高分子材料详细导论

合集下载

《高分子材料导论》课程教学大纲.docx

《高分子材料导论》课程教学大纲.docx

高分子材料导论课程教学大纲课程名称:高分子材料导论英文名称:Introduction of polymer materials课程编码:x4030941学时数:32其中实践学时数:0课外学时数:0学分数:2.0适用专业:应用化学、功能材料一、课程简介《高分子材料导论》是应用化学专业和功能材料专业一门比较重要的专业选修课程,是培养该专业技术人才的整体知识结构和能力结构的重要组成部分。

高分子材料是材料科学的一个重要分支, 它广泛应用于国民经济的各个领域,对尖端科学技术的发展起到了重大作用。

该课程以聚合物材料为研究对象,以材料科学基本知识为基础,结合高分子材料自身的特点,主要讲述了高分子材料的基本概念、命名、分类、性能及应用等,包括塑料、橡胶、涂料、粘合剂、纤维以及功能高分子材料和聚合物基复合材料的概念、性质及应用。

此外,还涉及各类高分子材料的结构测定和性能表征手段等。

课程的教学目标是通过本课程的学习,使学生对高分子材料的命名、分类、合成、结构与性能的关系、性能与应用有比较深入的了解,熟悉塑料、橡胶、涂料、粘合剂与纤维、功能高分子材料、聚合物基复合材料、高分子材料测试表征方法等内容,掌握高分子材料的基础知识,能应用课堂上学到的知识为日常的生活、工作和学习服务。

培养学生分析问题、解决问题的能力,为学生进一步学好后续相关课程打下坚实基础。

二、课程目标与毕业要求关系表(一)绪论了解高分了材料的基本概念、命名、分类;掌握高分子材料的性能特点;熟练掌握高分子材料的应用领域。

重点:高分子材料的分类、命名、性能特点;高分子材料的应用。

难点:高分子材料的应用.(-)高分子材料的结构与性质了解高分子材料的结构、分类;掌握高分子材料结构与性能间的关系。

重点:高分子材料的结构分类;高分子材料的性能分类;高分子材料结构与性能间的关系。

难点:高分子材料结构与性能间的关系。

(三)塑料了解塑料的分类、性能和用途,了解聚乙烯、聚丙烯、聚苯乙烯等通用塑料和聚酰胺、聚碳酸酯、聚甲醛等工程塑料的结构、成型、性能和应用;掌握塑料的结构与性能间关系。

高分子导论

高分子导论
25
Polymerization process
• Addition polymer : the polymer has the same atoms as the monomer in its repeating unit.
• Condensation polymer : the polymer contains fewer atoms because of the formation of byproducts during polymerization process.
n CH2=CH O CO
CH2 CH
O
n--2
CO
CH3
CH3
The molecular weight of a polymer = n x【Mwt. of structural unit】 For example n= 500 MW = 500 x 86 = 43,000
17
• Average degree of polymerization (DP) • Homopolymer : A polymer prepared from a
• A functionality of at least two is necessary to form polymers ( except alkene addition or ring opening). Monofunctional compounds can only form simple compounds not polymers.
龙,并以实验证明 Staudinger的理论。 • World War II,美国大力发展合成橡胶。 • 二次大战后,德国 Ziegler 和意大利 Natta 以新触

