初中数学全部知识点和 练习题
(完整word版)最新初一数学知识点讲解习题附答案大全(绝对实用)(良心出品必属精品)

第一章有理数【知识梳理】1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。
2.2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。
3.3.倒数:若两个数的积等于1,则这两个数互为倒数。
4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离. 5.科学记数法:,其中。
6.实数大小的比较:利用法则比较大小;利用数轴比较大小。
7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。
实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。
正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。
一、选择题。
1.下列说法正确的个数是 ( )①一个有理数不是整数就是分数②一个有理数不是正数就是负数③一个整数不是正的,就是负的④一个分数不是正的,就是负的A 1B 2C 3D 42. a,b是有理数,它们在数轴上的对应点的位置如下图所示:把a,-a,b,-b按照从小到大的顺序排列 ( )A -b<-a<a<bB -a<-b<a<bC -b<a<-a<bD -b<b<-a<a3.下列说法正确的是 ( )①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小A ①②B ①③C ①②③D ①②③④4.下列运算正确的是( )A B -7-2×5=-9×5=-45C 3÷D -(-3)2=-95.若a+b<0,ab<0,则 ( ) A a>0,b>0 B a<0,b<0C a,b两数一正一负,且正数的绝对值大于负数的绝对值D a,b两数一正一负,且负数的绝对值大于正数的绝对值6.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg, (25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A 0.8kgB 0.6kgC 0.5kgD 0.4kg7.一根1m长的小棒,第一次截去它的,第二次截去剩下的,如此截下去,第五次后剩下的小棒的长度是()A ()5mB [1-()5]mC ()5mD [1-()5]m8.若ab≠0,则的取值不可能是()A 0B 1C 2D -2二、填空题。
初中数学知识点大全(全部知识内容)

初中数学知识点大全(全部知识内容)第一章实数★重点★实数的有关概念及性质,实数的运算☆内容提要☆一、重要概念1.数的分类及概念数系表:说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x≥0)常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数:①定义及表示法②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.0<a<1时1/a>1;a>1时,1/a<1;D.积为1。
4.相反数:①定义及表示法②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n(n为自然数)7.绝对值:①定义(两种):代数定义:几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。
②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、实数的运算1.运算法则(加、减、乘、除、乘方、开方)2.运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律)3.运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷ ×5);C.(有括号时)由“小”到“中”到“大”。
三、应用举例(略)附:典型例题1.已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│=b-a.2.已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。
第二章代数式★重点★代数式的有关概念及性质,代数式的运算☆内容提要☆一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
(完整版)初中数学分式章节知识点及典型例题解析

分式的知识点及典型例题分析1、分式的定义:例:下列式子中,y x +15、8a 2b 、-239a 、y x b a --25、4322b a -、2—a 2、m 1、65xy x 1、21、212+x 、πxy 3、y x +3、ma 1+中分式的个数为( ) (A ) 2 (B ) 3 (C ) 4 (D) 5 练习题:(1)下列式子中,是分式的有 .⑴275x x -+; ⑵ 123x -;⑶25a a -;⑷22x x π--;⑸22b b -;⑹222xy x y +。
(2)下列式子,哪些是分式?5a -; 234x +;3y y ; 78x π+;2x xy x y +-;145b-+。
2、分式有,无意义,总有意义:(1)使分式有意义:令分母≠0按解方程的方法去求解; (2)使分式无意义:令分母=0按解方程的方法去求解; 注意:(12+x ≠0)例1:当x 时,分式51-x 有意义; 例2:分式xx -+212中,当____=x 时,分式没有意义 例3:当x 时,分式112-x 有意义. 例4:当x 时,分式12+x x有意义例5:x ,y 满足关系 时,分式x yx y-+无意义; 例6:无论x 取什么数时,总是有意义的分式是( )A .122+x x B 。
12+x x C 。
133+x x D 。
25xx - 例7:使分式2+x x有意义的x 的取值范围为( )A .2≠x B .2-≠x C .2->x D .2<x例8:要是分式)3)(1(2-+-x x x 没有意义,则x 的值为( )A. 2 B 。
—1或—3 C 。
-1 D 。
3同步练习题:3、分式的值为零:使分式值为零:令分子=0且分母≠0,注意:当分子等于0使,看看是否使分母=0了,如果使分母=0了,那么要舍去.例1:当x 时,分式121+-a a的值为0 例2:当x 时,分式112+-x x 的值为0例3:如果分式22+-a a 的值为为零,则a 的值为( ) A. 2± B 。
初中数学中考一轮复习专题1数与式重点、考点知识、方法总结及真题练习

在实数范围内,正数和零统称为非负数.我们已经学习过的非负数有如下三种形式:
(1)仸何一个实数 a 的绝对值是非负数,即| a |≥0; (2)仸何一个实数 a 的平方是非负数,即 a2 ≥0; (3)仸何非负数的算术平方根是非负数,即 a 0 ( a 0 ).
