圆周运动习题

合集下载

圆周运动典型基础练习题大全

圆周运动典型基础练习题大全

1.甲、乙两物体都做匀速圆周运动,其质量之比为1 :2,转动半径之比为1 :2,在相等时间里甲转过60°,乙转过45°,则它们所受外力的合力之比为()A. 1 :4B. 2 :3C. 4 :9D. 9 :162.如图所示,有一质量为M的大圆环,半径为R,被一轻杆固定后悬挂在。

点,有"‘夕'两个质量为m的小环(可视为质点),同时从大环两侧的对称位置由静止滑下。

两小厂―-弋环同时滑到大环底部时,速度都为v,则此时大环对轻杆的拉力大小为()(,1A. (2m+2M)gB. Mg一2mv2/R \/C. 2m(g+v2/R)+MgD. 2m(v2/R-g)+Mg 13.下列各种运动中,属于匀变速运动的有()A.匀速直线运动B.匀速圆周运动C.平抛运动D.竖直上抛运动4.关于匀速圆周运动的向心力,下列说法正确的是()A.向心力是指向圆心方向的合力,是根据力的作用效果命名的B.向心力可以是多个力的合力,也可以是其中一个力或一个力的分力C.对稳定的圆周运动,向心力是一个恒力D.向心力的效果是改变质点的线速度大小5. 一物体在水平面内沿半径R = 20cm的圆形轨道做匀速圆周运动,线速度v = 0.2m/s ,那么,它的向心加速度为m/s2 ,它的周期为s。

6.在一段半径为R = 15m的圆孤形水平弯道上,已知弯道路面对汽车轮胎的最大静摩擦力等于车重的u = 0.70倍,则汽车拐弯时的最大速度是______ m/s7.在如图所示的圆锥摆中,已知绳子长度为L ,绳子转动过程中与竖直一可—方向的夹角为0,试求小球做圆周运动的周期。

:"\8如图所示,质量m = 1 kg的小球用细线拴住,线长l=0.5 m,细线所受拉力达到F =18 N时就会被拉断。

当小球从图示位置释放后摆到悬点的正下方时,细线恰好被拉断。

若此时小球距水平地面的高度h = 5 m,重力加速度g =10 m/s2,求小球落小地处到地面上P 点的距离?求落地速度? S点在悬点的正下方)20.如图所示,半径为R,内径很小的光滑半圆管竖直放置,两个质量均为m 的小球A 、B 以不同速率进入管内,A 通过最高点C 时,对管壁上部的压力为3mg, B 通过最高点C 时,对管壁下部的压力为0. 75mg.求A 、B 两球落地点间的距离.21、如图所示,将一质量为m 的摆球用长为L 的细绳吊起,上端固定,使摆球在水平面内 做匀速圆周运动,细绳就会沿圆锥面旋转,这样就构成了一个圆锥摆。

第六章 圆周运动 章节复习题-2022-2023学年高一下学期物理人教版(2019)必修第二册

第六章 圆周运动 章节复习题-2022-2023学年高一下学期物理人教版(2019)必修第二册

第六章圆周运动章节复习题一、单选题(下列各题均有4个选项,其中只有一个是正确的,请将正确选项的字母代号写在答题卷的相应位置,多选、错选或不选,该小题不得分,每小题3分,共24分)1、下列关于圆周运动的说法中正确的是()A.向心加速度的方向始终指向圆心B.匀速圆周运动是匀变速曲线运动C.在匀速圆周运动中,向心加速度是恒定的D.在匀速圆周运动中,线速度和角速度是不变的2、如图,A、B两点分别位于大、小轮的边缘上,C点位于大轮半径的中点,大轮的半径是小轮半径的2倍,它们之间靠摩擦传动,接触面不打滑。

下列说法正确的是()A.A与B线速度大小相等 B.B与C线速度大小相等C.A的角速度是C的2倍 D.A与B角速度大小相等3、如图所示,为一在水平面内做匀速圆周运动的圆锥摆,关于摆球A的受力情况,下列说法中正确的是()A.摆球A受重力、拉力和向心力的作用B.摆球A受拉力和向心力的作用C.摆球A受重力和向心力的作用D.摆球A受拉力和重力的作用4、如图四幅图中,做圆周运动的物体,描述正确的是()A.图甲中,汽车通过拱形桥最高点时,车速越大,车对桥面的压力越大B.图乙中,做圆锥摆运动的物体,转速越大,摆线与竖直方向的夹角越大C.图丙中,火车转弯速度较大时,火车内侧的车轮轮缘挤压内轨D.图丁中,洗衣机脱水时衣物附着在桶内壁上,转速越大,衣物所受筒壁的静摩擦力越大5、如图所示,半径为r的圆筒,绕竖直中心轴OO'转动,小物块a靠在圆筒的内壁上,它与圆筒的动摩擦因数为μ,现要使小物块a不下滑,则圆筒转动的角速度ω至少为()A.grμB.gμ C.grDgrμ6、如图,A、B两小球沿倒置的光滑圆锥内侧在水平面内做匀速圆周运动。

则()A.A球质量大于B球 B.A球线速度大于B球C.A球转动周期小于B球 D.A球向心加速度小于B球7、智能呼啦圈轻便美观,深受大众喜爱,如图甲,腰带外侧带有轨道,将带有滑轮的短杆(大小忽略不计)穿入轨道,短杆的另一端悬挂一根带有配重的轻绳,其简化模型如图乙所示,可视为质点的配重质量为0.5kg,绳长为0.5m,悬挂点P到腰带中心点O的距离为0.2m,水平固定好腰带,通过人体微小扭动,使配重随短杆做水平匀速圆周运动,绳子与竖直方向夹角为θ,运动过程中腰带可看成不动,重力加速度g取10m/s2,下列说法正确的是()A.若使用者觉得锻炼不够充分,决定增大转速,腰带受到的合力变大B.当使用者掌握好锻炼节奏后能够使θ稳定在37°,此时配重的角速度为5rad/s C.使用者使用一段时间后成功减肥,再次使用时将腰带调小,若仍保持转速不变则θ变小D.当用力转动使θ从37°增加到53°时,配重运动的周期变大8、如图,叠放在水平转台上的物体A、B、C都能随转台一起以角速度ω匀速转动,A、B、C 的质量分别为3m、2m、m,A与B、B与转台间的动摩擦因数为μ,C与转台间的动摩擦因数为2μ,A和B、C离转台中心的距离分别为r、1.5r。