高分子科学导论天然高分子材料课件

高分子科学导论天然高分子材料课件
例如,利用生物技术制备可降解的天然高分子材料,可以在使用后自然降解,减 少对环境的污染。同时,改进生产工艺也可以降低能耗和减少废弃物的产生,实 现可持续发展。
壳聚糖
总结词
天然高分子材料中唯一一种阳离子型高 分子,具有良好的生物相容性和可降解 性等优点。
VS
详细描述
壳聚糖是由N-乙酰葡萄糖胺通过β-1,4糖 苷键连接而成的线性高分子,广泛存在于 甲壳类动物的外壳中。壳聚糖具有良好的 生物相容性和可降解性,可用于药物载体、 组织工程、环境保护等领域。壳聚糖可通 过化学改性等方法进行修饰,提高其性能 和应用范围。
木质素
总结词
天然高分子材料中结构最复杂的一种,具有优良的耐热性、耐腐蚀性和绝缘性等。
详细描述
木质素是由苯丙烷结构单元构成的芳香族高分子,广泛存在于植物细胞壁中,主要起到增强细胞壁的 作用。木质素的结构复杂,具有优良的耐热性、耐腐蚀性和绝缘性,可用于制造塑料、胶粘剂、染料、 香料等产品,也可用于生物医学领域。
蛋白 质
总结词
天然高分子材料中功能最多样化的一种,具有生物活性 和生物相容性等优点。
详细描述
蛋白质是由氨基酸分子通过肽键连接而成的生物大分子, 是生命活动中必不可少的物质。蛋白质具有多种生物功 能,如催化、运输、识别、防御等,同时具有良好的生 物活性和生物相容性,可用于药物传递、组织工程、生 物传感器等领域。蛋白质的来源丰富,可通过动物、植 物和微生物进行提取和制备。
例如,近年来科学家们发现了一些具有特殊性能的天然高分 子材料,如抗菌、防霉、自修复等功能,这些材料在医疗、 环保、食品等领域有着广泛的应用前景。
天然高分子材料的功能化与高性能化
功能化和高性能化是天然高分子材料的另一个重要发展趋 势。通过化学改性、物理改性等方法,可以使天然高分子 材料具有更加优异的性能,满足各种不同的需求。

高分子材料导论6(通用高分子材料) (2)

高分子材料导论6(通用高分子材料) (2)

结构式:
CH2
CH Cl
n
英文名称:polyvinyl chloride, 简称PVC
PVC 塑料以 PVC树脂为基料,与稳定剂、增塑剂、填料、 着色剂及改性剂等多种助剂混合,经塑化、成型加工而成。
本身质地很硬,加入增塑剂可变成比PE还柔软的塑料,用于 制备各种不同的用品——全能塑料 (2)性质: 具有较高的强度、刚性;良好的电绝缘性、耐化学腐蚀性; 能溶于四氢呋喃和环已酮等有机溶剂;具有阻燃性;但热稳 定性较差,使用温度较低,介电常数、介电损耗较高。 PVC的致命缺点:
• 耐磨、自润滑性能好 旱冰鞋的轮子、轴承、齿轮 • 加工性能优良,容易成型加工,能耗小 各种装饰品,薄膜、型材、配件及产品 性能可调范围宽:应用领域广泛 力学性能比金属差,表面硬度亦低 大多数品种易燃 耐热性较差
4.1.4 塑料的组分及其应用
塑料的组成:合成树脂+添加剂
1、合成树脂(聚合物) (40%-100%)
(3)PE的应用
制造食品包装袋、农用薄膜、各
种饮水瓶、容器、玩具等;还可
制各种管材、电线绝缘层等。
交 联
PE
2、聚氯乙烯(PVC) ——仅次于聚乙烯的第二大塑料品种
(1)PVC 树脂和PVC塑料的定义 聚氯乙烯树脂是氯乙烯单体在过氧化物、偶氮化合物等引 发剂;或在光、热作用下按自由基聚合反应机理聚合而成 的聚合物。
单体氯乙烯有毒
某些增塑剂有毒 在高温或燃烧时会分解放出氯化氢
(3)应用:
纯聚氯乙烯属无规立构,无色透明,硬而脆,很少应用。 常利用橡胶和增塑剂对其改性处理。
硬聚氯乙稀:用于工业管道、给排水系统、板件、管件、 建筑及家用防火材料,化工防腐设备及各种机械零件。 增塑(软)聚氯乙稀:用于窗帘、桌布、雨衣、手提箱、 人造革、墙纸;农用薄膜、耐酸碱软管及电线电缆包覆层 等。

高分子科学导论参考详细标准答案

高分子科学导论参考详细标准答案

⾼分⼦科学导论参考详细标准答案第⼀章绪论1.在酯化反应中丙三醇、乳酸、均苯四甲酸⼆酐中分别有⼏个功能团?-CH-CH2OHCH(CH3)COOHOH OH3个、2个、4个2.交联聚合物具有什么样地特性?答:线型或⽀链型⾼分⼦链间以共价键连接成⽹状或体形⾼分⼦地过程称为交联.线型聚合物经适度交联后,其⼒学强度、弹性、尺⼨稳定性、耐溶剂性等均有改善.交联聚合物通常没有熔点也不能溶于溶剂,即具有不熔不溶地特点.3.分⼦量为10000地线形聚⼄烯(CH2-CH2)、聚丙烯(CH2-CHCH3)、聚氯⼄烯(CH2-CHCl)、聚苯⼄烯(CH2-CHC6H5)地聚合度D p分别为多少?聚⼄烯:357,聚丙烯:238,聚氯⼄烯:160,聚苯⼄烯:964.下列那些聚合物是热塑性地:硫化橡胶,尼龙、酚醛树脂,聚氯⼄烯,聚苯⼄烯?答:尼龙,聚氯⼄烯,聚苯⼄烯.5.PBS是丁⼆醇与丁⼆酸地缩聚产物,其可能地端基结构是什么?羟基和羧基,即:HO-(….)-OH, HOOC-(….)-COOH, HO-(….)-COOH6.PVA(聚⼄烯醇)地结构式如下所⽰,请按标准命名法加以命名.( CH2-CH )nOH答:聚(1-羟基⼄烯)7.谈谈⾃⼰对⾼分⼦地认识主观题(略)第⼆章⾼分⼦合成与化学反应端基分别为酰氯(-COCl)和羟基(-OH)地单体可以发⽣缩聚反应⽣成聚酯,这个反应放出地⼩分⼦副产物是什么?答:氯化氢2.连锁聚合中包含哪些基元反应?答:包括链引发,链增长,链终⽌等基元反应,此外还有链转移基元反应.连锁聚合需要活性中⼼,活性中⼼可以是⾃由基“free radical”、阳离⼦“cation”或阴离⼦“anion”,因此⼜可分为⾃由基聚合、阳离⼦聚合和阴离⼦聚合.以⾃由基聚合为例:链引发(chain initiation):I → R*链增长(chain propagation):R* + M → RM*RM* + M → RM2*RM2* + M → RM3*-------------------------RM(n-1)* + M → RM n*链终⽌(chain termination):RM n* →死聚合物3.偶合终⽌与歧化终⽌地聚合产物在分⼦量上有什么区别?答:偶合终⽌:⼤分⼦地聚合度为链⾃由基重复单元数地两倍.歧化终⽌:⼤分⼦地聚合度与链⾃由基地单元数相同.4.从纤维素制备醋酸纤维素,产物地分⼦量和聚合度与原料相⽐有什么样地变化趋势?答:Cellulose (纤维素)→Cellulose acetate (醋酸纤维素):分⼦量增⼤,聚合度基本不变.A和B是两种内酯单体,如果采⽤羟基化合物为引发剂开环聚合可以制备端基为羟基地聚合产物.现需要制备两端为A链段,中间为B链段地嵌段共聚物,也称为ABA型三嵌段共聚物,请设计⼀条合成路线来制备这种共聚物.答:合成路线有多种,例如:以双羟基化合物为引发剂引发B单体聚合得到双端羟基地B预聚物,再以B预聚物为⼤分⼦引发剂引发A单体聚合得到ABA型三嵌段共聚物;先以单羟基化合为引发剂引发A单体聚合,再以A预聚物引发B单体聚合得到A888888888B⼆嵌段预聚物,最后以AB⼆嵌段预聚物引发A单体聚合得到三嵌段共聚物;c)分别合成含有不同端基官能团地A、B预聚物,再通过活性官能团地偶联反应制备得到共聚物.6.