非负数具有以下性质: (1)非负数有最小值零; (2)有限个非负数乊和仍是非负数; (3)几个非负数乊和等于 0,则每个非负数都等于 0. 4.实数的运算
a a (a 0, b 0) bb
②.加减法
将二次根式化为最简二次根式后,将同类二次根式的系数相加减,被开方数和根指数丌变,
即合并同类二次根式.
【典例】
1.计算:5 +
﹣×+ ÷.
【答案】 【解析】解:原式= + ﹣
+3 ÷
=2 ﹣1+3
=2 +2.
x xy xy y
2.若 x 0 ,化简
注:单独一个字母戒一个数也是代数式.
2.代数式的分类:
3.代数式的书写规则: (1)数字不字母相乘戒字母不字母相乘,通常把乘号写作“ ”戒省略丌写,字母乊间的
顺序可以交换,但一般按字母表中的先后顺序写.数字应在字母乊前.如: 3b 丌要写成 b3 (2)在代数式中出现除法运算时,一般都变成分数和乘法来计算.如: 2a b 写成 2a
x
2
0
即
x
1 且x 2
2
.
【难度】易
【结束】
2.若
,则 ( )
A. b>3B. b<3C. b≥3D. b≤3
【答案】D.
【解析】
3 b = 3 b ,所以 3 b ≥0,即 b 3 .
初三数学知识练习题有答案

初三数学知识练习题有答案1. 定义与性质1.1 有理数有理数是可以用两个整数的比表示的数,包括正整数、负整数、零以及分数。
有理数的集合用符号Q表示。
(1)-3是负有理数还是正有理数?(2)写出2的相反数。
(3)将-3和2这两个有理数写成分数的形式。
(4)真分数和假分数有何区别?1.2 整数整数是包括正整数、零和负整数的集合,用符号Z表示。
(1)整数2和有理数2有何不同?(2)整数-3与有理数-3有何不同?(3)写出-5的绝对值。
(4)从-2到2的整数有哪些?1.3 实数实数是数轴上的所有点的集合,包括有理数和无理数。
(1)给出一个无理数的例子。
(2)-3属于实数吗?(3)开方是指什么操作?(4)实数可以表示为无限循环小数吗?2. 算术运算2.1 加法和减法(1)计算:13 + (-5) =?(2)计算:-8 + (-4) =?(3)计算:7 - 12 =?(4)计算:-5 - (-3) =?2.2 乘法和除法(1)计算:(-2) × 3 =?(2)计算:5 × (-4) =?(3)计算:10 ÷ (-5) =?(4)计算:-18 ÷ (-3) =?3. 平方与平方根3.1 定义平方是指一个数乘以自己得到的积,用符号a²表示。
平方根是指一个数的平方等于给定数的操作,用符号√a表示。
(1)计算:4² =?(2)计算:(-3)² =?(3)计算:√49 =?(4)计算:√121 =?3.2 性质(1)负数的平方是正数还是负数?(2)正数的平方根是正数还是负数?(3)负数的平方根存在吗?(4)任何正整数的平方根存在吗?4. 分数与小数4.1 分数的定义分数是指一个整数与另一个整数的比,分子表示其中的整数,分母表示其中的另一个整数。
(1)将16写成最简分数的形式。
(2)将6/12写成最简分数的形式。
(3)将5/8转化为小数。
(4)将0.4转化为分数。
初中数学知识点总结加例题

初中数学知识点总结加例题一、数与代数。
(一)有理数。
1. 概念。
- 有理数包括整数和分数。
整数又分为正整数、0、负整数;分数分为正分数和负分数。
- 数轴:规定了原点、正方向和单位长度的直线。
- 相反数:绝对值相等,符号相反的两个数。
例如,3和 - 3互为相反数。
- 绝对值:一个数在数轴上所对应的点与原点的距离。
正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
2. 有理数的运算。
- 加法:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
- 减法:减去一个数等于加上这个数的相反数。
- 乘法:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
- 除法:除以一个不等于0的数,等于乘这个数的倒数。
例题1:计算:(-2)+3 - (-5)解析:- 根据有理数的减法法则,(-2)+3 - (-5)=(-2)+3 + 5。
- 然后,按照有理数的加法法则,先计算(-2)+3 = 1。
- 计算1 + 5=6。
(二)实数。
1. 无理数:无限不循环小数,如√(2)、π等。
2. 实数的运算:实数的运算顺序是先算乘方、开方,再算乘除,最后算加减,有括号的先算括号里面的。
例题2:计算:√(4)+3 - π(精确到0.1)解析:- 先计算√(4)=2。
- 然后计算2 + 3-π=5-π。