(完整版)圆周运动习题及答案

(完整版)圆周运动习题及答案

《圆周运动》练习(二)1.如图所示,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l,木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是()A.b一定比a先开始滑动B.a、b所受的摩擦力始终相等C.ω=kg2l是b开始滑动的临界角速度D.当ω=2kg3l时,a所受摩擦力的大小为kmg2.如图所示,一质量为M的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g.当小环滑到大环的最低点时,大环对轻杆拉力的大小为()A.Mg-5mg B.Mg+mgC.Mg+5mg D.Mg+10mg3.如图所示的曲线是某个质点在恒力作用下的一段运动轨迹.质点从M点出发经P点到达N点,已知弧长MP大于弧长PN,质点由M点运动到P点与从P点运动到N点所用的时间相等.则下列说法中正确的是()A.质点从M到N过程中速度大小保持不变B.质点在这两段时间内的速度变化量大小相等,方向相同C.质点在这两段时间内的速度变化量大小不相等,但方向相同D.质点在M、N间的运动不是匀变速运动4.如图所示,质量相同的钢球①、②分别放在A、B盘的边缘,A、B两盘的半径之比为2∶1,a、b 分别是与A盘、B盘同轴的轮,a、b轮半径之比为1∶2.当a、b两轮在同一皮带带动下匀速转动时,钢球①、②受到的向心力大小之比为()A.2∶1 B.4∶1C.1∶4 D.8∶15.利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面,如图所示,用两根长为L的细线系一质量为m的小球,两线上端系于水平横杆上的A、B两点,A、B两点相距也为L,若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根线承受的张力为()A.23mg B.3mgC .2.5mg D.73mg26.如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m 处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10 m/s 2.则ω的最大值是( ) A. 5 rad/s B. 3 rad/s C .1.0 rad /s D .0.5 rad/s7.如图所示,在竖直平面内有xOy 坐标系,长为l 的不可伸长细绳,一端固定在A 点,A 点的坐标为(0,l2),另一端系一质量为m 的小球.现在x 坐标轴上(x >0)固定一个小钉,拉小球使细绳绷直并呈水平位置,再让小球从静止释放,当细绳碰到钉子以后,小球可以绕钉子在竖直平面内做圆周运动.(1)当钉子在x =54l 的P 点时,小球经过最低点时细绳恰好不被拉断,求细绳能承受的最大拉力;(2)为使小球释放后能绕钉子在竖直平面内做圆周运动,而细绳又不被拉断,求钉子所在位置的范围.8.如图所示,一小物块自平台上以速度v 0水平抛出,刚好落在邻近一倾角为α=53°的粗糙斜面AB 顶端,并恰好沿该斜面下滑,已知斜面顶端与平台的高度差h =0.032 m ,小物块与斜面间的动摩擦因数为μ=0.5,A 点离B 点所在平面的高度H =1.2 m .有一半径为R 的光滑圆轨道与斜面AB 在B 点相切连接,已知cos 53°=0.6,sin 53°=0.8,g 取10 m/s 2.求: (1)小物块水平抛出的初速度v 0是多少;(2)若小物块能够通过圆轨道最高点,圆轨道半径R 的最大值.9.如图所示为某游乐场内水上滑梯轨道示意图,整个轨道在同一竖直平面内,表面粗糙的AB 段轨道与四分之一光滑圆弧轨道BC 在B 点水平相切.点A 距水面的高度为H ,圆弧轨道BC 的半径为R ,圆心O 恰在水面.一质量为m 的游客(视为质点)可从轨道AB 的任意位置滑下,不计空气阻力.(1)若游客从A 点由静止开始滑下,到B 点时沿切线方向滑离轨道落在水面D 点,OD =2R ,求游客滑到B 点时的速度v B 大小及运动过程轨道摩擦力对其所做的功W f ;(2)某游客从AB 段某处滑下,恰好停在B 点,又因受到微小扰动,继续沿圆弧轨道滑到P 点后滑离轨道,求P 点离水面的高度h .(提示:在圆周运动过程中任一点,质点所受的向心力与其速率的关系为F 向=m v 2R )10.如图所示,一块足够大的光滑平板放置在水平面上,能绕水平固定轴MN 调节其与水平面的倾角.板上一根长为l =0.6 m 的轻细绳,它的一端系住一质量为m 的小球P ,另一端固定在板上的O 点.当平板的倾角固定为α时,先将轻绳平行于水平轴MN 拉直,然后给小球一沿着平板并与轻绳垂直的初速度v 0=3 m /s.若小球能在板面内做圆周运动,倾角α的值应在什么范围内(取重力加速度g =10 m/s 2)?11.半径为R 的水平圆盘绕过圆心O 的竖直轴匀速转动,A 为圆盘边缘上一点.在O 的正上方有一个可视为质点的小球以初速度v 水平抛出时,半径OA 方向恰好与v 的方向相同,如图所示.若小球与圆盘只碰一次,且落在A点,重力加速度为g,则小球抛出时距O的高度h=________,圆盘转动的角速度大小ω=________.12.一长l=0.80 m的轻绳一端固定在O点,另一端连接一质量m=0.10 kg的小球,悬点O距离水平地面的高度H=1.00 m.开始时小球处于A点,此时轻绳拉直处于水平方向上,如图所示.让小球从静止释放,当小球运动到B点时,轻绳碰到悬点O正下方一个固定的钉子P时立刻断裂.不计轻绳断裂的能量损失,取重力加速度g=10 m/s2.求:(1)当小球运动到B点时的速度大小;(2)绳断裂后球从B点抛出并落在水平地面上的C点,求C点与B点之间的水平距离;(3)若OP=0.6 m,轻绳碰到钉子P时绳中拉力达到所能承受的最大拉力断裂,求轻绳能承受的最大拉力.答案1. 答案 AC解析 小木块a 、b 做圆周运动时,由静摩擦力提供向心力,即f =mω2R .当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a :f a =mω2a l ,当f a =kmg 时,kmg =mω2a l ,ωa=kgl;对木块b :f b =mω2b ·2l ,当f b =kmg 时,kmg =mω2b ·2l ,ωb = kg2l,所以b 先达到最大静摩擦力,选项A 正确;两木块滑动前转动的角速度相同,则f a =mω2l ,f b =mω2·2l ,f a <f b ,选项B 错误;当ω=kg2l时b 刚开始滑动,选项C 正确;当ω= 2kg 3l 时,a 没有滑动,则f a =mω2l =23kmg ,选项D 错误. 2. 答案 C解析 设大环半径为R ,质量为m 的小环下滑过程中遵守机械能守恒定律,所以12m v 2=mg ·2R .小环滑到大环的最低点时的速度为v =2gR ,根据牛顿第二定律得F N -mg =m v 2R,所以在最低点时大环对小环的支持力F N =mg +m v 2R =5mg .根据牛顿第三定律知,小环对大环的压力F N ′=F N =5mg ,方向向下.对大环,据平衡条件,轻杆对大环的拉力T =Mg +F N ′=Mg +5mg .根据牛顿第三定律,大环对轻杆拉力的大小为T ′=T =Mg +5mg ,故选项C 正确,选项A 、B 、D 错误. 3. 答案 B解析 由题图知,质点在恒力作用下做一般曲线运动,不同地方弯曲程度不同,即曲率半径不同,所以速度大小在变,所以A 错误;因是在恒力作用下运动,根据牛顿第二定律F =ma ,所以加速度不变,根据Δv =a Δt 可得在相同时间内速度的变化量相同,故B 正确,C 错误;因加速度不变,故质点做匀变速运动,所以D 错误. 4. 答案 D解析 皮带传送,边缘上的点线速度大小相等,所以v a =v b ,因为a 轮、b 轮半径之比为1∶2,根据线速度公式v =ωr 得:ωa ωb =21,共轴的点,角速度相等,两个钢球的角速度分别与共轴轮子的角速度相等,则ω1ω2=21.根据向心加速度a =rω2,则a 1a 2=81,由F =ma 得F 1F 2=81,故D 正确,A 、B 、C 错误. 5. 答案 A解析 小球恰好过最高点时有:mg =m v 21R解得v 1=32gL ① 根据动能定理得:mg ·3L =12m v 22-12m v 21② 由牛顿第二定律得:3T -mg =m v 2232L ③联立①②③得,T =23mg 故A 正确,B 、C 、D 错误. 6. 答案 C解析 当小物体转动到最低点时为临界点,由牛顿第二定律知,μmg cos 30°-mg sin 30°=mω2r 解得ω=1.0 rad/s ,故选项C 正确.7. 审题突破 (1)由数学知识求出小球做圆周运动的轨道半径,由机械能守恒定律求出小球到达最低点时的速度,然后由牛顿第二定律求出绳子的拉力.(2)由牛顿第二定律求出小球到达最高点的速度,由机械能守恒定律求出钉子的位置,然后确定钉子位置范围. 解析 (1)当钉子在x =54l 的P 点时,小球绕钉子转动的半径为:R 1=l - (l2)2+x 2 小球由静止到最低点的过程中机械能守恒:mg (l 2+R 1)=12m v 21在最低点细绳承受的拉力最大,有:F -mg =m v 21R 1联立求得最大拉力F =7mg .(2)小球绕钉子做圆周运动恰好到达最高点时,有:mg =m v 22R 2运动中机械能守恒:mg (l 2-R 2)=12m v 22钉子所在位置为x ′= (l -R 2)2-(l2)2联立解得x ′=76l因此钉子所在位置的范围为76l ≤x ≤54l .答案 (1)7mg (2)76l ≤x ≤54l8. 解析 (1)小物块自平台做平抛运动,由平抛运动知识得:v y =2gh =2×10×0.032 m /s =0.8 m/s(2分)由于物块恰好沿斜面下滑,则tan 53°=v yv 0(3分)得v 0=0.6 m/s.(2分)(2)设小物块过圆轨道最高点的速度为v ,受到圆轨道的压力为N .则由向心力公式得:N +mg =m v 2R(2分)由动能定理得:mg (H +h )-μmgH cos 53°sin 53°-mg (R +R cos 53°)=12m v 2-12m v 20(5分)小物块能过圆轨道最高点,必有N ≥0(1分) 联立以上各式并代入数据得:R ≤821 m ,即R 最大值为821m .(2分)答案 (1)0.6 m/s (2)821 m9. 答案 (1)2gR -(mgH -2mgR ) (2)23R解析 (1)游客从B 点做平抛运动,有 2R =v B t ①R =12gt 2②由①②式得 v B =2gR ③从A 到B ,根据动能定理,有mg (H -R )+W f =12m v 2B -0④由③④式得W f =-(mgH -2mgR )⑤(2)设OP 与OB 间夹角为θ,游客在P 点时的速度为v P ,受到的支持力为N ,从B 到P 由机械能守恒定律,有mg (R -R cos θ)=12m v 2P -0⑥过P 点时,根据向心力公式,有mg cos θ-N =m v 2PR ⑦N =0⑧cos θ=hR⑨由⑥⑦⑧⑨式解得h =23R ⑩10. 答案 α≤30°解析 小球在板面上运动时受绳子拉力、板面弹力、重力的作用.在垂直板面方向上合力为0,重力在沿板面方向的分量为mg sin α,小球在最高点时,由绳子的拉力和重力分力的合力提供向心力:T +mg sinα=m v 21l ①研究小球从释放到最高点的过程,据动能定理:-mgl sin α=12m v 21-12m v 20② 若恰好通过最高点绳子拉力F T =0,联立①②解得:sin α=v 203gl =323×10×0.6=12.故α最大值为30°,可知若小球能在板面内做圆周运动,倾角α的值应满足α≤30°.11. 答案 gR 22v 2 2n πvR(n =1,2,3,…)解析 小球做平抛运动,在竖直方向:h =12gt 2①在水平方向R =v t ②由①②两式可得h =gR 22v2③小球落在A 点的过程中,OA 转过的角度θ=2n π=ωt (n =1,2,3,…)④由②④两式得ω=2n πvR (n =1,2,3,…)12. 答案 (1)4 m/s (2)0.80 m (3)9 N解析 (1)设小球运动到B 点时的速度大小为v B ,由机械能守恒定律得 12m v 2B=mgl 解得小球运动到B 点时的速度大小v B =2gl =4 m/s (2)小球从B 点做平抛运动,由运动学规律得 x =v B t y =H -l =12gt 2解得C 点与B 点之间的水平距离 x =v B2(H -l )g=0.80 m (3)若轻绳碰到钉子时,轻绳拉力恰好达到最大值F m ,由牛顿定律得F m -mg =m v 2Brr =l -OP由以上各式解得F m =9 N。