简要分析⽼化与降解之间地关系.答:聚合度变⼩地化学反应总称为降解反应,包括解聚和⽆规断链.⽼化是指聚合物在使⽤过程中受到各种物理化学因素地影响⽽造成物理性能地下降.⽼化过程中地主要反应是降解,但有时⼀些分⼦量增加地反应也会造成材料性能地不利变化,例如⼀些氧化和交联反应等,因此这些反应也归属于⽼化反应.7.研究⾼分⼦地降解与回收具有什么样地意义?主观题,答题要点如下:⼀般来说,聚合物地降解都将使得其性能下降,所以在⼤多数地场合下,特别是加⼯和使⽤过程中都需要研究聚合物地降解机理从⽽抑制聚合物性能地下降.P-⾼分⼦材料使⽤量巨⼤,已经成为⼈类社会最重要地材料.但是,⾼分⼦材料地化学稳定性使其消费产物对环境造成了巨⼤地压⼒.与此同时,⾼分⼦材料巨⼤地使⽤量还消耗了⼤量不可再⽣地化⽯能源,在⼀定程度上对全球经济发展造成了重要影响.传统⾼分⼦地回收处理⽅法包括填埋、焚烧和物理回收再⽣等⽅法,这些常规⽅法通常具有⾮常⼤地缺陷,仍然存在严重地环境问题,因此迫切需要研究开发⾼分⼦可循环利⽤地绿⾊⽅法,从⽽满⾜环境保护和可持续发展地需要.降解和解聚反应是⾼分⼦分⼦量降低地反应,通过降解与解聚反应可以将难回收地⾼分⼦材料转化为低分⼦量地化合物,从⽽加以回收利⽤.因此,研究⾼分⼦地降解与回收问题,开发新型⾼分⼦降解与回收技术对于节约能源和环境保护就显得⾮常必要与重要.8.简要叙述⾼分⼦合成与分⼦设计地原则.⾼分⼦地合成和分⼦设计应从两个⽅⾯来讨论:⾼分⼦地性能要求:包括产品地使⽤要求、环境要求、回收要求等(如在何种领域使⽤、需要满⾜何种性能需求、使⽤地环境条件如何、使⽤期限如何、使⽤后如何处理),结合⾼分⼦结构与性能地关系,设计合成聚合物地分⼦结构和聚集态结构;b)合成⽅法地可⾏性:包括原料、合成⽅法、产品地后处理⽅法等要符合经济、⾼效、环保等要求;⾼分⼦分⼦设计主要包括⽀化、交联、共聚(⽆规共聚、交替共聚、嵌段共聚、接枝共聚)等,这些⽅法使聚合物地化学结构或分⼦链空间结构发⽣了改变,不仅改变了聚合物地化学性能,还直接对宏观地物理性能,如玻璃化温度、熔点、结晶性能、光学性能、电磁性能等等产⽣重要地影响.第三章⾼分⼦结构与性能1.聚⼄烯地齐聚物(聚合度低于10)是什么状态地物质?答:饱和直链烷烃,根据C原⼦数⽬地不同可以为⽓态和液态.⾼分⼦地构造(constitution)、构型(configuration)、构象(conformation)分别具有什么含义?答:构造“constitution”即是指聚合物分⼦链中原⼦地种类和排列,取代基和端基种类,单体单元排列顺序,⽀链类型和长度等本⾝地化学结构信息.构型“configuration”是指分⼦链中由化学键所固定地原⼦在空间地⼏何排列.这种排列是化学稳定地,要改变分⼦地构型必须经过化学键地断裂和重建.构象“conformation”是指分⼦链中由单键内旋转所形成地原⼦(或基团)在空间地⼏何排列图像.3.⾼分⼦地结晶具有什么特点,与⼩分⼦相⽐有何异同?答:聚合物地聚集态结构是指⾼分⼦链之间地排列和堆砌结构,也称为超分⼦结构,是决定聚合物本体性质地主要因素.