- 因为π≈3.14,所以5 - π≈5 - 3.14 = 1.86≈1.9。
(三)代数式。
1. 整式。
- 单项式:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式。
- 多项式:几个单项式的和叫做多项式。
- 整式的加减:实质是合并同类项,同类项是指所含字母相同,并且相同字母的指数也相同的项。
2. 整式的乘除。
- 同底数幂相乘,底数不变,指数相加,即a^m· a^n=a^m + n。
初二数学知识点归纳及例题

初二数学知识点归纳及例题初二数学知识点归纳(人教版)一、三角形。
1. 三角形的三边关系。
- 三角形任意两边之和大于第三边,任意两边之差小于第三边。
- 例如:已知三角形的两边长分别为3和5,则第三边x的取值范围是2 < x <8。
- 解析:根据三边关系,5 - 3 < x < 5+3,即2 < x <8。
2. 三角形的内角和定理。
- 三角形内角和为180°。
- 例如:在△ABC中,∠A = 50°,∠B = 60°,则∠C=180° - 50°-60° = 70°。
- 解析:直接利用三角形内角和定理,用180°减去已知的两个角的度数。
3. 三角形的外角性质。
- 三角形的一个外角等于与它不相邻的两个内角之和。
- 例如:在△ABC中,∠ACD是∠ACB的外角,∠A = 50°,∠B = 60°,则∠ACD=50° + 60°=110°。
- 解析:根据外角性质,∠ACD等于∠A与∠B的和。
二、全等三角形。
1. 全等三角形的判定。
- SSS(边边边):三边对应相等的两个三角形全等。
- 例如:在△ABC和△DEF中,AB = DE,BC = EF,AC = DF,则△ABC≌△DEF。
- 解析:因为三边分别相等,满足SSS判定定理。
- SAS(边角边):两边和它们的夹角对应相等的两个三角形全等。
- 例如:在△ABC和△DEF中,AB = DE,∠A = ∠D,AC = DF,则△ABC≌△DEF。
- 解析:两边及夹角对应相等,符合SAS判定定理。
- ASA(角边角):两角和它们的夹边对应相等的两个三角形全等。
- 例如:在△ABC和△DEF中,∠A = ∠D,AB = DE,∠B = ∠E,则△ABC≌△DEF。
- 解析:两角及其夹边相等,满足ASA判定定理。
(完整版)初中数学知识点归纳总结(精华版)

第一章 有理数考点一、实数的概念及分类 (3分)1、实数的分类 正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数:32,7,3π+8,sin60o . 第二章 整式的加减考点一、整式的有关概念 (3分)1、单项式只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如c b a 235-是6次单项式。
考点二、多项式 (11分)1、多项式几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。
几个常数项也是同类项.第三章 一元一次方程考点一、一元一次方程的概念 (6分)1、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程)为未知数,(0a x 0≠=+b ax 叫做一元一次方程的标准形式,a 是未知数x 的系数,b 是常数项。
第四章 图形的初步认识考点一、直线、射线和线段 (3分)1、点和直线的位置关系有线面两种:①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
2、线段的性质(1)线段公理:所有连接两点的线中,线段最短。
也可简单说成:两点之间线段最短。
(2)连接两点的线段的长度,叫做这两点的距离。
(3)线段的中点到两端点的距离相等。
(4)线段的大小关系和它们的长度的大小关系是一致的。
3、线段垂直平分线的性质定理及逆定理垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线.线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
①求y1与x的函数解析式; ②求五月份该公司的总销售量; ③设公司五月份售出甲种型号器材t台,五月份总销 售利润为W(万元),求W与t的函数关系式;(销 售利润=销售额-进价-其他各项支出) ④请推测该公司这次向灾区捐款金额的最大值.
①求二次函数的解析式,并在给定的直角坐标系中 作出这个函数的图像;(5分)
①若二分队在营地不休息,问二分队几小时能赶 到A镇? ②若二分队和一分队同时赶到A镇,二分队应在营 地休息几小时?