高中物理圆周运动练习题

高中物理圆周运动练习题

1.关于物体做匀速圆周运动的速度,下列说法中正确的是()A.速度大小和方向都变更 B.速度的大小和方向都不变C.速度的大小不变,方向变更 D.速度的大小变更,方向不变2.一只小狗拉着雪橇在水平冰面上沿着圆弧形的道路匀速行驶,如图所示为雪橇所受的牵引力F与摩擦力的示意图,其中正确的是( )A.B.C.D.3.一个做匀速圆周运动的物体,假如半径不变,而速率增加到原来速率的3倍,其向心力增加了64 N,则物体原来受到的向心力的大小是( )A. 16 N B. 12 N C. 8 N D. 6 N4.下列对圆锥摆的受力分析正确的是( )A. B. C. D.5.如图所示,用细绳系一小球,使小球在水平面内做匀速圆周运动,不计空气阻力,关于小球的受力正确的是( )A.只受重力 B.只受绳子拉力 C.受重力、绳子拉力 D.受重力、绳子拉力和向心力6.如图所示,圆盘上叠放着两个物块A和B,当圆盘和物块绕竖直轴匀速转动时,物块与圆盘始终保持相对静止,则( )A.物块A不受摩擦力作用B.物块B受5个力作用C.当转速增大时,A所受摩擦力增大,B所受摩擦力减小D.A对B的摩擦力方向沿半径指向转轴7.如图所示,质量为m的物块从半径为R的半球形碗边向碗底滑动,滑到最低点时的速度为v,若物块滑到最低点时受到的摩擦力是,则物块与碗的动摩擦因数为( )A. B. C. D.8.如图所示,物块P置于水平转盘上随转盘一起运动,图中c方向沿半径指向圆心,a方向与c方向垂直.当转盘逆时针转动时,下列说法正确的是( )A.当转盘匀速转动时,P受摩擦力方向为cB.当转盘匀速转动时,P不受转盘的摩擦力C.当转盘加速转动时,P受摩擦力方向可能为aD.当转盘减速转动时,P受摩擦力方向可能为b9.如图所示,某物体沿光滑圆弧轨道由最高点滑到最低点过程中,物体的速率渐渐增大,则( )A.物体的合外力为零B.物体的合力大小不变,方向始终指向圆心OC.物体的合外力就是向心力D.物体的合力方向始终与其运动方向不垂直(最低点除外)10.如图,一圆盘可绕一通过圆心且垂直于盘面的竖直轴转动,在圆盘上放一块橡皮,橡皮块随圆盘一起转动(俯视为逆时针).某段时间圆盘转速不断增大,但橡皮块仍相对圆盘静止,在这段时间内,关于橡皮块所受合力F的方向的四种表示(俯视图)中,正确的是()A. B. C. D.11.一质量为m的物体,沿半径为R的向下凹的半圆形轨道滑行,如图所示,经过最低点时的速度为v,物体与轨道之间的动摩擦因数为μ,则它在最低点时受到的摩擦力为( )A.μ B. C.μm(g+) D.μm(g-)12.如图所示,地球可以看成一个巨大的拱形桥,桥面半径R=6400 ,地面上行驶的汽车重力G=3×104N,在汽车的速度可以达到须要的随意值,且汽车不离开地面的前提下,下列分析中正确的是( )A.汽车的速度越大,则汽车对地面的压力也越大B.不论汽车的行驶速度如何,驾驶员对座椅压力大小都等于3×104NC.不论汽车的行驶速度如何,驾驶员对座椅压力大小都小于他自身的重力D.假如某时刻速度增大到使汽车对地面压力为零,则此时驾驶员会有超重的感觉13.火车在水平轨道上转弯时,若转弯处内外轨道一样高,则火车转弯时( )A.对外轨产生向外的挤压作用B.对内轨产生向外的挤压作用C.对外轨产生向内的挤压作用D.对内轨产生向内的挤压作用14.(多选)匀速圆周运动的向心力公式有多种表达形式,下列表达中正确的是( )A.= B.=2r C.=ω D.=mω2r15.(多选)如图所示,A、B两球穿过光滑水平杆,两球间用一细绳连接,当该装置绕竖直轴′匀速转动时,两球在杆上恰好不发生滑动.若两球质量之比∶=2∶1,则关于A、B两球的下列说法中正确的是( )A.A、B两球受到的向心力之比为2∶1B.A、B两球角速度之比为1∶1C.A、B两球运动半径之比为1∶2D.A、B两球向心加速度之比为1∶216.(多选)如图所示,甲、乙两水平圆盘紧靠在一块,甲圆盘为主动轮,乙靠摩擦随甲无打滑转动.甲圆盘与乙圆盘的半径之比为r甲∶r乙=2∶1,两圆盘和小物体m1、m2之间的动摩擦因数相同,m1距O点为2r,m2距O′点为r,当甲缓慢转动起来且转速渐渐增加时( ).A.与圆盘相对滑动前m1与m2的角速度之比ω1∶ω2=2∶1B.与圆盘相对滑动前m1与m2的向心加速度之比a1∶a2=1∶2C.随转速渐渐增加,m1先起先滑动D.随转速渐渐增加,m2先起先滑动17.(多选)如图所示,将一质量为m的摆球用长为L的细绳吊起,上端固定,使摆球在水平面内做匀速圆周运动,细绳就会沿圆锥面旋转,这样就构成了一个圆锥摆,下列说法正确的是( )A.摆球受重力、拉力和向心力的作用B.摆球受重力和拉力的作用C.摆球运动周期为2πD.摆球运动的转速为θ18.(多选)如图所示,有一固定的且内壁光滑的半球面,球心为O,最低点为C,有两个可视为质点且质量相同的小球A和B,在球面内壁两个高度不同的水平面内做匀速圆周运动,A球的轨迹平面高于B球的轨迹平面,A、B两球与O点的连线与竖直线间的夹角分别为α=53°和β=37°,则( 37°=0.6)( )A.A、B两球所受支持力的大小之比为4∶3B.A、B两球运动的周期之比为2∶C.A、B两球的角速度之比为2∶D.A、B两球的线速度之比为8∶319.(多选)马路急转弯处通常是交通事故多发地带.如图,某马路急转弯处是一圆弧,当汽车行驶的速率为v0时,汽车恰好没有向马路内外两侧滑动的趋势.则在该弯道处( )A.路面外侧高、内侧低B.车速只要低于v0,车辆便会向内侧滑动C.车速虽然高于v0,但只要不超出某一最高限度,车辆便不会向外侧滑动D.当路面结冰时,与未结冰时相比,v0的值变小20.长为L的细线,拴一质量为m的小球,细线上端固定,让小球在水平面内做匀速圆周运动,如图所示,求细线与竖直方向成θ角时:(重力加速度为g)(1)细线中的拉力大小;(2)小球运动的线速度的大小.21.如图所示,有一质量为m1的小球A与质量为m2的物块B通过轻绳相连,轻绳穿过光滑水平板中心的小孔O.当小球A在水平板上绕O点做半径为r的匀速圆周运动时,物块B刚好保持静止.求:(重力加速度为g)(1)轻绳的拉力.(2)小球A运动的线速度大小.22.如图所示,用一根长为l=1 m的细线,一端系一质量为m=1 的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为.(g取10 2,结果可用根式表示)求:(1)若要小球离开锥面,则小球的角速度ω0至少为多大.(2)若细线与竖直方向的夹角为60°,则小球的角速度ω′为多大.23.长为L的细线,一端固定于O点,另一端拴一质量为m的小球,让其在水平面内做匀速圆周运动(这种运动通常称为圆锥摆运动),如图所示,摆线与竖直方向的夹角为α,求:(1)线的拉力大小;(2)小球运动的线速度的大小;(3)小球运动的周期.答案解析1.【答案】C【解析】匀速圆周运动指速度大小不变的圆周运动,线速度的方向时刻在变,故C正确.2.【答案】C【解析】雪橇运动时所受摩擦力为滑动摩擦力,方向与运动方向相反,与圆弧相切.又因为雪橇做匀速圆周运动时合力充当向心力,合力方向必定指向圆心.综上可知,C项正确.3.【答案】C【解析】依据向心力公式得:F1=m,当速率增加为原来的3倍时有:F2=,由题有:F2-F1=64 N,联立以上三式:64=8·m,m=8 N,解得:F1=8 N,C正确.4.【答案】D【解析】圆锥摆向心力由合外力供应,方向指向圆周运动的圆心,D对.5.【答案】C【解析】该小球在运动中受到重力G和绳子的拉力F,拉力F和重力G的合力供应了小球在水平面上做匀速圆周运到的向心力;向心力是沿半径方向上的全部力的合力,所以受力分析时,不要把向心力包括在内.C正确.6.【答案】B【解析】物块A受到的摩擦力充当向心力,A错;物块B受到重力、支持力、A对物块B的压力、A对物块B沿半径向外的静摩擦力和圆盘对物块B沿半径向里的静摩擦力,共5个力的作用,B正确;当转速增大时,A、B所受摩擦力都增大,C错误;A对B的摩擦力方向沿半径向外,D错误.故选B.7.【答案】B【解析】物块滑到最低点时受竖直方向的重力、支持力和水平方向的摩擦力三个力作用,依据牛顿其次定律得-=m,又=μ,联立解得μ=,选项B正确.8.【答案】A【解析】转盘匀速转动时,物块P所受的重力和支持力平衡,摩擦力供应其做匀速圆周运动的向心力,故摩擦力方向指向圆心O点,A项正确,B项错误;当转盘加速转动时,物块P做加速圆周运动,不仅有沿c方向指向圆心的向心力,还有指向a方向的切向力,使线速度大小增大,两方向的合力即摩擦力可能指向b,C项错误;当转盘减速转动时,物块P做减速圆周运动,不仅有沿c方向指向圆心的向心力,还有指向a相反方向的切向力,使线速度大小减小,两方向的合力即摩擦力可能指向d,D项错误.9.【答案】D【解析】物体做加速曲线运动,合力不为零,A错;物体做速度大小变更的圆周运动,合力不指向圆心,合力沿半径方向的分力等于向心力,合力沿切线方向的分力使物体速度变大,即除在最低点外,物体的速度方向与合力的方向夹角为锐角,合力与速度不垂直,B、C错,D对.10.【答案】C【解析】橡皮块做加速圆周运动,合力不指向圆心,但肯定指向圆周的内侧;由于做加速圆周运动,动能不断增加,故合力与速度的夹角小于90°;11.【答案】C【解析】在最低点由向心力公式得:-=m,得=+m,又由摩擦力公式有=μ=μ(+m),C选项正确.12.【答案】C【解析】对汽车探讨,依据牛顿其次定律得:-=m,则得=-m,可知,速度v越大,地面对汽车的支持力越小,则汽车对地面的压力也越小,故A错误.由上可知,汽车和驾驶员都具有向下的加速度,处于失重状态,驾驶员对座椅压力大小都小于他自身的重力,而驾驶员的重力未知,所以驾驶员对座椅压力范围无法确定,故B错误,C正确.假如某时刻速度增大到使汽车对地面压力为零,驾驶员具有向下的加速度,处于失重状态,故D错误.故选C.13.【答案】A【解析】火车在水平轨道上转弯时,做圆周运动,须要有力供应指向圆心的向心力,即方向指向内侧,此时外轨对火车的压力供应向心力,依据牛顿第三定律可知,火车对外轨产生向外的压力作用.故选A.14.【答案】【解析】15.【答案】【解析】两球的向心力都由细绳的拉力供应,大小相等,两球都随杆一起转动,角速度相等,A错,B对.设两球的运动半径分别为、,转动角速度为ω,则ω2=ω2,所以运动半径之比为∶=1∶2,C正确.由牛顿其次定律F=可知∶=1∶2,D正确.16.【答案】【解析】m1的角速度设为ω1,则有ω1r甲=ω2r乙,所以有ω1∶ω2=1∶2,选项A错.m1的向心加速度a1=2rω,同理m2的向心加速度a2=rω,所以发觉相对滑动前a1∶a2=1∶2,选项B对.随着转盘渐渐滑动,静摩擦力供应向心力,当起先发生相对滑动时,对m1有μm1g=m12rω1′2,可得此时角速度ω1′=,此时m2的角速度ω2′=2ω1′=2,此时,m2的向心力m2rω2′2=2μm2g,此时已经大于最大静摩擦力μm2g,即m2早于m1起先发生相对滑动,选项C错,D对.17.【答案】【解析】摆球受重力和绳子拉力两个力的作用,设摆球做匀速圆周运动的周期为T,则:θ=,r=θ,T=2π,转速n==,B、C正确,A、D错误.18.【答案】【解析】小球在运动的过程中受到的合力沿水平方向,且恰好供应向心力,依据平行四边形定则得,=,则==,故A正确.小球受到的合外力:θ=,r=θ,解得T=,则==,故B错误.依据公式θ=mω2r,所以ω==,所以==,故C正确.θ=m,得v=,则==,故D正确.19.【答案】【解析】当汽车行驶的速率为v0时,汽车恰好没有向马路内外两侧滑动的趋势,即不受静摩擦力,此时由重力和支持力的合力供应向心力,所以路面外侧高、内侧低,选项A正确;当车速低于v0时,须要的向心力小于重力和支持力的合力,汽车有向内侧运动的趋势,受到的静摩擦力向外侧,并不肯定会向内侧滑动,选项B错误;当车速高于v0时,须要的向心力大于重力和支持力的合力,汽车有向外侧运动的趋势,静摩擦力向内侧,速度越大,静摩擦力越大,只有静摩擦力达到最大以后,车辆才会向外侧滑动,选项C正确;由θ=m 可知,v0的值只与路面与水平面的夹角和弯道的半径有关,与路面的粗糙程度无关,选项D 错误.20.【答案】(1)(2)【解析】(1)小球受重力与细线的拉力两力作用,如图所示,竖直方向:θ=,故拉力=.(2)小球做圆周运动的半径r=θ,向心力=θ=θ,而=m,故小球的线速度v=.21.【答案】1)m2g(2)【解析】(1)物块B受力平衡,故轻绳拉力=m2g(2)小球A做匀速圆周运动的向心力等于轻绳拉力,依据牛顿其次定律m2g=m1解得v=.22.【答案】1)(2)2【解析】(1)若要小球刚好离开锥面,则小球只受到重力和细线的拉力,如图所示.小球做匀速圆周运动的轨迹圆在水平面内,故向心力水平,运用牛顿其次定律与向心力公式得:θ=mωθ解得:ω=即ω0==.(2)当细线与竖直方向成60°角时,由牛顿其次定律与向心力公式得:α=mω′2α解得:ω′2=,即ω′==2.23.【答案】对小球受力分析如图所示,小球受重力和线的拉力作用,这两个力的合力α指向圆心,供应向心力,由受力分析可知,细线拉力=.由=m=mω2R=m=α,半径R=α,得v==α,T=2π.【解析】。

高考物理圆周运动经典练习题

高考物理圆周运动经典练习题

圆周运动水平圆周运动【例题】如图所示,在匀速转动的圆筒内壁上,有一物体随圆筒一起转动而未滑动。

当圆筒的角速度增大以后,下列说法正确的是( D )A 、物体所受弹力增大,摩擦力也增大了B 、物体所受弹力增大,摩擦力减小了C 、物体所受弹力和摩擦力都减小了D 、物体所受弹力增大,摩擦力不变【例题】如图为表演杂技“飞车走壁”的示意图.演员骑摩托车在一个圆桶形结构的内壁上飞驰,做匀速圆周运动.图中a 、b 两个虚线圆表示同一位演员骑同一辆摩托,在离地面不同高度处进行表演的运动轨迹.不考虑车轮受到的侧向摩擦,下列说法中正确的是( B )A .在a 轨道上运动时角速度较大B .在a 轨道上运动时线速度较大C .在a 轨道上运动时摩托车对侧壁的压力较大D .在a 轨道上运动时摩托车和运动员所受的向心力较大【例题】长为L 的细线,拴一质量为m 的小球,一端固定于O 点,让其在水平面内做匀速圆周运动(这种运动通常称为圆锥摆运动),如图所示,当摆线L 与竖直方向的夹角是α时,求:(1)线的拉力F ;(2)小球运动的线速度的大小; (3)小球运动的角速度及周期。

★解析:做匀速圆周运动的小球受力如图所示,小球受重力mg 和绳子的拉力F 。

因为小球在水平面内做匀速圆周运动,所以小球受到的合力指向圆心O 1,且是水平方向。

由平行四边形法则得小球受到的合力大小为mgtanα,线对小球的拉力大小为F=mg/cosα由牛顿第二定律得mgtanα=mv 2/r 由几何关系得r=Lsinα 所以,小球做匀速圆周运动线速度的大小为an sin v gLt αα=a bLα O小球运动的角速度小球运动的周期2cos 2L T gπαπ==ω点评:在解决匀速圆周运动的过程中,弄清物体圆形轨道所在的平面,明确圆心和半径是一个关键环节,同时不可忽视对解题结果进行动态分析,明确各变量之间的制约关系、变化趋势以及结果涉及物理量的决定因素。

1、竖直平面内:(1)、如图所示,没有物体支撑的小球,在竖直平面内做圆周运动过最高点的情况:①临界条件:小球达最高点时绳子的拉力(或轨道的弹力)刚好等于零,小球的重力提供其做圆周运动的向心力,即rmv mg 2临界=⇒rg =临界υ(临界υ是小球通过最高点的最小速度,即临界速度)。

高中物理必修二第6章_圆周运动练习题含答案

高中物理必修二第6章_圆周运动练习题含答案

高中物理必修二第6章圆周运动练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 某活动中有个游戏节目,在水平地面上画一个大圆,甲、乙两位同学(图中用两个点表示)分别站在圆周上两个位置,两位置的连线为圆的一条直径,如图所示,随着哨声响起,他们同时开始按图示方向沿圆周追赶对方.若甲、乙做匀速圆周运动的速度大小分别为v1和v2,经时间t乙第一次追上甲,则该圆的直径为()A.t(v2−v1)πB.2t(v2−v1)πC.t(v1+v2)πD.2t(v1+v2)π2. 如图所示,光滑水平面上,小球在绳拉力作用下做匀速圆周运动,若小球运动到P 点时,绳突然断裂,小球将()A.将沿轨迹Pa做离心运动B.将沿轨迹Pb做离心运动C.将沿轨迹Pc做离心运动D.将沿轨迹Pd做离心运动3. 如图所示,用长为l的细绳拴着质量为m的小球在竖直平面内做圆周运动,则下列说法中正确的是()A.小球在圆周最高点时所受的向心力一定为小球的重力B.小球在最高点时绳子的拉力可能为零C.若小球刚好能在竖直平面内做圆周运动,则其在最高点的速率为零D.小球过最低点时绳子的拉力一定等于小球重力4. 如图所示,一个小球绕圆心O做匀速圆周运动,已知圆周半径为r,该小球运动的角速度大小为ω,则它运动线速度的大小为()A.ωrB.ωr C.ω2rD.ωr25. 关于做圆周运动的物体,下列说法中正确的是()A.所受合力一定指向圆心B.汽车通过凹形桥时处于超重状态C.汽车水平路面转弯时由重力提供向心力D.物体做离心运动是因为物体运动过慢6. 下列关于离心运动的说法错误的是()A.汽车转弯时限制速度,铁路转弯处轨道的外轨高于内轨都是为了更好地做离心运动B.脱水机的脱水原理是对离心原理的应用C.游乐场中高速转动磨盘把人甩到边缘上去是属于离心现象D.把低轨道卫星发射发射到高轨道上去,需要加速,是应用了离心原理7.如图所示,在匀速转动的水平圆盘上,沿半径方向放着用细线相连的质量相等的两个物体A和B,它们与盘面间的动摩擦因数相同.当匀速转动的圆盘转速恰为两物体刚好未发生滑动时的转速,烧断细绳,则两物体的运动情况将是()A.两物体沿切线方向滑动B.两物体沿半径方向滑动,离圆盘圆心越来越远C.两物体仍随圆盘一起做匀速圆周运动,不发生滑动D.物体A仍随圆盘一起做匀速圆周运动,物体B发生滑动,离圆盘圆心越来越远8. 如图所示,一偏心轮绕O点做匀速转动.偏心轮边缘上A、B两点的()A.线速度大小相同B.角速度大小相同C.向心加速度大小相同D.向心加速度方向相同9. 下列关于圆周运动的说法正确的是()=k,公式中的k值对所有行星和卫星都相等A.开普勒行星运动的公式R3T2B.做匀速圆周运动的物体,其加速度一定指向圆心C.在绕地做匀速圆周运动的航天飞机中,宇航员对座椅产生的压力大于自身重力D.相比较在弧形的桥底,汽车在弧形的桥顶行驶时,陈旧的车轮更不容易爆胎10. 甲、乙做匀速圆周运动的物体,它们的半径之比为3:1,周期之比是1:2,则()A.甲与乙的线速度之比为1:3B.甲与乙的线速度之比为6:1C.甲与乙的角速度之比为6:1D.甲与乙的角速度之比为1:211. 请对下列实验探究与活动进行判断,说法正确的题后括号内打“√”,错误的打“×”.(1)如图甲所示,在“研究滑动摩擦力的大小”的实验探究中,必须将长木板匀速拉出________(2)如图乙所示的实验探究中,只能得到平抛运动在竖直方向的分运动是自由落体运动,而不能得出水平方向的运动是匀速直线运动________(3)如图丙所示,在“研究向心力的大小与质量、角速度和半径之间的关系”的实验探究中,采取的主要物理方法是理想实验法________.12. 物体以4m/s的速度在半径为8m的水平圆周上运动,它的向心加速度是________m/s2,如果物体的质量是5kg,则需要________N的向心力才能维持它在圆周上的运动.13. 如图所示,A、B为啮合传动的两齿轮,已知R A=2R B,则A、B两轮边缘上两点角速度之比ωA:ωB=________,向心加速度之比a A:a B=________.14. 某中学的高一同学在学习了圆周运动的知识后,设计了一个课外探究性的课题,名称为:快速测量自行车的骑行速度.自行车的结构如图所示,他的设想是:通过计算踏脚板转动的角速度,推算自行车的骑行速度.经过骑行,他得到如下的数据:在时间t秒内踏脚板转动的圈数为N,那么脚踏板转动的角速度=________;为了推算自行车的骑行速度,这位同学还测量自行车的半径为R,计算了牙盘的齿数为m,飞轮齿数为n,则自行车骑行速度的计算公式可用以上已知数据表示为v=________.15. 一质点做半径为1m的匀速圆周运动,在1s的时间内转过30∘,则质点的角速度为________,线速度为________,向心加速度为________.16. 如图所示,在“用圆锥摆验证向心力表达式”的实验中,若测得小球质量为m,圆半径为r,小球到悬点大竖直高度为ℎ,则小球所受向心力大小为________.17. 汽车过平直桥、拱形桥、凹形桥,分别画出受力分析示意图并列出方程.18. 摩托车手在水平地面转弯时为了保证安全,将身体及车身倾斜,车轮与地面间的动摩擦因数为μ,车手与车身总质量为M,转弯半径为R.为不产生侧滑,转弯时速度应不大于________;设转弯、不侧滑时的车速为v,则地面受到摩托车的作用力大小为________.19. 自行车的大齿轮、小齿轮、后轮是相互关联的三个转动部分,三个轮子的半径不一样,它们的边缘有三个点分别为A、B、C,如图所示,当自行车运动时A、B、C三点中角速度最小的是________,向心加速度最大的是________.20. 某兴趣小组用如图甲所示的装置与传感器结合验证向心力表达式.实验时用手拨动旋臂产生圆周运动,力传感器和光电门固定在实验器上,实时测量角速度和向心力.(1)电脑通过光电门测量挡光杆通过光电门的时间,并由挡光杆的宽度d、挡光杆通过光电门的时间Δt、挡光杆做圆周运动的半径r自动计算出砝码做圆周运动的角速度,则其计算角速度的表达式为________.(2)图乙中取①②两条曲线为相同半径、不同质量下向心力与角速度的关系图线,由图可知.曲线①对应的砝码质量________(填“大于”或“小于”)曲线②对应的砝码质量.21. 如图所示,竖直平面内粗糙水平轨道AB与光滑半圆轨道BC相切于B点,一质量m1=1kg的小滑块P(视为质点)在水平向右的力F作用下,从A点以v0=0.5m/s的初速度滑向B点,当滑块P滑到AB正中间时撤去力F,滑块P运动到B点时与静止在B点的质量m2=2kg的小滑块Q(视为质点)发生弹性碰撞(碰撞时间极短),碰撞后小滑块Q恰好能滑到半圆轨道的最高点C,并且从C点飞出后又恰好落到AB的中点,小滑块P恰好也能回到AB的中点.已知半圆轨道半径R=0.9m,重力加速度g=10m/s2,求:(1)与Q碰撞前的瞬间,小滑块P的速度大小;(2)力F所做的功.22. 如图所示,长为L的轻绳下端连着质量为m的小球,上端悬于天花板上。