其中,结晶态与⾮晶态是聚合物最常见也是重要地聚集态结构.eUts8ZQVRd⾼分⼦与⼩分⼦结晶都是分⼦地有序排列过程,同样需要经历晶核地形成(nucleation)和晶体⽣长(growth)地过程.两者地不同之处在于:⾼分⼦常见地结晶形态为圆球状晶体,称为“球晶”(spherulite).⼀⽅⾯,由于⾼分⼦地分⼦量⼤,分⼦链长,分⼦链间地相互作⽤⼤,导致⾼分⼦链地运动⽐⼩分⼦困难,尤其是对刚性分⼦链或带庞⼤侧基地、空间位阻⼤地分⼦链,所以,⾼分⼦地结晶速度⼀般⽐⼩分⼦慢;另⼀⽅⾯,由于⾼分⼦分⼦链结构和分⼦量地不均⼀性,以及在结晶过程中由于⾼分⼦链地运动松驰时间长,分⼦链地迁移速度慢,使得⾼分⼦很难形成结构完整地晶体,也很难得到完全结晶地⾼分⼦材料,⾼分⼦材料⼀般以结晶部分与⽆定形部分共存地状态存在.sQsAEJkW5T研究⾼分⼦结晶性能地常⽤⽅法包括:偏光显微镜(Polarizing microscope, POM)、X 射线衍射(X-Ray diffraction, XRD)、差⽰量热扫描(Differential Scanning Calorimeter, DSC)等.GMsIasNXkA以下⾼分⼦哪些具有顺序异构体,哪些具有⽴构异构体?聚⼄烯(CH2-CH2)、聚丙烯(CH2-CHCH3)、聚苯⼄烯(CH2-CHPh)、聚氯⼄烯(CH2-CHCl)、聚偏氯⼄烯(CH2-CCl2)、聚四氟⼄烯(CF2-CF2).答:顺序异构:聚丙烯、聚苯⼄烯、聚氯⼄烯、聚偏氯⼄烯⽴体异构:聚丙烯、聚苯⼄烯、聚氯⼄烯5.⾼分⼦地⼒学三态是什么?在不同状态下地⾼分⼦具有什么样地特性.答:玻璃态(glass state)、⾼弹态(rubbery state或high elastic state)、粘流态(viscous state)玻璃态下聚合物链段运动被冻结,只有局部运动,因此聚合物在外⼒作⽤下地形变⼩,具有虎克弹性⾏为:形变在瞬间完成,当外⼒除去后,形变⼜⽴即恢复,表现为质硬⽽脆,与⽆机玻璃相似;⾼弹态下链段运动得以充分发展,形变发⽣突变,这时即使在较⼩地外⼒作⽤下,也能迅速产⽣很⼤地形变,并且当外⼒除去后,形变⼜可逐渐恢复;粘流态下聚合物链段运动剧烈,导致整个分⼦链质量中⼼发⽣相对位移,聚合物完全变为粘性流体,其形变不可逆.6.⾼分⼦地溶解过程有什么样地特点?影响⾼分⼦溶解性能地主要因素有哪些?答:聚合物地溶解是⼀个缓慢过程,包括两个阶段.⾸先是溶胀“swelling”,由于聚合物链与溶剂分⼦⼤⼩相差悬殊,溶剂分⼦向聚合物渗透快,⽽聚合物分⼦向溶剂扩散慢,结果溶剂分⼦向聚合物分⼦链间地空隙渗⼊,使之体积胀⼤,但整个分⼦链还不能做扩散运动,因⽽⽆法完全溶解;当溶胀过程达到⼀定程度后,随着溶剂分⼦地不断渗⼊,聚合物分⼦链间地空隙增⼤,加之渗⼊地溶剂分⼦还能使⾼分⼦链溶剂化,从⽽削弱了⾼分⼦链间地相互作⽤,使链段运动性不断增加,直⾄脱离其他链段地相互作⽤,转⼊溶解“dissolution”.7.简要叙述粘流温度T f、熔点T m、热分解温度T d之间地⼤⼩关系对聚合物熔融加⼯地影响.答:由于晶区限制了形变,因此在晶区熔融之前,聚合物整体表现不出⾼弹态.能否观察到⾼弹态取决于⾮晶区地Tf是否⼤于晶区地Tm.若Tm>Tf,则当晶区熔融后,⾮晶区已进⼊粘流态,不呈现⾼弹态;若TmTf 时才进⼊粘流态.如果Td>Tm或Tf中较⾼者,则聚合物可以进⾏正常地热塑性加⼯;反之,聚合物在进⼊粘流态之前已发⽣热分解,则⽆法直接进⾏热塑性加⼯.第四章⾼分⼦地分析与表征1.为什么要对⾼分⼦进⾏表征与分析?主观题,答题要点:对⾼分⼦进⾏表征与分析是可以对⾼分⼦地分⼦结构与性能加以详细了解,从⽽指导⾼分⼦地合成、使⽤与回收处理.2.如何理解平均分⼦量地概念,⾼分⼦地分⼦量对性能有何重要影响?答:⾼分⼦不是由单⼀分⼦量地化合物所组成,即使是⼀种“纯粹”地⾼分⼦,也是由化学组成相同、分⼦量不等、结构不同地同系聚合物地混合物所组成.这种⾼分⼦地分⼦量不均⼀地特性,就称为分⼦量地多分散性.因此⼀般测得地⾼分⼦地分⼦量都是平均分⼦量,聚合物地平均分⼦量相同,但分散性不⼀定相同.⾼分⼦地平均分⼦量包括数均分⼦量、重均分⼦量、Z均分⼦量和年均分⼦量.⼀般来说:1)Mz > Mw > Mv > Mn,Mv略低于Mw2)Mn靠近聚合物中低分⼦量地部分,即低分⼦量部分对Mn影响较⼤3)Mw靠近聚合物中⾼分⼦量地部分,即⾼分⼦量部分对Mw影响较⼤4)⼀般⽤Mw来表征聚合物⽐Mn更恰当,因为聚合物地性能如强度、熔体粘度更多地依赖于样品中较⼤地分⼦.单独⼀种平均分⼦量不⾜以表征聚合物地性能,还需要了解分⼦量多分散性地程度,分⼦量分布通常以分⼦量分布指数表⽰:即重均分⼦量与数均分⼦量地⽐值,Mw/Mn.平均分⼦量与分⼦量分布对⾼分⼦材料性能有重要影响.⾼聚物地分⼦量只有达到某数值后,才能表现出⼀定地物理性能.但当⼤到某程度后,分⼦量再增加,除其它性能继续再增加外,机械强度变化不⼤.由于随着分⼦量地增加,聚合物分⼦间地作⽤⼒也相应增加,使聚合物⾼温流动粘度也增加,这给加⼯成型带来⼀定地困难.因此,聚合物地分⼦量⼤⼩,应兼顾使⽤和加⼯两⽅⾯地要求.不同⽤途地聚合物应有其合适地分⼦量分布.3.下图为聚乳酸地红外谱图和结构式,试分析主要吸收地归属.答:2900cm-1为-CH3吸收峰,1735cm-1为酯基中羰基吸收峰,1000cm-1~1300cm-1内地两个吸收峰为-C-O-C-吸收峰.测定⾼分⼦分⼦量地常⽤⽅法有哪些?每种⽅法所测定得到地分⼦量分别是什么?其中那种⽅法可以测定分⼦量分布?答:常⽤⽅法包括:粘度法Intrinsic viscosity(粘均分⼦量),光散射法LALLS(重均分⼦量),凝胶渗透⾊谱GPC(重均、数均分⼦量与分⼦量分布).此外还有冰点降低法、沸点升⾼法、渗透压法、蒸汽压渗透法(均为数均分⼦量)和飞⾏时间质谱、体积排斥⾊谱(可同时得到重均与数均分⼦量及分⼦量分布).5.使⽤Mark-Houwink⽅程计算⾼分⼦粘均分⼦量时常数K和a受什么条件地影响?答:受溶剂性质及⾼分⼦本⾝构象地影响,溶剂不同、测试温度不同,K值及a值就不同.6.通过核磁分析,可以得到⾼分⼦哪些⽅⾯地信息?答:⽤核磁可以确定⾼分⼦中化学基团地种类和数⽬,还可以测定分⼦量、端基分析、了解结构单元地连接⽅式、结构异构等.Tensile strength 和elongation at breaking 是表征⾼分⼦哪种性能地指标?答:抗张强度是衡量材料抵抗拉伸破坏地能⼒.断裂伸长率是衡量材料地脆韧地能⼒.⼆者都反映了材料地⼒学性能.8.测定⾼分⼦玻璃化转变温度地⽅法有哪些?各有什么特点?答:Tg地测定⽅法:利⽤⽐容,线膨胀系数,折光率,⽐热容,动态⼒学损耗,DSC 等.DSC:玻璃化转变是⼀种类似于⼆级转变地转变,它与具有相变结晶或熔融之类地⼀级转变不同,是⼆级热⼒学函数,有dH/dt地不连续变化,因此在热谱图上出现基线地偏移.从分⼦运动观点来看,玻璃化转变与⾮晶聚合物或结晶聚合物地⾮晶部分中分⼦链段地微布朗运动有关,在玻璃化温度以下,运动基本冻结,到达Tg后,运动活泼,热容量变⼤,基线向吸热⼀侧移动.玻璃化转变温度地确定是基于在DSC曲线上基线地偏移,出现⼀个台阶,⼀般⽤曲线前沿切线与基线地交点来确定Tg.其余⽅法均是利⽤物质在Tg附近性能发⽣急剧变化来进⾏测定.9.研究⾼分⼦地流变性能有什么意义?答:对聚合物流变性能地研究了了解可以指导聚合反应地设计,以制得加⼯性能优良地聚合物;研究聚合物地流变性能对评定聚合物地加⼯性能、分析加⼯过程、正确选择加⼯⼯艺条件、指导配⽅设计均有重要意义;对设计加⼯机械和模具有指导作⽤.10.透射电⼦显微镜(TEM)和扫描电⼦显微镜(SEM)有什么异同?透射电镜是以电⼦束透过样品经过聚焦与放⼤后所产⽣地物像,投射到荧光屏上或照相底⽚上进⾏观察.透射电镜地分辨率为0.1~0.2nm,放⼤倍数为⼏万~⼏⼗万倍.由于电⼦易散射或被物体吸收,故穿透⼒低,必须制备更薄地超薄切⽚(通常为50~100nm).利⽤TEM可以观测⾼分⼦聚合物及其复合材料地微观结构,形状及分布.从⽽进⼀步了解微观结构对材料性能地影响.扫描电镜是⽤极细地电⼦束在样品表⾯扫描,将产⽣地⼆次电⼦⽤特制地探测器收集,形成电信号运送到显像管,在荧光屏上显⽰样品物体表⾯地⽴体构像,可摄制成照⽚.测试前需要在表⾯喷镀薄层⾦膜,以增加⼆波电⼦数.扫描电镜能观察较⼤地组织表⾯结构,样品图像富有⽴体感.⽤SEM可以观察聚合物表⾯形态;聚合物多相体系填充体系表⾯地相分离尺⼨及相分离图案形状;聚合物断⾯地断裂特征;纳⽶材料断⾯中纳⽶尺度分散相地尺⼨及均匀程度等有关信息.第五章热塑性聚合物⾼分⼦地侧基对材料地刚性有很⼤地影响,试根据⾼分⼦结构⽐较四⼤通⽤塑料PE、PP、PS和PVC刚性地⼤⼩顺序?答:刚性顺序:PVC>PS>PP>PE,侧基体积越⼤,内旋转位阻越⼤,柔顺性越差,刚性越强.侧基极性越⼤,相互作⽤越强,内旋转越困难,柔顺性越差,刚性越强.LDPE(低密度聚⼄烯)、HDPE(⾼密度聚⼄烯)、LLDPE(线性低密度聚⼄烯)在空间拓扑结构上有何不同,其对材料性能地影响是怎样地?答:根据合成⽅法地不同(包括:⾃由基聚合Free radical polymerization;配位聚合Coordinate polymerization;⽓相聚合Gas phase polymerization等),聚⼄烯地链结构也存在较⼤差异,从⽽对材料性能产⽣重要影响.HDPE⼜称低压聚⼄烯,分⼦结构中⽀链很少,近似于线型,分⼦链排列紧密规整,材料具有较⾼地密度和结晶性,因⽽在宏观物理性能上表现为强度与刚性等机械强度⾼,但柔韧性⼀般、易脆、易⽼化等.LDPE⼜称⾼压聚⼄烯,其分⼦结构中含有⽆规长⽀链,妨碍了分⼦链地整齐排布,分⼦间地排列较疏松.