③下列图象中,①②分别描述一分队和二分队离A镇 的距离y(千米)和时意义。
例2(2008年巴中市)为预防“手足口病”,某校对 教室进行“药熏消毒”.已知药物燃烧阶段,室内每 立方米空气中的含药量y(mg)与燃烧时间x(分钟) 成正比例;燃烧后,y与x成反比例(如图所示).现 测得药物10分钟燃完,此时教室内每立方米空气含药 量为8mg.据以上信息解答下列问题:
初中数学重点知识点
解析与教学建议
课标解读
知识点
常量、变量的意 义 函数的意义及三 函 种表示方法 数 函数值、自变量 取值范围 简单函数模型、 规律探索
了理掌 解解握 /
/
/
应 用
注
释
确定自变 量的取值 范围仅限 于整式。 分式和简 单实际问 / 题。
知识点
了理掌应 解解握用
注
释
一次函数、正
比例函数的意
例2:(2008年扬州市)红星公司生产的某种时令商品每 件成本为20元,经过市场调研发现,这种商品在未来 40天内的日销售量m(件)与时间t(天)的关系如下 表:
时间t(天) 1 3 6 10 36 …
日销售量m(件) 94 90 84 76 24 …
时间t(天) 1 3 6 10 36 …
日销售量m(件) 94 90 84 76 24 …
3.反比例函数
考试内容:
反比例函数;反比例函数的图像和性质;反 比例函数的应用。
考试要求 (1)结合具体情境体会反比例函数的意义,根据 已知条件确定反比例函数表达式。 (2)会画反比例函数的图像,根据图像和解析表 达式 探索并理解其性质(k>0或k<0时图像的变化 情况) (3)能用反比例函数解决简单的实际问题。
例3(2008福建福州)已知抛物线 y x2 x1
与x轴的一个交点为(m,0),则代数式 m2m2008
的值为( ) A.2006 B.2007 C.2008 D.2009
评:以上三题是三种不同函数的基本概 念(点与函数的关系)
例4(2008年泰州市)根据流程
右边图中的程序,当输入数值x
例4(2008年荆州市)“5•12”汶川大地震后,某健身 器材销售公司通过当地“红十字会”向灾区献爱心, 捐出了五月份全部销售利润.已知该公司五月份只售 出甲、乙、丙三种型号器材若干台,每种型号器材不 少于8台,五月份支出包括这批器材进货款64万元和 其他各项支出(含人员工资和杂项开支)3.8万元.这 三种器材的进价和售 价如下表,人员工 资y1(万元)和杂项 支出y2(万元)分 别与总销售量x(台) 成一次函数关系(如 图).
4.二次函数
考试内容:二次函数;二次函数的图象和性质; 抛物线的顶点、对称轴和开口方向;二次函数与 一元二次方程组的关系;二次函数的应用。
考试要求 (1)通过对实际问题情境的分析确定二次函数的 表达式,体会二次函数的意义。 (2)会用描点法画二次函数的图像,能从图像上 认识二次函数的性质。 (3)会根据公式确定图像的顶点、开口方向和对 称轴(公式不要求记忆和推导),并能解决简单实 际问题。 (4) 能用二次函数的图像求一元二次方程的近似 解
足上述特征的函数解析式 .
例2(2008茂名)已知反比例函数 y a (a 0) 的图象,
x
在每一象限内,的值随值的增大而减少,则一次函
数 yax的a图象不经过( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
评:一次函数、反比例函数与二次函数是初中 函数的支撑,学习它们就必须要知道它们的图 像及其性质。
例5 ( 2008年杭州市) 如图, 水以恒速(即单位时间 内注入水的体积相同)注入下面四种底面积相同的容 器中, (1) 请分别找出与各容器对应的水的高度和 时间的函数关系图象, 用直线段连接起来; (2) 当 容器中的水恰好达到一半高度时, 请在函数关系图 的轴上标出此时值对应点的位置. (a) 对应关系连接如下:
为-2时,输出数值y为
A.4
B.6
C.8
D.10
例5 任意给定一个非零数,按下列程序计算,最 后输出的结果是( )
评:以上两题是函数的不同的表达形式。
2.考查函数的取值范围与意义
评:求函数的定义域是最基本的知识点。
例3(2008年桂林市)2008年5月12日,四川汶川发
生8.0级大地震,我解放军某部火速向灾区推进,最
(b) 当容器中的水恰好达到一半高度时, 函数关 系图上的位置如上:
例6 (2008年宁波市)如图,某 电信公司提供了A,B两种方案的 移动通讯费用y(元)与通话时 间x(元)之间的关系,则以下 说法错误的是( )
A.若通话时间少于120分,则方案比方案便宜20元 B.若通话时间超过200分,则方案比方案便宜12元 C.若通讯费用为60元,则方案比方案的通话时间多 D.若两种方案通讯费用相差10元,则通话时间是 145分或185分
初坐车以某一速度匀速前进,中途由于道路出现泥
石流,被阻停下,耽误了一段时间,为了尽快赶到
灾区救援,官兵们下车急行军匀速步行前往,下列
是官兵们行进的距离S(千米)与行进时间t(小时)
的函数大致图像,你认为正确的是(
)
例4(2008盐城)如图,A、B、C、D为⊙O的四等分点, 动点P从圆心O出发,沿O — C — D — O路线作匀速 运动.设运动时间为t(s),∠APB=y(°),则下 列图象中表示y与t之间函数关系最恰当的是
③②①若当判平顶断行点△于MA轴B的M的坐的直标形线为状与(,抛-并物2说,线明-交理1于)由C时。、,D求两抛点物,线以 C的D解为析直式径,的并圆画恰出好该与抛轴物相线切的,大求致该图圆形的。圆心坐标。
评:函数的几何应用真正体现了数形结合, 是代数与几何最完美的结合。
7.考查函数的应用(3)函数与运动
①写出直线BC的解析式. ②求△ABC的面积.