《圆周运动》练习题 (附解析)

《圆周运动》练习题 (附解析)

在圆周运动中,最常见和最简单的是匀速圆周运动(因为速度是矢量,所以匀速圆周运动实际上是指匀速率圆周运动)。

一、选择题1.下列有关洗衣机中脱水筒的脱水原理的说法正确的是( )A.水滴受离心力作用而背离圆心方向甩出B.水滴受到向心力,由于惯性沿切线方向甩出C.水滴受到的离心力大于它受到的向心力,而沿切线方向甩出D.水滴与衣服间的附着力小于它所需要的向心力,于是水滴沿切线方向甩出2.关于铁道转弯处内外铁轨间的高度关系,下列说法中正确的是( )A.内、外轨一样高,以防列车倾倒造成翻车事故B.因为列车在转弯处有向内倾倒的可能,故一般使内轨高于外轨,以防列车翻倒C.外轨比内轨略高,这样可以使列车顺利转弯,减少车轮与铁轨的挤压D.以上说法均不正确3.在世界一级方程式锦标赛中,赛车在水平路面上转弯时,常常在弯道上冲出跑道,其原因是( )A.是由于赛车行驶到弯道时,运动员未能及时转动方向盘造成的B.是由于赛车行驶到弯道时,没有及时加速造成的C.是由于赛车行驶到弯道时,没有及时减速造成D.是由于在弯道处汽车受到的摩擦力比在直道上小造成的4.在光滑的轨道上,小球滑下经过圆弧部分的最高点A时,恰好不脱离轨道,此时小球受到的作用力是( )A.重力、弹力和向心力B.重力和弹力C.重力和向心力D.重力5.用长为L的细绳拴着质量为m的小球在竖直平面内做圆周运动,正确的说法是( )A.小球在圆周最高点时所受的向心力一定为重力B.小球在最高点时绳子的拉力有可能为零C.若小球刚好能在竖直平面内做圆周运动,则其在最高点的速率为0D.小球过最低点时绳子的拉力一定大于小球的重力6.在高速公路的拐弯处,路面建造得外高内低,即当车向右拐弯时,司机左侧的路面比右侧的要高一些,路面与水平面间的夹角为θ,设拐弯路段是半径为R的圆弧,要使车速为v时车轮与路面之间的横向(即垂直于前进方向)摩擦力等于零,θ应等于( )A.sin θ=B.tan θ=C.sin 2θ=D.cot θ=7.长为l的轻杆,一端固定一个小球,另一端固定在光滑的水平轴上,使小球在竖直面内做圆周运动,关于最高点的速度v,下列说法正确的是( )A.v的极小值为B.v由零逐渐增大,向心力也增大C.当v由逐渐增大时,杆对小球的弹力逐渐增大D.当v由逐渐减小时,杆对小球的弹力逐渐增大二、非选择题8.一根长l=0.625 m的细绳,一端拴一质量m=0.4 kg 的小球,使其在竖直平面内绕绳的另一端做圆周运动,g取10 m/s2,求:(1)小球通过最高点时的最小速度;(2)若小球以速度v=3.0 m/s通过圆周最高点时,绳对小球的拉力多大?若此时绳突然断了,小球将如何运动?参考答案1.D [根据离心运动的特点知,水滴的离心现象是由于水滴与衣服间的附着力小于水滴运动所需要的向心力,即提供的向心力不足,所以水滴沿切线方向甩出,正确选项为D.]2.C [铁道转弯处外轨比内轨略高,从而使支持力的水平方向分力可提供一部分向心力,以减少车轮与铁轨的挤压避免事故发生,C对,A、B、D错.]3.C [赛车在水平弯道上行驶时,摩擦力提供向心力,而且速度越大,需要的向心力越大,如不及时减速,当摩擦力不足以提供向心力时,赛车就会做离心运动,冲出跑道,故C正确.]4.D [小球在最高点恰好不脱离轨道时,小球受轨道的弹力为零,而重力恰好提供向心力,向心力并不是小球受到的力,而是根据力的作用效果命名的,故D正确,A、B、C均错误.]5.BD [设在最高点小球受的拉力为F1,最低点受到的拉力为F2,当在最高点v1>时,则F1+mg=m,即向心力由拉力F1与mg的合力提供,A错;当v1=时,F1=0,B对;v1=为球经过最高点的最小速度,即小球在最高点的速率不可能为0,C错;在最低点,F2-mg=m,F2=mg+m,所以经最低点时,小球受到绳子的拉力一定大于它的重力,D对.]6.B[当车轮与路面的横向摩擦力等于零时,汽车受力如图所示,则有:Nsin θ=m,Ncos θ=mg,解得:tan θ=,故B正确.]7.BCD [由于是轻杆,即使小球在最高点速度为零,小球也不会掉下来,因此v 的极小值是零;v由零逐渐增大,由F=可知,F也增大,B对;当v=时,F==mg,此时杆恰对小球无作用力,向心力只由其自身重力来提供;当v由增大时,则=mg+F′F′=m-mg,杆对球的力为拉力,且逐渐增大;当v由减小时,杆对球为支持力.此时,mg-F′=,F′=mg-,支持力F′逐渐增大,杆对球的拉力、支持力都为弹力,所以C、D也对,故选B、C、D.]8.(1)2.5 m/s(2)1.76 N 平抛运动解析(1)小球通过圆周最高点时,受到的重力G=mg必须全部作为向心力F向,否则重力G中的多余部分将把小球拉进圆内,而不能实现沿竖直圆周运动.所以小球通过圆周最高点的条件应为F向≥mg,当F向=mg时,即小球受到的重力刚好全部作为通过圆周最高点的向心力,绳对小球恰好没有力的作用,此时小球的速度就是通过圆周最高点的最小速度v0,由向心力公式有:mg=m解得:G=mg=mv0== m/s=2.5 m/s.(2)小球通过圆周最高点时,若速度v大于最小速度v0,所需的向心力F向将大于重力G,这时绳对小球要施加拉力F,如图所示,此时有F+mg=m解得:F=m-mg=(0.4×-0.4×10) N=1.76 N若在最高点时绳子突然断了,则提供的向心力mg小于需要的向心力m,小球将沿切线方向飞出做离心运动(实际上是平抛运动).。

第六章 圆周运动复习题 -2022-2023学年高一下学期物理人教版(2019)必修第二册

第六章 圆周运动复习题 -2022-2023学年高一下学期物理人教版(2019)必修第二册

圆周运动复习题(一)1.关于匀速圆周运动,下列说法中正确的是()A.匀速圆周运动就是匀速运动B.匀速圆周运动的线速度不变C.匀速圆周运动的向心加速度不变D.匀速圆周运动实质是变加速度的曲线运动2.如图所示,小物体A与圆盘保持相对静止,跟着圆盘一起作匀速圆周运动,则A的受力情况正确的是()A.受重力、支持力B.受重力、支持力和指向圆心的摩擦力C.受重力、支持力、向心力、摩擦力D.向心力、摩擦力3.如图所示,A、B两点分别位于大、小轮的边缘上,C点位于大轮半径的中点,大轮的半径是小轮的2倍,他们之间靠摩擦传动,接触面上没有滑动.下列说法正确的是()A.A、B、C三点的线速度大小关系是V A>V B>V CB.A、B、C三点的角速度大小关系是ωA=ωC<ωBC.A、B、C三点的向心加速度大小关系是a B>a A>a CD.以上说法均不正确4.如图所示,细绳的一端固定,另一端系一小球,让小球在竖直面内做圆周运动,关于小球运动到P点时的加速度方向,下列图中可能的是()A.B.C.D.5.如图所示,水平转台上放着A、B、C三个物体,质量分别为2m、m、m,离转轴的距离分别为R、R、2R,与转台间的摩擦因数相同,转台旋转时,下列说法中,正确的是()A.若三个物体均未滑动,A物体的向心加速度最大B.若三个物体均未滑动,B物体受的摩擦力最大C.转速增加,A物比B物先滑动D.转速增加,C物先滑动6.如图所示,“旋转秋千”中的两个座椅A、B质量相等,通过相同长度的缆绳悬挂在旋转圆盘上.不考虑空气阻力的影响,当旋转圆盘绕竖直的中心轴匀速转动时,下列说法正确的是()A.A与B的线速度大小相等B.A与B的角速度相等C.A与B的向心加速度大小相等D.悬挂A、B的缆绳与竖直方向的夹角相等7.中国高铁是具有自主核心技术的“中国造”,随“一带一路”走出国门.在高速铁路弯道设计中,外轨略高于内轨,当列车以规定速度运行时,刚好不侧向挤压轨道,则()A.当列车的速度大于规定速度时将侧向挤压内轨B.当列车的速度大于规定速度时将侧向挤压外轨C.当列车的速度小于规定速度时将侧向挤压外轨D.当列车的速度小于规定速度时不侧向挤压轨道8.如图所示,放于竖直面内的光滑金属细圆环半径为R,质量为m的带孔小球穿于环上,同时有一长为R的细绳一端系于球上,另一端系于圆环最低点,绳的最大拉力为2mg.当圆环以角速度ω绕竖直直径转动时,发现小球受三个力作用.则ω可能为()A.3B.C.D.9.如图将悬线拉至水平无初速度释放,当小球到达最低点时,细线被一个与悬点在同一竖直线上的小钉B挡住,比较悬线被挡住前后瞬间()A.小球的动能不变B.小球的向心加速度变小C.小球的角速度变大D.悬线的张力变小10.A、B两质量相同的质点被用轻质细线悬挂在同一点O,在同一水平面上做匀速圆周运动,如图所示,则()A.A的角速度一定比B的角速度大B.A的线速度一定比B的线速度大C.A的加速度一定比B的加速度大D.A所受细线的拉力一定比B所受的细线的拉力大11.如图所示,小物块位于放于地面的半径为R的半球的顶端,若给小物块以水平的初速度v时物块对半球刚好无压力,则下列说法正确的是()A.小物块立即离开球面做平抛运动B.小物块落地时水平位移为RC.小物块沿球面运动D.物块落地时速度的方向与地面成45°角12.如图所示光滑管形圆轨道半径为R(管径远小于R),小球a、b大小相同,质量均为m,其直径略小于管径,能在管中无摩擦运动.两球先后以相同速度v通过轨道最低点,且当小球a在最低点时,小球b在最高点,以下说法正确的是()A.当小球b在最高点对轨道无压力时,小球a比小球b所需向心力大5mg B.当v=时,小球b在轨道最高点对轨道无压力C.速度v至少为,才能使两球在管内做圆周运动D.只要v≥,小球a对轨道最低点的压力比小球b对轨道最高点的压力大6mg13.如图所示,一半径为r圆筒绕其中心轴以角速度ω匀速转动,圆筒内壁上紧靠着一个质量为m的物体与圆筒一起运动,相对筒无滑动.若已知筒与物体之间的摩擦因数为μ,试求:(1)物体所受到的摩擦力大小(2)筒内壁对物体的支持力.14.如图所示,有一长为L的细线,细线的一端固定在O点,另一端拴一质量为m的小球,现使小球恰好能在竖直面内做完整的圆周运动.已知水平地面上的C 点位于O点正下方,且到O点的距离为1.9L,重力加速度为g,不计空气阻力.(1)求小球通过最高点A时的速度v A;(2)若小球通过最低点B时,细线对小球的拉力T恰好为小球重力的6倍,且小球经过B点的瞬间让细线断裂,求小球落地点到C点的距离.15.如图所示,半径R=0.9m的光滑的半圆轨道固定在竖直平面内,直径AC竖直,下端A与光滑的水平轨道相切.一个质量m=1kg的小球沿水平轨道从A端以V A=3m/s的速度进入竖直圆轨道,后小球恰好能通过最高点C.不计空气阻力,g取10m/s2.求:(1)小球刚进入圆周轨道A点时对轨道的压力为多少?(2)小球从C点离开轨道后的落地点到A点的距离为多少?16.如图所示装置可绕竖直轴O′O转动,可视为质点的小球A与两细线连接后分别系于B、C两点,当细线AB沿水平方向绷直时,细线AC与竖直方向的夹角θ=37°.已知小球的质量m=1kg,细线AC长L=1m,(重力加速度取g=10m/s2,sin37°=0.6)(1)若装置匀速转动时,细线AB刚好被拉直成水平状态,求此时的角速度ω1.(2)若装置匀速转动的角速度ω2=rad/s,求细线AB和AC上的张力大小T AB、T AC.参考答案1.D2.B3.C4.D5.D6.B7.B8.B9. AC 10.BCD 11.AB 12.BD13.解:物体做匀速圆周运动,合力指向圆心;对物体受力分析,受重力、向上的静摩擦力、指向圆心的支持力,如图其中重力mg与静摩擦力f平衡,故有:f=mg支持力N提供向心力,由牛顿第二定律可得:N=mω2R;答:(1)物体所受到的摩擦力大小为mg(2)筒内壁对物体的支持力为mω2R.【点评】本题中要使静摩擦力与重力平衡,角速度要大于某一个临界值,即重力不能大于最大静摩擦力!14.解:(1)小球恰好能做完整的圆周运动,则小球通过A点时细线的拉力为零,根据向心力公式有:mg=m解得:V A=;(2)小球在B点时根据牛顿第二定律有:T﹣mg=m小球运动到B点时细线断裂,小球做平抛运动,有:竖直方向:1.9L﹣L=gt2水平方向:x=v B t=×=3L答:(1)小球在最高点的速度为;(2)小球落地点到C点的距离3L.【点评】小球在竖直面内圆周运动一般会和机械能守恒或动能定理结合考查,要注意临界值的应用及正确列出机械能的表达式.15.解:(1)在A点,根据向心力公式得:N﹣mg=m解得:N=60N根据牛顿第三定律得:小球对轨道的压力为60N(2)小球恰好能通过最高点C,则在C点只有重力提供向心力,mg=m解得:v C=3m/s小球从C点抛出后做平抛运动,则t=s=0.6s所以x=v C t=1.8m16.解:(1)当细线AB刚好被拉直,则AB的拉力为零,靠AC的拉力和重力的合力提供向心力,根据牛顿第二定律有:,解得.(2)若装置匀速转动的角速度ω2=rad/s,竖直方向上有:T AC cos37°=mg,水平方向上有:,代入数据解得T AC=12.5N,T AB=2.5N.答:(1)此时的角速度为rad/s.(2)细线AB和AC上的张力大小T AB、T AC分别为2.5N、12.5N.【点评】解决本题的关键知道小球向心力的来源,抓住临界状态,结合牛顿第二定律进行求解.如图所示,一轻杆一端固定质量为m的小球,以另一端O为圆心,使小球做半径为R的圆周运动,以下说法正确的是()A.小球过最高点时,杆所受的弹力可以等于零B.小球过最高点时的最小速度为C.小球过最高点时,杆对球的作用力可以与球所受重力方向相反D.小球过最高点时,杆对球作用力一定与小球所受重力方向相反【考点】4A:向心力;37:牛顿第二定律.【专题】521:牛顿第二定律在圆周运动中的应用.【分析】轻杆带着物体做圆周运动,只要物体能够到达最高点就可以了,在最高点和最低点时物体的重力与杆对球的作用力的合力作为向心力.【解答】解:A、当小球在最高点恰好只有重力作为它的向心力的时候,此时球对杆没有作用力,所以A正确.B、轻杆带着物体做圆周运动,只要物体能够到达最高点就可以了,所以速度可以为零,所以B错误.C、小球在最高点时,如果速度恰好为,则此时恰好只有重力作为它的向心力,杆和球之间没有作用力,如果速度小于,重力大于所需要的向心力,杆就要随球由支持力,方向与重力的方向相反,如果速度大于,向心力大于重力,杆对小球的作用力跟重力相同,所以C正确,D错误.故选:AC。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆周运动习题
二、选择题
1.质点做匀速圆周运动时,下列说法正确的是………………………………( )
A. 线速度越大,周期一定越小
B. 角速度越大,周期一定越小
C. 转速越小,周期一定越小
D. 圆周半径越大,周期一定越小
2.在匀速运动中,发生变化的物理量是( )
(A )频率 (B )周期 (C )角速度 (D )速度
3.时钟的时针、分针和秒针上每一点(除中心轴外)都作匀速圆周运动,下例陈述正确的是( )
(A )ω秒=60
1ω分 (B )ω分=60ω时 (C )ω秒=3600ω时 (D )ω秒=720ω时 4.匀速圆周运动的物体,则( )
(A )一定是受力平衡的 (B )一定是受力不平衡的
(C )受力有可能平衡 ,也可能不平衡 (D )它受到向心力一定与其他外力平衡。

5.对于作匀速圆周运动的物体,下列说法中正确的是( )
(A )物体的速度大小不变 (B )物体的速度大小和方向都变化
(C )物体的向心力大小和方向都不变化 (D )物体的向心力大小和方向都变化
6.如图所示,质量为m 的木块从半径为r 的圆弧曲面上的a 点滑到b 点.如果由于摩擦力的作用,木块运动过程中的速度大小保持不变,则在运动过程中 ( )
A .木块运动的速度保持不变.
B .木块所受得合外力为零.
C .木块的角速度不变.
D .木块处于平衡状态.
一、填空题
7.下列关于甲乙两个做圆周运动的物体的有关说法正确的是 [ ]
A.它们线速度相等,角速度一定相等
B.它们角速度相等,线速度一定也相等
C.它们周期相等,角速度一定也相等
D.它们周期相等,线速度一定也相等
8.用绳栓着一个物体,使其在光滑水平面上作匀速圆周运动,若绳子突然断裂,则物体所作的运动将会( )
A .沿半径方向接近圆心 B.沿半径方向远离圆心
C.沿切线方向作匀速直线运动
D.由于惯性,继续作圆周运动
9.甲、乙两物体分别做匀速圆周运动。

甲在t 时间里转了m 圈,乙在3t 时间里转了n 圈。

则甲和乙的周期之比为( )
A .m:n B.n:m C.n:3m D.3m:n
二、选择题
10.弹簧振子振动过程中在同一位置时可能不同的物理量是( )
(A )速度 (B )振幅 (C )加速度 (D )回复力
11.弹簧振子的周期为0.2秒,在振动过程中从平衡位置开始计时,振子肯定不在平衡位置的时刻是( )
(A )0.3秒 (B )0.4秒 (C )0.5秒 (D )0.55秒
12.对于物体所做的简谐振动的理解,正确的说法是【 】
A.简谐振动实质是一种匀速直线运动
B.简谐振动实质是一种匀加速直线运动
C. 简谐振动实质是一种匀减速直线运动
D.简谐振动是一种非匀变速运动
13.在物体刚好完成2次全振动的完整过程中,下列说法中不正确的是【】
A.物体在完成这2次全振动的过程中,平均速度一定等于零
B.物体在刚好完成这2次全振动时,速度的变化一定等于零
C 物体在这2次全振动的过程中,加速度一直保持不变
D.物体在这2次全振动的过程中,振幅和周期一直都保持不变
14.在简谐振动中,能够分别表示物体振动快慢和强弱的一组物理量是【】
A.速度和位移
B.加速度和动能
C.周期和频率
D.频率
15.把地球看成一个球体,在地球表面上赤道某一点A,北纬60°一点B,在地球自转时,A和B两点角速度之比为___ __,线速度之比为__ ____。

16.位于地球赤道上某一国家的一棵大树,随着地球一起自转。

若地球的半径R=6.4×103km,则这棵大树绕地轴转动的周期为s,线速度为m/s。

17.用来进行全球通讯的通讯卫星是相对地球保持静止的卫星,犹如悬在空中一样,因此,如果把它的运动看做匀速圆周运动,它的周期应该(填“大于”、“等于”或“小于”)地球自转的周期。

18.一弹簧振子拉离平衡位置平衡位置2厘米放手,第一次运动至平衡位置的时间为0.2秒,则该振子的频率为________赫兹。

若将振子拉离平衡位置平衡位置1厘米放手,该振子的频率为________赫兹。

19.一弹簧振子拉离平衡位置平衡位置4厘米放手作机械振动,振动周期为0.5秒,则弹簧振子的振幅为_______米,1秒内通过的位移为_______米,通过的路程为_______米。

20.弹簧振子从距离平衡位置5cm处,由静止释放,全振动10次所需时间为8s,则振子的振幅为cm,周期为s,频率为Hz,8s末位移大小为m。

21.甲、乙两个物体均作简谐振动。

甲在2分钟内完成了150次全振动,乙完成90次全振动需要3分钟,则甲、乙两物体振动的周期之比T1:T2= :,振动的频率之比f1:f2= :。

22.一个简谐振动的振子,先后通过a、b两个位置时的速度相同,历时0.15s的时间。

接着又历时0.15s,振子第二次经过b点,此时的速度与第一次经过b点的速度等值反向。

若该振子在这0.3s时间内通过的路程为30cm,则此振子的振幅A= m,振动的周期T= s。

23.如图所示,是用频闪照相的方法拍到的一
个弹簧振子的振动情况,甲图是振子静止在
平衡位置的照片,乙图是振子被拉至左侧距
平衡位置20 cm处放手后的频闪照片,已知
T的频闪的频率为10 Hz,则振子振动的周期为T=s;振子在通过平衡位置后
12
时间内发生的位移为cm。

24.如图所示,A、B两轮半径之比为1:3,两轮边缘挤压在一起,在两
轮转动中,接触点不存在打滑的现象,则两轮边缘处的线速度大小之比
等于___ ___。

两轮的转数之比等于__ ____,A轮半径中点与B轮边
缘的角速度大小之比等于____ __。

25.一个弹簧振子沿直线作简谐振动时,先后以相同的速度经过a、b两点,历时1s时间,经过b点后又经1s再次经过b点。

若振子在这2s时间内通过的总路程为6cm,求弹簧振子的周期、频率和振幅。

26.如图所示,在男女双人花样滑冰运动中,男运动员以自己为转动轴拉着女运动员作匀速圆周运动,若男运动员的转速为30r/min,女运动员触地的冰鞋的线速
度为4.7m/s,求:(1)女运动员作圆周运动的角速度(2)女运动员触地的冰
鞋作圆周运动的半径
27.如图所示,某自行车的前齿轮半径为15cm,后齿轮半径为6cm,两齿轮边缘处分别有两点A、B。

若某人在骑车过程中,每秒钟踏两圈,则A和B的线速度以及角速度分别是多少?
28.如图所示为水平放置的纸圆筒截面,半径为R,以
角速度ω顺时针方向绕其水平对称轴匀速转动,子弹水平沿直径穿过圆筒,留下a、b两个弹孔,若测得∠aOb=φ,试求子弹速度的最大值。

29.如图所示,质点P以O为圆心,r为半径作匀速圆周运动,周期为
T,当质点P经过图中位置A时,另一质量为m、初速为零的质点Q受
到沿OA方向的恒力F作用开始直线运动,为使P、Q某时刻的速度相
同,拉力F应满足条件。

相关文档
最新文档