n z R n n z R n z n z n n n z x x x x x x

解:对X (Z )的分子和分母进行因式分解得 )43 1 )(21 1)(211(2111111----+-+- =Z jZ jZ Z X (Z )的零点为:1/2,极点为:j/2,-j/2,-3/4 ∴ X (Z )的收敛域为: (1) 1/2 < | Z | < 3/4,为双边序列,见图一 (2) | Z | < 1/2,为左边序列,见图二 (3) | Z | > 3/4,为右边序列,见图三 图一 图二 图三 )431)(211)(411()211)(211()(11211-----++++- =Z Z Z Z Z Z X

? Z 反变换 【习题】 2. 有一右边序列 )(n x ,其 z 变换为)1)(211(1 )(11----=z z z X (a) 将上式作部分分式展开(用 1-z 表示),由展开式求 )(n x 。 (b) 将上式表示成 z 的多项式之比,再作部分分式展开,由展开式求 )(n x ,并说明所得到的序列 与(a)所得的是一样的。 【注意】不管哪种表示法最后求出 x (n ) 应该是相同的。 解:(a) 因为11122 111)(---+--=z z z X 且x(n)是右边序列 所以 )()212()(n u n x n ?? ? ??-= (b) 122 1211 )1)(2 1(21231 )1)(2 1()(2 -+--+=---+=--=z z z z z z z z z X )()212( )1(2)1(21)()( n u n u n u n n x n n ??? ??-=-+-?? ? ??-=δ则

数字信号处理实验

数字信号处理实验 报告

实验一 信号、系统及系统响应 一.实验目的 (1) 熟悉连续信号理想采样前后的频谱变化关系,加深对时域采样定理的理解; (2) 熟悉时域离散系统的时域特性; (3) 利用卷积方法观察分析系统的时域特性; (4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信号、离 散信号及系统响应进行频域分析。 二.实验原理与方法 采样时连续信号数字处理的第一个关键环节。对采样过程的研究不仅可以了解采样前后信号时域和频域特性发生变化以及信号信息不丢失的条件,而且可以加深对傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。 对一个连续信号 () a x t 进行理想采样的过程可用下式表示: ?()()()a a x t x t p t = 其中 ?()a x t 为 () a x t 的理想采样,()p t 为周期脉冲,即 ()() m p t t nT δ∞ =-∞ = -∑ ?()a x t 的傅里叶变换为 10 ()()k k N jw jw n n X e x m e --==∑ 其中, 10 2()()k k N jw jw n k n X e x m e w k M π --=== ∑ ,k=0,1, M-1 时域离散线性非时变系统的输入输出关系为 ()()*()()() m y n x n h n x m h n m ∞ =-∞ == -∑ 卷积运算也可在频域实现 ()()()jw jw jw Y e X e H e = 三.实验内容及步骤 (1)分析采样序列的特性

(2)时域离散系统响应分析N=10 3.卷积定理的验证

深圳大学数字信号处理实验7

数字信号处理实验(编写 初萍) 实验7: DSP综合应用实验 一、 实验目的 1)感受完整系统的数字信号处理过程,能完成对数字信号的频谱分析、滤波、输出等功能的matlab程序编写。 2)学习、感受和理解滤波的器的作用及使用。 3)学习、感受IIR滤波器和FIR滤波器的区别。 二、 数字信号处理系统 综合本学期的数字信号处理课程,下面给出最基本的数字信号处理系统的框图: 输入DSP处理器的数字信号x(n)通常是混入了噪声的信号,进入DSP处理器后首先对输入信号进行频谱分析,观察有用信号的频率范围,然后对应频谱分析结果选择适当的滤波器对输入信号进行滤波,尽可能滤除噪声信号,并将滤波的结果输出。 三、 试验内容 本次实验旨在理解数字信号处理系统的概念,并通过对语音信号的处理的matlab程序设计编写来加深对系统的认识,要求自行设计编写matlab程序完成对自己语音的分析、加噪、处理等过程,具体任务如下: 1)录一段自己的语音信号(时间长度在5s左右),内容统一为:姓名+学号+专业(如:张三,2008130001,电子信息工程),并将所录声音格式转化成matlab可以读取的格式(如:wav格式); 2)利用matlab读取声音文件,并播放,感觉原语音信号; 3)对自己的声音进行频谱分析,画出所录声音的时域信号及对应的频谱(FFT结果,要求横坐标为实际频率),并说明自己声音频率较集中的范围;(任务2),3)可参考实验1,实验4) 4)将读入的声音加入白噪声,播放加噪声后的声音,感受与原始声音信号的区别,对加噪声后的信号重复任务3),观察所画图的变化,并结合听到的声音效果说明原因; 提示: 加白噪声的例程(供参考):

数字信号处理上机实验答案(全)1

第十章 上机实验 数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。 实验一 系统响应及系统稳定性。 实验二 时域采样与频域采样。 实验三 用FFT 对信号作频谱分析。 实验四 IIR 数字滤波器设计及软件实现。 实验五 FIR 数字滤波器设计与软件实现 实验六 应用实验——数字信号处理在双音多频拨号系统中的应用 任课教师根据教学进度,安排学生上机进行实验。建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR 数字滤波器设计及软件实现在。学习完第六章进行;实验五在学习完第七章后进行。实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。 10.1 实验一: 系统响应及系统稳定性 1.实验目的 (1)掌握 求系统响应的方法。 (2)掌握时域离散系统的时域特性。 (3)分析、观察及检验系统的稳定性。 2.实验原理与方法 在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。在计算机上适合用递推法求差分方程的解,最简单的方法是采用MA TLAB 语言的工具箱函数filter 函数。也可以用MATLAB 语言的工具箱函数conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。 系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。 系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。或者系统的单位脉冲响应满足绝对可和的条件。系统的稳定性由其差分方程的系数决定。 实际中检查系统是否稳定,不可能检查系统对所有有界的输入信号,输出是否都是有界输出,或者检查系统的单位脉冲响应满足绝对可和的条件。可行的方法是在系统的输入端加入单位阶跃序列,如果系统的输出趋近一个常数(包括零),就可以断定系统是稳定的[19]。系统的稳态输出是指当∞→n 时,系统的输出。如果系统稳定,信号加入系统后,系统输出的开始一段称为暂态效应,随n 的加大,幅度趋于稳定,达到稳态输出。 注意在以下实验中均假设系统的初始状态为零。 3.实验内容及步骤 (1)编制程序,包括产生输入信号、单位脉冲响应序列的子程序,用filter 函数或conv 函数求解系统输出响应的主程序。程序中要有绘制信号波形的功能。 (2)给定一个低通滤波器的差分方程为

相关文档
最新文档