数学建模 实验报告

合集下载

数学建模实验报告

数学建模实验报告

数学建模实验报告1.流⽔问题问题描述:⼀如下图所⽰的容器装满⽔,上底⾯半径为r=1m,⾼度为H=5m,在下地⾯有⼀⾯积为B0.001m2的⼩圆孔,现在让⽔从⼩孔流出,问⽔什么时候能流完?解题分析:这个问题我们可以采⽤计算机模拟,⼩孔处的⽔流速度为V=sqrt[2*g*h],单位时间从⼩孔流出的⽔的体积为V*B,再根据⼏何关系,求出⽔⾯的⾼度H,时间按每秒步进,记录点(H,t)并画出过⽔⾯⾼度随时间的变化图,当⽔⾯⾼度⼩于0.001m 时,可以近似认为⽔流完了。

程序代码:Methamatic程序代码:运⾏结果:(5)结果分析:计算机仿真可以很直观的表现出所求量之间的关系,从图中我们可以很⽅便的求出要求的值。

但在实际编写程序中,由于是初次接触methamatic 语⾔,对其并不是很熟悉,加上个⼈能⼒有限,所以结果可能不太精确,还请见谅。

2.库存问题问题描述某企业对于某种材料的⽉需求量为随机变量,具有如下表概率分布:每次订货费为500元,每⽉每吨保管费为50元,每⽉每吨货物缺货费为1500元,每吨材料的购价为1000元。

该企业欲采⽤周期性盘点的),(S s 策略来控制库存量,求最佳的s ,S 值。

(注:),(S s 策略指的是若发现存货量少于s 时⽴即订货,将存货补充到S ,使得经济效益最佳。

)问题分析:⽤10000个⽉进⾏模拟,随机产⽣每个⽉需求量的概率,利⽤计算机编程,将各种S 和s 的取值都遍历⼀遍,把每种S,s的组合对应的每⽉花费保存在数组cost数组⾥,并计算出平均⽉花费average,并⽤类answer来记录,最终求出对应的S和s。

程序代码:C++程序代码:#include#include#include#include#define Monthnumber 10000int Need(float x){int ned = 0;//求每个⽉的需求量if(x < 0.05)ned = 50;else if(x < 0.15)ned = 60;else if(x < 0.30)ned = 70;else if(x < 0.55)ned = 80;else if(x < 0.75)ned = 90;else if(x < 0.85)ned = 100;else if(x < 0.95)ned = 110;else ned = 120;return ned;}class A{public:int pS;int ps;float aver;};int main(){A answer;answer.aver=10000000;//int cost[Monthnumber+1]={0}; float average=0;int i;float x;int store[Monthnumber];//srand((int)time(0));for(int n=6;n<=12;n++){// int n=11;int S=10*n;for(int k=5;k{// int k=5;int s=k*10;average=0;int cost[Monthnumber+1]={0};for(i=1;i<=Monthnumber;i++){store[i-1]=S;srand(time(0));x=(float)rand()/RAND_MAX; //产⽣随机数//cout<<" "<//cout<int need=Need(x);if(need>=store[i-1]){cost[i]= 1000*S + (need - store[i-1])*1500 + 500;store[i]=S;}else if(need>=store[i-1]-s){cost[i]=1000*(need+S-store[i-1]) + 50*(store[i-1]-need) + 500; store[i]=S;}else{cost[i]=(store[i-1]-need)*50;store[i]=store[i-1]-need;}average=cost[i]+average;}average=average/Monthnumber;cout<<"n="<cout<<"花费最少时s应该为:"<cout<<"平均每⽉最少花费为:"<}运⾏结果:结果分析:⽤计算机模拟的结果和⽤数学分析的结果有⼀定的差异,由于计算机模拟时采⽤的是随机模型⽽我⽤time函数和rand函数产⽣真随机数,所以在每次的结果上会有所差异,但对于⼀般的⽣产要求亦可以满。

数学建模基础实验报告(3篇)

数学建模基础实验报告(3篇)

第1篇一、实验目的本次实验旨在让学生掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。

通过本次实验,培养学生主动探索、努力进取的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。

二、实验内容本次实验选取了一道实际问题进行建模与分析,具体如下:题目:某公司想用全行业的销售额作为自变量来预测公司的销售量。

表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。

1. 数据准备:将数据整理成表格形式,并输入到计算机中。

2. 数据分析:观察数据分布情况,初步判断是否适合使用线性回归模型进行拟合。

3. 模型建立:利用统计软件(如MATLAB、SPSS等)进行线性回归分析,建立公司销售额对全行业的回归模型。

4. 模型检验:对模型进行检验,包括残差分析、DW检验等,以判断模型的拟合效果。

5. 结果分析:分析模型的拟合效果,并对公司销售量的预测进行评估。

三、实验步骤1. 数据准备将数据整理成表格形式,包括年份、季度、公司销售额和行业销售额。

将数据输入到计算机中,为后续分析做准备。

2. 数据分析观察数据分布情况,绘制散点图,初步判断是否适合使用线性回归模型进行拟合。

3. 模型建立利用统计软件进行线性回归分析,建立公司销售额对全行业的回归模型。

具体步骤如下:(1)选择合适的统计软件,如MATLAB。

(2)输入数据,进行数据预处理。

(3)编写线性回归分析程序,计算回归系数。

(4)输出回归系数、截距等参数。

4. 模型检验对模型进行检验,包括残差分析、DW检验等。

(1)残差分析:计算残差,绘制残差图,观察残差的分布情况。

(2)DW检验:计算DW值,判断随机误差项是否存在自相关性。

5. 结果分析分析模型的拟合效果,并对公司销售量的预测进行评估。

四、实验结果与分析1. 数据分析通过绘制散点图,观察数据分布情况,初步判断数据适合使用线性回归模型进行拟合。

2. 模型建立利用MATLAB进行线性回归分析,得到回归模型如下:公司销售额 = 0.9656 行业销售额 + 0.01143. 模型检验(1)残差分析:绘制残差图,观察残差的分布情况,发现残差基本呈随机分布,说明模型拟合效果较好。

数学建模的实验报告

数学建模的实验报告

数学建模实验报告姓名:学院:专业班级:学号:数学建模实验报告(一)——用最小二乘法进行数据拟合一.实验目的:1.学会用最小二乘法进行数据拟合。

2.熟悉掌握matlab软件的文件操作和命令环境。

3.掌握数据可视化的基本操作步骤。

4.通过matlab绘制二维图形以及三维图形。

二.实验任务:来自课本64页习题:用最小二乘法求一形如y=a+b x2的多项式,使之与下列数据拟合:三.实验过程:1.实验方法:用最小二乘法解决实际问题包含两个基本环节:先根据所给出数据点的变化趋势与问题的实际背景确定函数类;然后按照最小二乘法原则求最小二乘解来确定系数。

即要求出二次多项式: y=a+b x2的系数。

2.程序:x=[19 25 31 38 44]y=[19.0 32.3 49.0 73.3 97.8]ab=y/[ones(size(x));x.^2];a=ab(1),b=ab(2)xx=19:44;plot(xx,a+b*xx.^2,x,y,'.')3.上机调试得到结果如下:x = 19 25 31 38 44y=19.0000 32.3000 49.0000 73.3000 97.8000a = 0.9726b = 0.0500图形:四.心得体会通过本次的数学模型的建立与处理,我们学习并掌握了用最小二乘法进行数据拟合,及多项式数据拟合的方法,进一步学会了使用matlab软件,加深了我们的数学知识,提高了我们解决实际问题的能力,为以后深入学习数学建模打下了坚实的基础。

数学建模实验报告(二)——用Newton法求方程的解一.实验目的1.掌握Newton法求方程的解的原理和方法。

2.利用Matlab进行编程求近似解。

二.实验任务来自课本109页习题4-2:用Newton法求f(x)=x-cosx=0的近似解三.实验过程1.实验原理:把f(x)在x0点附近展开成泰勒级数f(x) = f(x0)+(x-x0)f'(x0)+(x-x0)^2*f''(x0)/2! +… 取其线性部分,作为非线性方程f(x) = 0的近似方程,即泰勒展开的前两项,则有f(x0)+f'(x0)(x-x0)=0 设f'(x0)≠0则其解为x1=x0-f(x0)/f'(x0) 这样,得到牛顿法的一个迭代序列:x(n+1)=x(n)-f(x(n))/f'(x(n))。

数学建模 -实验报告1

数学建模 -实验报告1
推导出了动力学方程
������������⁄������������ = ������������(1 − (������ + ������)) − ������1������∗������,
(4 − 3)
������������∗⁄������������ = −������1������∗������ + ������2������
二、 问题分析
建立肿瘤细胞增长模型时,我们可以从自由增长模型开始分析,引进 Logistic 阻滞增长模型,构成肿瘤细胞增长初步框架。再者肿瘤细胞不同于普 通细胞,其生长受到人体自身免疫系统的制约。于是综合考虑正常细胞转化,癌 细胞增殖,癌细胞死亡,癌细胞被效应细胞消除等情况,建立动力学方程。并对 模型进行适当简化求解。在放射治疗方案的设计中,我们可以引入放射生物学中 广泛接受的 LQ 模型对问题进行分析,由于放疗对人体伤害相当大,因此我们采 取分次逐次放疗的方式进行治疗。我们具体分两种情形进行讨论,一是在总剂量 一定的条件下,不同的分次剂量组合对生物效应的影响;二是在产生相同生物效 应的情况下,分析最优的分次剂量组合。
易算出癌细胞转入活动期已有 300 多天,故如何在早期发现癌症是攻克癌症的关键之一 (2)手术治疗常不能割去所有癌细胞,故有时需进行放射疗法。射线强度太小无法杀
死癌细胞,太强病人身体又吃不消且会使病人免疫功能下降。一次照射不可能杀死全部癌细 胞,请设计一个可行的治疗方案(医生认为当体内癌细胞数小于 100000 个时即可凭借体内 免疫系统杀灭)。
进一步简化,根据(4-4),(4-5)式可知,效应细胞������∗和复合物������有出有进.假 设出入保持平衡,则有
������ + ������∗ = C (C 为常数)

数学建模优秀实验报告

数学建模优秀实验报告

一、实验背景与目的随着科学技术的不断发展,数学建模作为一种解决复杂问题的有力工具,在各个领域都得到了广泛应用。

本实验旨在通过数学建模的方法,解决实际问题,提高学生的数学思维能力和解决实际问题的能力。

二、实验内容与步骤1. 实验内容本实验选取了一道具有代表性的实际问题——某城市交通拥堵问题。

通过对该问题的分析,建立数学模型,并利用MATLAB软件进行求解,为政府部门提供决策依据。

2. 实验步骤(1)问题分析首先,对某城市交通拥堵问题进行分析,了解问题的背景、目标及影响因素。

通过查阅相关资料,得知该城市交通拥堵的主要原因是道路容量不足、交通信号灯配时不当、公共交通发展滞后等因素。

(2)模型假设为简化问题,对实际交通系统进行以下假设:1)道路容量恒定,不考虑道路拓宽、扩建等因素;2)交通信号灯配时固定,不考虑实时调整;3)公共交通系统运行正常,不考虑公交车运行时间波动;4)车辆行驶速度恒定,不考虑车辆速度波动。

(3)模型构建根据以上假设,构建以下数学模型:1)道路容量模型:C = f(t),其中C为道路容量,t为时间;2)交通流量模型:Q = f(t),其中Q为交通流量;3)拥堵指数模型:I = f(Q, C),其中I为拥堵指数。

(4)模型求解利用MATLAB软件,对所构建的数学模型进行求解。

通过编程实现以下功能:1)计算道路容量C与时间t的关系;2)计算交通流量Q与时间t的关系;3)计算拥堵指数I与交通流量Q、道路容量C的关系。

(5)结果分析与解释根据求解结果,分析拥堵指数与时间、交通流量、道路容量之间的关系。

针对不同时间段、不同交通流量和不同道路容量,提出相应的解决方案,为政府部门提供决策依据。

三、实验结果与分析1. 结果展示通过MATLAB软件求解,得到以下结果:(1)道路容量C与时间t的关系曲线;(2)交通流量Q与时间t的关系曲线;(3)拥堵指数I与交通流量Q、道路容量C的关系曲线。

2. 结果分析根据求解结果,可以得出以下结论:(1)在高峰时段,道路容量C与时间t的关系曲线呈现下降趋势,说明道路容量在高峰时段不足;(2)在高峰时段,交通流量Q与时间t的关系曲线呈现上升趋势,说明交通流量在高峰时段较大;(3)在高峰时段,拥堵指数I与交通流量Q、道路容量C的关系曲线呈现上升趋势,说明拥堵指数在高峰时段较大。

数学建模实习报告4篇

数学建模实习报告4篇

数学建模实习报告4篇数学建模实习报告篇1大一第二学期的第九周,我们建筑工程学院的学生在陈金陵院长,彭莉英和梁桥等老师的带领下进行了为期一周的认知实习。

众说周知。

建筑工程行业是相当注重实际经验的。

身为一名应用型本科土木专业的学生,经验对我们来说就更加重要了。

这次我们终于有机会去众多的建筑工地实地考察了。

一周以来,前两天天气炎热,后两天大于瓢泼,天气一直不好,我们先后去了长沙和湘潭等地考察,时间紧,路途远,是比较累的。

但一周以来,我却始终怀着兴奋的心情,认真听着老师和施工员,监理人员的实地讲解,这使我收获很大。

这不但使我对本专业的认识进一步加强,也是我对今后工作的选择有了初步的认识。

下面就是我本次实习的具体行程和我的体会。

一、实习地点及日程安排:2023年4月13日实习动员参观主校区2023年4月15日上午参观莲城大桥金屏村铁路桥晚上“招标与投标”专业知识讲座2023年4月16日上无参观并解工业厂房与民用住宅的异同观看湘潭市体育公园施工过程二、实习目的:认识实习是整个实习教学计划中的一个有机组成部分,是土木工程专业的一个重要的实践性环节。

通过组织参观和听取一些专题技术报告,收集一些与实习课题有关的资料和素材,为顺利完成实习打下坚实基础。

通过实习应达到以下目的:1.了解普通住宅结构2.初步了解体育馆结构设计及施工过程3.了解桥梁道路铁路桥梁等设计及结构4.了解工用与民用建筑的区别联系5.了解建筑结构领域的最新动态和发展方向6.提高艺术修养,加深对建筑与艺术的了解7.培养专业兴趣,明确学习目的三、实习过程及内容:2023年4月13号星期一晴上午,在图书馆第二报告厅内,我们认真聆听了陈院长和湘潭市建筑设计院的专家讲说。

陈院长概括了我们这次实习的行程安排,接着设计院的专家细致的为我们介绍了现在设计院内的工作要求,也就是告诉我们要达到怎们样的水平才有机会计入设计院工作。

这对我们既是鞭策是鼓励。

下午天气温和,我们怀着兴奋的心情,在陈院长的带领下参观我们学校的新校区。

数字应用建模实验报告(3篇)

数字应用建模实验报告(3篇)

第1篇一、实验背景随着信息技术的飞速发展,数字建模在各个领域中的应用越来越广泛。

数字应用建模是将现实世界的复杂问题转化为数学模型,通过计算机模拟和分析,为决策提供科学依据。

本实验旨在通过数字应用建模的方法,解决实际问题,提高学生对数学建模的理解和应用能力。

二、实验目的1. 理解数字应用建模的基本原理和方法;2. 掌握数学建模软件的使用;3. 提高解决实际问题的能力;4. 培养团队合作精神和沟通能力。

三、实验内容1. 实验题目:某城市交通流量优化研究2. 实验背景:随着城市人口的增加,交通拥堵问题日益严重。

为了缓解交通压力,提高城市交通效率,本研究旨在通过数字应用建模方法,优化该城市的交通流量。

3. 实验步骤:(1)数据收集:收集该城市主要道路的实时交通流量数据、道路长度、交叉口数量、道路等级等数据。

(2)建立数学模型:根据交通流量数据,建立交通流量的数学模型,如线性回归模型、多元回归模型等。

(3)模型求解:利用数学建模软件(如MATLAB、Python等)对建立的数学模型进行求解,得到最优交通流量分布。

(4)结果分析:对求解结果进行分析,评估优化后的交通流量分布对缓解交通拥堵的影响。

(5)模型改进:根据分析结果,对模型进行改进,以提高模型的准确性和实用性。

4. 实验结果:(1)通过建立数学模型,得到优化后的交通流量分布。

(2)优化后的交通流量分布较原始分布,道路拥堵程度明显降低,交通效率得到提高。

(3)通过模型改进,进一步优化交通流量分布,提高模型的准确性和实用性。

四、实验总结1. 本实验通过数字应用建模方法,成功解决了某城市交通流量优化问题,提高了交通效率,为城市交通管理提供了科学依据。

2. 在实验过程中,学生掌握了数学建模的基本原理和方法,熟悉了数学建模软件的使用,提高了解决实际问题的能力。

3. 实验过程中,学生学会了团队合作和沟通,提高了自己的综合素质。

五、实验心得1. 数字应用建模是一种解决实际问题的有效方法,通过建立数学模型,可以将复杂问题转化为可操作的解决方案。

数学建模全部实验报告

数学建模全部实验报告

一、实验目的1. 掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。

2. 提高数学建模能力,培养创新思维和团队合作精神。

3. 熟练运用数学软件进行数据分析、建模和求解。

二、实验内容本次实验选取了以下三个题目进行建模:1. 题目一:某公司想用全行业的销售额作为自变量来预测公司的销售量,表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。

2. 题目二:三个系学生共200名(甲系100,乙系60,丙系40),某公司计划招聘一批新员工,要求男女比例分别为1:1,甲系女生比例60%,乙系女生比例40%,丙系女生比例30%。

请为公司制定招聘计划。

3. 题目三:研究某市居民出行方式选择问题,收集了以下数据:居民年龄、收入、职业、出行距离、出行时间、出行频率等。

请建立模型分析居民出行方式选择的影响因素。

三、实验步骤1. 问题分析:对每个题目进行分析,明确问题背景、目标和所需求解的数学模型。

2. 模型假设:根据问题分析,对实际情况进行简化,提出合适的模型假设。

3. 模型构建:根据模型假设,选择合适的数学工具和方法,建立数学模型。

4. 模型求解:运用数学软件(如MATLAB、Python等)进行模型求解,得到结果。

5. 结果分析与解释:对求解结果进行分析,解释模型的有效性和局限性。

四、实验报告1. 题目一:线性回归模型(1)问题分析:利用线性回归模型预测公司销售量,分析行业销售额对销售量的影响。

(2)模型假设:假设公司销售量与行业销售额之间存在线性关系。

(3)模型构建:根据数据,建立线性回归模型y = β0 + β1x + ε,其中y为公司销售量,x为行业销售额,β0、β1为回归系数,ε为误差项。

(4)模型求解:运用MATLAB软件进行线性回归分析,得到回归系数β0、β1。

(5)结果分析与解释:根据模型结果,分析行业销售额对销售量的影响程度,并提出相应的建议。

2. 题目二:招聘计划模型(1)问题分析:根据男女比例要求,制定招聘计划,确保男女比例均衡。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-28、8865 26、7760
stats =
0、9747 289、1934 0、0000 182、0773
参数
参数参考值
参数置信区间
B0
-60、5239
[-143、4598,22、4121]
B1
1、7886
[-1、4742,5、0513]
B2
0、0302
[0、0002,0、0603]
R²=0、9747F=289、1934p<0、0000s²=182、0773
2
18
27、78
165、6
3
19
29、24
168、7
4
20
28、78
171、7
四、实验结果与数据处理
1、
Matlab代码:
>> X1=[66、290 40、964 72、996 45、010 57、204 26、852 38、122 35、840 75、796 37、408 54、376 46、186 46、130 30、366 39、060 79、380 52、766 55、916];
>> Y=[196 63 252 84 126 14 49 49 266 49 105 98 77 14 56 245 133 133];
>> X=[ones(18,1) X1' (X1、^2)'];
>> [b,bint,r,rint,stats]=regress(Y',X)
处理结果:
b =
-60、5239
1、7886
0、0302
bint =
-143、4598 22、4121
-1、4742 5、0513
0、0002 0、0603
r =
5、0447
-0、4989
20、7987
2、74、6174
6、5692
17、1895
0、2908
-21、1635
11、3961
-9、3474
30、366
3
15
56
39、060
5
16
245
79、380
1
17
133
52、766
8
18
133
55、916
6
2、某公司想用全行业的销售额作为自变量来预测公司的销售额,下表给出了1977-1981年公司销售额与行业销售额的分季度数据(单位:百万元)。
(1)画出数据的散点图,观察用线性回归模型拟合就是否合适。
序号
y
X1
X2
1
196
66、290
7
2
63
40、964
5
3
252
72、996
10
4
84
45、010
6
5
126
57、204
4
6
14
26、852
5
7
49
38、122
4
8
49
35、840
6
9
266
75、796
9
10
49
37、408
5
11
105
54、376
2
12
98
46、186
7
13
77
46、130
4
14
14
-7、6785
0、5151
-27、0424
14、9336
-1、0552
rint =
-22、6123 32、7016
-29、0151 28、0174
-3、0151 44、6125
-25、5842 31、0708
-41、2961 11、7646
-17、4529 26、8291
-30、9763 25、7415
由于置信水平a=0、05,处理结果p=0、00,p<0、05
R²=0、9747,指因变量Y的97、47%可由模型确定,Y与X1存在二次关系。
,所以得到回归模型:
Y=0、5239+1、7886*X1+0、0302*X1^2;
结果表明年均收入与人寿保险额之间存在二次关系。
接下来处理两个自变量X1,X2对Y就是否有交互效应。
1、表1列出了某城市18位35—44岁经理的年平均收入x1(千元),风险偏好度x2与人寿保险额y(千元)的数据,其中风险偏好度就是就是根据每个发给经理的问卷调查表综合评估得到的,它的数值越大,就越偏爱高风险,研究人员想研究此年龄段中的经理所投保的人寿保险额与年均收入及风险偏好度之间的关系。研究者预计,经理年均收入与人寿保险之间存在着二次关系,并有把握的认为风险偏好度对人寿保险额有线性效应,但对于风险偏好度对人寿保险额就是否有二次效应以及两个自变量就是否对人寿保险额有交互效应,心中没底。
因为Y与X1之间存在二次关系,所以我们设
Matlab代码:
>> X1=[66、290 40、964 72、996 45、010 57、204 26、852 38、122 35、840 75、796 37、408 54、376 46、186 46、130 30、366 39、060 79、380 52、766 55、916];
(2)建立公司销售额对全行业销售额的回归模型,并用DW检验诊断随机误差项的自相关性。
(3)建立消除了随机误差项自相关性后的回归模型。


t
公司销售额y
行业销售额x
1977
1
1
20、96
127、3
2
2
21、4
130
3
3
21、96
132、7
4
4
21、52
129、4
1978
1
5
22、39
135
2
6
22、76
137、1
3
7
23、48
141、2
4
8
23、66
142、8
1979
1
9
24、1
145、5
2
10
24、01
145、3
3
11
24、54
148、3
4
12
24、3
146、4
1980
1
13
25
150、2
2
14
25、64
153、1
3
15
26、36
157、3
4
16
26、98
160、7
1981
1
17
27、52
164、2
-21、2462 34、3845
-6、0579 40、4368
-28、0301 28、6116
-46、2827 3、9558
-16、1444 38、9366
-37、1409 18、4462
-33、0744 17、7174
-27、9507 28、9809
-42、7681 -11、3167
-11、6494 41、5167
>> X2=[7 5 10 6 4 5 4 6 9 5 2 7 4 3 5 1 8 6];
>> Y=[196 63 252 84 126 14 49 49 266 49 105 98 77 14 56 245 133 133];
>> X=[ones(18,1) X2' X1' (X1、^2)'];
>> [b,bint,r,rint,stats]=regress(Y',X)
《数学建模》实验报告
实验序号:实验8实验项目名称:统计回归模型
学 号
43
姓 名
詹建妹
专业、班
12信计
实验地点
实4-401
指导教师
吴春红
实验时间
2014、4、29
一、实验目的及要求
通过对具体实例的分析,学会运用统计回归方法建立模型的方法。
二、实验设备(环境)及要求
多媒体机房,单人单机,独立完成
三、实验内容与步骤
相关文档
最新文档