③若点M在线段上以每秒1个单位长度的速度从A向 B运动(不与A,B重合),同时,点N在射线BC上以 每秒2个单位长度的速度从B向C运动.设运动时间 为t秒,请写出△MNB的面积s与t的函数关系式,并 求出点M运动多少时间时, △MNB的面积最大, 最大面积是多少?
二次函数模型
/ /
与性质相关 的公式不要 求推导,但 建议要牢 / 记.
考试内容与要求
1.函数
考试内容: 常量、变量、函数;自变量的取值范围和函 数值:函数的表示方法。
考试要求 (1)通过简单实例,了解常量、变量的意义。 (2)能结合实例,了解函数的概念和三种表示方 法,能举出函数的实例。 (3)能结合图像对简单实际问题中的函数关系进 行分析。 (4)能确定简单的整式、分式和简单实际问题中 的函数的自变量取值范围,并会求出函数值。 (5)能用适当的函数表示法刻画实际问题中变量 之间的关系。 (6)结合对函数关系的分析,尝试对变量的变化 规律进行初步预测。
下面我们就来研究销售这种商品的有关问题: (1)认真分析上表中的数据,用所学过的一次函数、二次 函数、反比例函数的知识确定一个满足这些数据的m(件) 与t(天)之间的关系式; (2)请预测未来40天中哪一天的日销售利润最大,最大 日销售利润是多少? (3)在实际销售的前20天中,该公司决定每销售一件商 品就捐赠a元利润(a<4)给希望工程。公司通过销售记录 发现,前20天中,每天扣除捐赠后的日销售利润随时间t (天)的增大而增大,求a的取值范围。
一义
次 函 数
一次函数性质、 图象
/ /
性质指由可k、 b值确定图象 的变化情况.
一次函数模型
/
知识点
反比例函数的
反 意义
比 例 函
反比例函数性 质、图象
数 反比例函数模
型
了理掌应 解解握用
注
释
/ /
性质指由k值 确定图象的变 化情况.
/
知识点
了理掌应 解解握用
注
释
二次函数的意 二义 次 二次函数性质 函 及其图象 数
库有粮食100吨,乙库有粮食80吨,而A库的容量为70
吨,B库的容量为110吨。从甲、乙两库到A、B两库的
路程和运费如下表(表中“元/吨·千米”表示每吨
粮食运送1千米所需人民币)
路程(千米) 运费(元/吨·千米)
甲库 乙库 甲库
乙库
A库
20
15
12
12
B库
25
20
10
8
②①当若甲甲、库乙运两往库A库各粮运食往吨A、,B请两写库出多将少粮吨食粮运食往时A,、总B两运 费库最的省总,运最费省y(的元总)运与费x是(多吨少)?的函数关系式
题型形式
1.考查函数的基本概念
例1(2008年郴州市)如果点M在直线y=x-1上,则M点
的坐标可以是( )
A.(-1,0)
B.(0,1)
C.(1,
0)
D.(1,-1)
例2(2008年南昌市)下列四个点,在反比例函数y 6
图象上的是( )
x
A.(1,-6)
B.(2,4)
C.(3,-2)
D.(-6,-1)
评:函数与运动的 题型很多,这是当 今数学学习最时髦 的考试方向。
8.考查函数的应用(4)函数与建模 例1:(08茂名)我市某工艺厂为配合北京奥运,设 计了一款成本为20元∕件的工艺品投放市场进行试 销.经过调查,得到如下数据: