通信常见函数的傅里叶变换

合集下载

信号与系统傅里叶变换对照表

信号与系统傅里叶变换对照表

信号与系统傅里叶变换对照表
傅里叶变换是信号与系统领域中非常重要的数学工具,它将一个时域信号转换为频域信号,可以帮助我们理解信号的频谱特性。

下面是一份傅里叶变换的对照表,列出了一些常见的信号和它们的傅里叶变换形式:
1. 单位冲激函数(单位脉冲):
时域表示,δ(t)。

频域表示,1。

2. 正弦函数:
时域表示,sin(2πft)。

频域表示,jπ[δ(f-f0) δ(f+f0)]
3. 余弦函数:
时域表示,cos(2πft)。

频域表示,1/2[δ(f-f0) + δ(f+f0)] 4. 矩形脉冲信号:
时域表示,rect(t/T)。

频域表示,T sinc(fT)。

5. 三角脉冲信号:
时域表示,tri(t/T)。

频域表示,T^2 sinc^2(fT)。

6. 高斯脉冲信号:
时域表示,exp(-πt^2/σ^2)。

频域表示,exp(-π^2f^2σ^2)。

7. 指数衰减信号:
时域表示,exp(-at)。

频域表示,1/(a+j2πf)。

8. 阶跃函数(单位阶跃函数):
时域表示,u(t)。

频域表示,1/(j2πf) + 1/2。

9. 周期方波信号:
时域表示,square(t/T)。

频域表示,(1/T)[δ(f-nf0) + δ(f+nf0)], n为整数。

以上仅列举了一些常见的信号及其傅里叶变换形式。

傅里叶变换对照表可以帮助我们在信号分析和系统设计中快速理解信号的频域特性,从而更好地理解信号与系统的行为和特性。

常用信号的傅里叶变换

常用信号的傅里叶变换

常用信号的傅里叶变换傅里叶变换是一种将时域信号转换为频域信号的数学工具。

对于任意一个周期信号,傅里叶变换可以将其表示成一系列正弦波的叠加形式,从而更好地理解和处理信号。

在实际应用中,有很多信号都需要进行傅里叶变换。

下面介绍一些常用信号的傅里叶变换。

1. 正弦信号正弦信号是一种最基本的周期信号,其函数形式为y=sin(wt),其中w为角频率。

通过傅里叶变换,可以将正弦信号表示为一组频率为w的正弦波的叠加形式,即:y(t) = A1*sin(wt) + A2*sin(2wt) + A3*sin(3wt) + …其中,An为振幅,表示第n个正弦波的幅度。

2. 方波信号方波信号是一种由周期为T的矩形波形组成的信号,其函数形式为:y(t) = sgn(sin(wt))其中,sgn表示符号函数,即当sin(wt)>0时,sgn(sin(wt))=1,否则sgn(sin(wt))=-1。

通过傅里叶变换,可以将方波信号表示为一组频率为w的正弦波的叠加形式,即:y(t) = (4/pi)*[sin(wt) + (1/3)*sin(3wt) + (1/5)*sin(5wt) + …]3. 带限信号带限信号是指信号的频率范围有限,通常是指截止频率为一定值的信号。

通过傅里叶变换,可以将带限信号表示为一组频率在一定范围内的正弦波的叠加形式,即:y(t) = (1/2*pi)*Int[-w0,w0]{F(w)*e^(jwt)dw}其中,F(w)为信号的频谱,w0为信号的截止频率,Int表示积分运算。

以上三种信号只是常用信号中的一部分,实际应用中还有很多其他类型的信号需要进行傅里叶变换。

傅里叶变换不仅可以分析信号的频域特性,还可以用于信号的滤波、压缩、编码等方面,具有广泛的应用价值。

傅里叶变换常用公式

傅里叶变换常用公式

傅里叶变换常用公式1.傅里叶变换定义:F(w) = ∫[f(t)e^(-jwt)] dt2.傅里叶逆变换定义:f(t) = ∫[F(w)e^(jwt)] dw / (2π)傅里叶逆变换定义了将频域函数F(w)转换回时域函数f(t)的方式。

3.单位冲激函数的傅里叶变换:F(w) = ∫[δ(t)e^(-jwt)] dtδ(t)是单位冲激函数,其傅里叶变换结果为14.周期函数的傅里叶级数展开:f(t) = ∑[a(n)cos(nω0t) + b(n)sin(nω0t)]f(t)可以用无穷级数形式表示,其中ω0为基本角频率,a(n)和b(n)为系数。

5.周期函数的傅里叶变换:F(w)=2π∑[δ(w-nω0)]周期函数f(t)的频谱是一系列频率为nω0的冲激函数。

6.卷积定理:FT[f*g]=F(w)G(w)f*g表示函数f(t)和g(t)的卷积,FT表示傅里叶变换,*表示复数乘法。

卷积定理说明卷积在频域中的运算等于对应的傅里叶变换相乘。

7.积分定理:∫[f(t)g(t)] dt = 1/2π ∫[F(w)G(-w)] dw积分定理表明函数f(t)和g(t)的乘积在时域中的积分等于它们在频域中的乘积的逆变换。

8.平移定理:g(t) = f(t - t0) 对应的傅里叶变换 F(w) = e^(-jwt0) G(w)平移定理说明在时域中将函数f(t)右移t0单位,等价于在频域中将F(w)乘以e^(-jwt0)。

9.缩放定理:g(t) = f(at) 对应的傅里叶变换 G(w) = 1/,a, F(w/a)缩放定理说明在时域中将函数f(t)横向拉伸为af(t),等价于在频域中将F(w)纵向压缩为1/,a,F(w/a)。

除了以上列举的公式,傅里叶变换还有许多性质和定理,如频移定理、频域微分定理、频域积分定理等,这些公式和定理在信号处理中非常有用,可以加速计算和简化问题的分析。

傅里叶全部公式

傅里叶全部公式

傅里叶全部公式
傅里叶变换是一种将一个函数转换为频谱表示的数学工具。

它可以帮助我们分析信号的频率成分,并在许多领域中有广泛的应用,包括信号处理、图像处理、通信等。

傅里叶变换的一般形式为:
F(ω) = ∫f(t)e^(-iωt)dt
其中,F(ω)表示频谱,即将函数f(t)表示为频率ω的复数系数。

傅里叶反变换则是将频谱表示转换回原始函数的过程。

其公式为:
f(t) = (1/2π)∫F(ω)e^(iωt)dω
这个公式表示,我们可以通过频谱F(ω)中的复数系数和频率ω,逆变换得到原始函数f(t)。

傅里叶级数也是傅里叶变换的一个特例,用于周期函数的频谱表示。

傅里叶级数的公式为:
f(t) = A0 + Σ[An*cos(nωt) + Bn*sin(nωt)]
其中,An和Bn是函数f(t)的傅里叶系数,ω是基频率,A0是直流分量。

这些是傅里叶变换和傅里叶级数的基本公式,用于将函数表示为频
谱。

根据具体的问题和应用场景,还可以有其他的变体和扩展形式。

8个典型信号的傅里叶变换

8个典型信号的傅里叶变换

8个典型信号的傅里叶变换1. 常数信号(直流信号)这个常数信号啊,就像一个超级稳定的家伙,一直保持一个值不变。

它的傅里叶变换可有趣啦,就是一个冲激函数(狄拉克函数)在频率为0的地方。

你可以想象啊,常数信号就只有一个频率成分,那就是0频率,就像一个静止不动的状态在频率域里的表示呢。

2. 正弦信号。

正弦信号就像一个有规律的摇摆舞者。

它的傅里叶变换呢,是在正负它的角频率处有两个冲激函数。

比如说一个正弦函数Asin(ω_0t),在频率ω = ω_0和ω=-ω_0的地方有两个冲激。

这就好像在说,正弦信号就只有一个频率在那欢快地跳动,这个频率就是它自己的角频率ω_0,一正一负就像在频率轴上对称地站着两个代表它的小尖刺。

3. 余弦信号。

余弦信号跟正弦信号是近亲呢。

Acos(ω_0t)的傅里叶变换也是在正负它的角频率处有两个冲激函数。

不过和正弦信号有点小区别,就像是两个风格相似但又有点不同的舞者。

余弦信号的傅里叶变换,那两个冲激函数就像是在频率轴上标记着它自己独特的角频率ω_0的两个小灯塔。

4. 单位冲激信号(狄拉克函数)这个单位冲激信号啊,就像一个超级突然的小爆炸,瞬间爆发然后就没了。

它的傅里叶变换可神奇了,是一个常数1。

你想啊,这个小爆炸包含了所有频率成分,就像一个超级大杂烩,在频率域里就变成了一个平坦的1,就好像所有频率都被它平等对待,一股脑儿地全在里面了。

5. 矩形脉冲信号。

矩形脉冲信号就像一个突然冒出来又突然消失的小方块。

它的傅里叶变换是Aτ Sa((ωτ)/(2)),这里的A是脉冲的幅度,τ是脉冲的宽度,Sa函数是(sin x)/(x)。

这个变换就像是把矩形脉冲信号这个小方块在时间域的信息,分散到了频率域里,就像把一个集中的小方块打散成了好多频率成分,那些频率成分按照Sa函数的规律分布着。

6. 三角脉冲信号。

三角脉冲信号就像一个小山峰。

它的傅里叶变换是Aτfrac{Sa^2((ωτ)/(2))}{ω^2}。

常见的傅里叶变换+定理+各种变换的规律(推荐)

常见的傅里叶变换+定理+各种变换的规律(推荐)
= exp[- πu2]
= Gaus(u)
结论:
Gaus(x) F.T. Gaus(u)
7
五、余弦函数的傅里叶变换
F [cos(2πu0x) ] 其中 u0 = 1 / Τ Τ 为周期 ∞
= ∫ [cos2πu0 x ]• exp[− j2πux]dx
−∞
∫ =
∞ −∞
1 2
[exp(
j
2πu0
x)
x a

= a sin(πau) πau
= a sinc(au)
证明:根据相似性定理
6
四、高斯函数的傅里叶变换
Gaus(x) = exp[- πx2]
推导一维情况
F [Gaus(x) ]= F { exp[- πx2]}

= ∫ exp[-πx2 ]• exp[− j2πux]dx −∞
−∞ 1/ 2
= ∫ exp(− j2πux)dx
rect
x a

=
1, 0,
−1/ 2
=1
1/2
exp(− j2πux)
− j2πu

-1/2
= sin(πu) πu
结论:
x ≤a 2
其它
= sinc(u) rect(x) F.T. sinc(u)
5
普遍型
F
rect
˄অ㕍㹽ሴˈ㕍ゴ㹽ሴਈᇭ˅
˄˅ս〫ᇊ⨶˖ྲ᷌ F^g x ` G fx
ࡉᴹ F^g x a ` G fx exp j2Sfxa
࠭ᮠ൘オฏѝⲴᒣ〫ˈᑖᶕ仁ฏѝⲴ⴨〫
਼ᰦ F^g x exp j2Sfax ` G fx fa ࠭ᮠ൘オฏѝⲴ⴨〫ˈᑖᶕ仁ฏѝⲴᒣ〫

常用信号的傅里叶变换

常用信号的傅里叶变换

常用信号的傅里叶变换傅里叶变换是一种将信号从时域转换到频域的数学工具。

它是以法国数学家傅里叶的名字命名的,用于分析信号的频谱成分。

在信号处理和通信领域,傅里叶变换被广泛应用于信号的频谱分析、滤波、解调和压缩等方面。

1. 正弦信号的傅里叶变换正弦信号是最简单的周期信号之一,它可以表示为一个频率和幅度确定的正弦函数。

对于一个正弦信号,它的傅里叶变换是一个由两个峰值组成的频谱图。

其中一个峰值位于正弦信号的频率上,另一个峰值位于负频率上,其幅度与正弦信号的幅度相等。

2. 方波信号的傅里叶变换方波信号是一种以方波函数为基础的周期信号。

方波信号可以表示为一系列正弦信号的叠加,其傅里叶变换是一个由多个峰值组成的频谱图。

频谱图上的峰值对应于方波信号中各个频率的成分。

3. 矩形脉冲信号的傅里叶变换矩形脉冲信号是一种在有限时间内突然变化的信号。

它在时域上表现为一个宽度有限的矩形脉冲,其傅里叶变换是一个以脉冲宽度为主要参数的频谱图。

频谱图上的峰值表示了矩形脉冲信号中各个频率的成分。

4. 高斯信号的傅里叶变换高斯信号是一种以高斯函数为基础的连续非周期信号。

高斯信号在时域上呈钟形分布,其傅里叶变换是一个以高斯函数为形状的频谱图。

频谱图上的峰值表示了高斯信号中各个频率的成分。

5. 三角波信号的傅里叶变换三角波信号是一种以三角函数为基础的周期信号。

三角波信号可以表示为一系列正弦信号的叠加,其傅里叶变换是一个以基频为主要参数的频谱图。

频谱图上的峰值对应于三角波信号中各个频率的成分。

6. 音频信号的傅里叶变换音频信号是一种连续时间的信号,它可以通过傅里叶变换转换为频域信号进行分析。

音频信号的傅里叶变换可以得到音频信号的频谱图,从而可以对音频信号进行频谱分析、滤波和合成等操作。

7. 语音信号的傅里叶变换语音信号是一种声音信号,它可以通过傅里叶变换转换为频域信号进行分析。

语音信号的傅里叶变换可以得到语音信号的频谱图,从而可以对语音信号进行声音分析、语音识别和语音合成等操作。

常用函数的傅里叶变换

常用函数的傅里叶变换

常用函数的傅里叶变换傅里叶变换是一种将时域信号转换为频域信号的方法,常用于信号处理、通信、图像处理等领域。

在实际应用中,有很多常用的函数需要进行傅里叶变换,本文将介绍一些常用函数的傅里叶变换公式。

1. 正弦函数和余弦函数正弦函数和余弦函数是最基本的周期函数,它们的傅里叶变换公式如下:$$begin{aligned}mathcal{F}(sin(omega_0t)) &= frac{j}{2}[delta(omega-omega_0)-delta(omega+omega_0)]mathcal{F}(cos(omega_0t)) &= frac{1}{2}[delta(omega-omega_0)+delta(omega+omega_0)]end{aligned}$$其中,$omega_0$表示正弦函数和余弦函数的基频,$delta(omega)$表示狄拉克脉冲函数,$j$表示虚数单位。

2. 矩形函数矩形函数是一个限制在有限区间的常数函数,它的傅里叶变换公式如下:$$mathcal{F}(mathrm{rect}(t/T)) = Tmathrm{sinc}(omega T) $$其中,$mathrm{sinc}(x)=frac{sin(pi x)}{pi x}$为正弦积分函数。

3. 三角函数三角函数包括正弦函数、余弦函数、正切函数等,它们的傅里叶变换公式如下:$$begin{aligned}mathcal{F}(sin^2(omega_0t)) &= frac{j}{4}[delta(omega-2omega_0)-delta(omega)-delta(omega+2omega_0)]mathcal{F}(cos^2(omega_0t)) &= frac{1}{4}[delta(omega-2omega_0)+2delta(omega)+delta(omega+2omega_0)]mathcal{F}(tan(omega_0t)) &= -jfrac{pi}{2}mathrm{sgn}(omega-omega_0)-jfrac{pi}{2}mathrm{sgn}(omega+omega_0)end{aligned}$$其中,$mathrm{sgn}(x)$为符号函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

式中,n
arctan
bn an
cn
an2bn2
Opposite Hypotenuse
为n次谐波初始相位。 为n次谐波振幅。
! 并非任意周期信号都能进行傅里叶级数展开!
f ( t ) 可展开为傅里叶级数的条件:
(1)f ( t 绝) 对可积,即: t2 f (t) dt t1
(2)f ( t 在) 区间内有有限个间断点;
第3章 傅里叶变换
重点:
1.傅里叶级数定义及适用条件 2.常见周期信号的频谱,非周期性信号的频谱 3.傅里叶变换的定义及适用条件及性质 4.周期信号的傅里叶变换 5.抽样定理 6.功率频谱与能量频谱 7.系统频域分析法 8.希尔伯特变换
3.1 傅里叶变换的产生
傅里叶1768年生于法国,1807年提 出“任何周期信号都可用正弦函数 级数表示”, 1822年在“热的分析 理论”一书中再次提出。1829年 狄里赫利给出傅里叶变换收敛条件。 傅里叶变换得到大规模的应用,则 是到了上世纪60年代之后。
T0 2
T0 2
(t)ejn0tdt1 T0
T0
(t)
1 T0
ejn0t
n
a0
1 T0

anT20 T2 T020(t)cosn0tdtT20
bn 0
T 0 ( t )
的三角傅里叶级数为:T0(t)T10 T20
cosn0t
n1
例 求下图中三角波的三角傅里叶级数。
解 (1)将周期函数 f ( t ) 在 t [0,T0]内的函数记为
第一个过零点为n =4 。 F&n 在2π/有4值1(谱线)
f (t)
1
T
2
o
2
谱线间隔 2 π T
1 F&n
4
2
O
T
t
第一个过零点:
Sa(2 ) 0
π 2π
2
情况2: T 8,F & nT S a (n T )8 1S a (n 8 )
第一个过零点n=8
脉冲宽度缩小一倍
f (t)
Tt1
f(t)[cos(n1t)jsin(n1t)]dtT 2 tt12
f(t)ejn1tdt
2. 直接从复变正交函数集推导 将原函数 f ( t )在复变正交函数空间
{ej(n1t) n1,2,L}中展开,有
f (t) Fn ej(n1t) n
式中
Fn
t2 f(t)(ejn1t)*dt
t1
f(t)AA sinn0t 2 πn1 n
3.2.3 傅里叶级数的MATLAB仿真实现
常称为f(t)的截断傅里叶级数表示式。
f(t)NF n e jn 1 t a 0 N a n c o s (n1 t) N b n s in (n1 t)
n N
n 1
n 1
用MATLAB的符号积分函数int()可表示上式。格式为: (1)intf=int(f,v) ; 给出符号表达式f对指定变量v的 (不带积分常数)不定积分; (2)intf=int(f,v,a,b) ; 给出符号表达式f对指定变量v 的定积分。
1
FnT
/2ejn1tdt1ejn1t /2 2sinn21
/2
Tjn1/2 T n1
b
b24ac 2a
Tsin n2n 121
Sa(n1),
T2
n0,1,2,L
包络线
频谱图随参数的变化规律: 1)周期T不变,脉冲宽度变化
情况1: T 4,F & nT S a (n T )1 4S a (n 4 )
1
T
2
o
2
T
t
谱线间隔不变 2 π
T
F&n
1 8
幅值减小一倍 第一amp; nT S a (n T ) 1 1 6S a (n 1 6)
第一个过零点为n =16。
脉冲宽度再缩小一倍
f (t)
1
T
2
o
2
谱线间隔不变 2 π
T
1 F&n
16
偶谐函数
满足 f(tT/2)f(t) 的周期为T 的 函数;即平移半个周期后信号与原信 号重合。
2.横轴对称性 (1)奇谐函数的傅里叶级数中只有奇次谐波分量。 (2)偶谐函数的傅里叶级数中只有偶次谐波分量。
如果原信号既不是奇谐函数也不是偶谐函数,那 么其傅里叶级数展开式中就会既包含有奇次谐波分 量也包含有偶次谐波分量。
t2 t1
f(t)sin(n1t)dt
或 f(t)a 2 0n 1(a nc o sn1 t b nsinn1 t)
傅里叶级数的 三角展开式
2
ant2t1
t2 t1
f(t)cos(n1t)dt
同上式
另一种形式
f(t)a20n 1cncos(n1tn) t
n=1
n>1
直流分量 基波分量 n次谐波分量
谱线间隔 2π π
T 2
f (t)
1
T
2
o
2
T
1 4
F&n
t
示意图
幅值:
F0
Sa(0)1
T
4
0

第一个过零点
情况 2:
T 8 时,谱线间隔
2π π T 4
第一个过零点 2 π
周期T扩展一倍
f (t) 1
T
2
o
2
谱线间隔减小一倍
1
4
1
FF n& n
8
示意图
T
t
T
幅值减小一倍
3.3 周期信号的对称性
1.纵轴对称性 (1)如果原函数是偶函数,则其傅里叶级数中只有 直流和余弦分量(即偶函数之和仍然是偶函数)。 (2)如果原函数是奇函数,则其傅里叶级数中只有
正弦分量(即奇函数之和仍然是奇函数)。
定义:
奇谐函数
满足 f(tT/2)f(t) 的周期为T 的 函数;即平移半个周期后的信号与原 信号关于横轴对称。
将 f ( t ) 去除直流分量,则仅剩交流分量 f A C ( t )
fAC(t)f(t)nTA0[u(tnT0)u(t(n1)T0)]
n[ATA0 (t
nT0)]{(t
nT0)(t
(n1)T0)}
TA0 An(tnT0)TA0 A(T10
2 T0
n1cosn0t)2TA 0 n1cosn0t
t2(ejn1t)(ejn1t)*dt
1 T
t2 f(t)ejn1tdt
t1
t1
Fn
Fn
ejn
An 2
例 已知冲激序列

T0(t) (tkT0)
k
T 0 ( t ) (t T0 )
(t)

-T0 O T0 2T0 t
求 T 0 ( t ) 的指数傅里叶级数和三角傅里叶级数。

FnT10
1. 周期矩形脉冲信号 (1) 周期矩形脉冲信号的傅里叶级数求解
(3)f ( t )在区间内有有限个极值点。
Direchlet条件
傅里叶级数存 在的充要条件
3.2.2 傅里叶级数的复指数形式
1. 从三角函数形式的傅里叶级数推导
利用欧拉公式:
e e j(n 1t n) j(n 1t n)
cos(n1tn)
2
f(t)1 2n [cnej(n 1 t n)]1 2n [A nej(n 1 t)]
cos(n1t)cos(m1t)dt 0
sin(n1t)sin(m1t)dt
0
,
mn
(2)“单位”常数性,即当 n 0 时,有
t1 t2 c o s 2 (n1 t)d tt1 t2 s in 2 (n1 t)d t T 2 t2 2 t1
t2 t1
1dt
T
t2
t1
可以将“任意”周期函数f ( t ) 在这个正交函数集中展开为
! 利用奇谐函数、偶谐函数性质的时候,最好将
其直流分量去掉,以免发生误判。
例 已知奇谐函数:

f (t) E
2
T1
o
T1
t
2
E2
f (t)
2
f (t T1 )
2
f (t) E
2
f (t)
E
cos(1t
T1 2
)
2
T1
o
2
sin 1t
E
2
T1 t
T1
o
2
sin ( 1 t
T1 2
)
2 cos 1 t
f 带 宽1 不变。
• T 由小变大,谐波频率成分丰富,且频谱幅度变小

• T 时,谱线间隔 0 ,这时:
周期信号 非周期信号;离散频谱 连续频谱
3.4.2 常见周期信号的频谱
典型周期信号的频谱分析,可利用傅里叶级数或傅 里叶变换。典型周期信号如下:
1. 周期矩形脉冲信号 2. 周期对称方波信号 3. 周期锯齿脉冲信号 4. 周期三角脉冲信号 5. 周期半波余弦信号 6. 周期全波余弦信号
E 2
T1 t 2
f (t) E
2
f (t) E 2
T1
o
2
E
sin 21t 2
T1 t 2
T1
o
T1
t
2
E
2
cos 21t
2
3.4 常见周期信号的频谱
3.4.1 频谱的概念
振幅频谱
频 (幅频特性图) 谱 图
相位频谱
(相频特性图)
表示信号含有的各个频率分量 的幅度值。其横坐标为频率 (单位为赫兹),纵坐标对应各 频率分量的幅度值 。F n
相关文档
最新文档