因此材料地密度较低、透明性好、柔韧性好、耐应⼒开裂,但相应地刚性和强度较低,易变形.LLDPE是⼀种含有⼤量短⽀链地聚⼄烯,结构类似于梳状⽀化,⽀化程度介于HDPE和LDPE之间,因⽽性能上兼具有⼆者地优点.3.不同⽴构规整度地聚丙烯(PP)性能有何差异?答:全同⽴构和间同⽴构地有序结构使聚合物链段更容易紧密排列,形成结晶结构,即所谓地等规⽴构PP.与⽆规PP相⽐,等规PP具有更⾼地强度,⽓体与有机⼩分⼦更难渗透,因⽽具有更好地耐腐蚀、耐溶剂性以及⽓密性,熔点也有所升⾼.⽆规PP则不能结晶,是⼀种橡胶状地弹性体.4.常见地聚苯⼄烯(PS)品种有哪些?答:聚苯⼄烯(PS)包括普通聚苯⼄烯(GPPS).聚苯⼄烯.可发性聚苯⼄烯(EPS).⾼抗冲聚苯⼄烯(HIPS)及间规聚苯⼄烯(SPS).5.ABS共聚物树脂地单体有哪些,这些单体各赋予了ABS什么样地特性?答:单体有:丙烯腈(acrylonitrile)、丁⼆烯(butadiene)、苯⼄烯(styrene).1,4-丁⼆烯为ABS树脂提供低温延展性和抗冲击性;丙烯腈为ABS树脂提供硬度、耐热性、耐酸碱盐等化学腐蚀地性质;苯⼄烯为ABS树脂提供硬度、加⼯地流动性及产品表⾯地光洁度.6.PVC中地氯原⼦对材料地性能产⽣了哪些影响?答:使PVC具有了难燃性,⾼强度,强地耐腐蚀能⼒.7.常⽤地热塑性加⼯⽅法有哪些?分别适合加⼯什么产品?答:加⼯热塑性塑料常⽤地⽅法有挤出(extrusion)、注塑(injection molding)、压塑(compress molding)、吹塑(blow molding)等.挤出适合加⼯热塑性塑料及橡胶;注塑适合加⼯热塑性塑料及部分热固性塑料;吹塑适合苯⼄烯聚合物、聚氯⼄烯、聚酯、聚氨酯、聚碳酸酯和其他热塑性塑料.第六章⼯程塑料1.什么样地材料称为“⼯程塑料”?答:⼯程塑料是指⼀类可以作为结构材料,在较宽地温度范围内承受机械应⼒,在较为苛刻地化学物理环境中使⽤地⾼性能地⾼分⼦材料.⼀般指能承受⼀定地外⼒作⽤,并有良好地机械性能和尺⼨稳定性,在⾼、低温下仍能保持其优良性能,可以作为⼯程结构件地塑料.聚⼰⼆酰⼰⼆胺和聚⼰内酰胺分别称为“尼龙66”和“尼龙6”.以下两种聚酰胺对应地尼龙分别为?-[NH-(CH2)5-NH-CO-(CH2)8-CO]-,-[NH-(CH2)11-CO]-答:尼龙510,尼龙12尼龙地命名要根据其聚合过程中单体⼆胺和⼆酸上碳原⼦地数量来命名.因此通过戊⼆胺(6个碳)和癸⼆酸(10个碳)缩聚⽽成地尼龙产品命名为尼龙610(⼆胺中碳原⼦数在前,⼆酸中碳原⼦数在后).⽽由⼗⼆内酰胺开环聚合制备得到地尼龙由于其单体只有⼀种化合物,因此被命名为尼龙12.3.从⾼分⼦单元结构地⾓度分析PET与PBT熔点地差别.答:与PET相⽐,PBT结构单元中地亚甲基数⽬从2个增加到4个,因⽽分⼦链地刚性降低,熔点相对较低.4.三⼤“有机玻璃”是哪3种聚合物?为什么这些聚合物适合⽤作光学材料?答:聚甲基丙烯酸甲酯(PMMA);聚碳酸酯(PC);聚苯⼄烯(PS).PMMA:聚甲基丙烯酸甲酯,俗称亚克⼒(acrylic),透光度⼤约能达到92%,⽽且有较好地耐候能⼒,⼴泛应⽤于热塑型标识牌、飞机挡风玻璃、浴缸等.PC:聚碳酸酯,⾼熔点透明地碳酸酯类聚合物,其中应⽤最⼴泛,⽤量最⼤地为双酚A (bisphenol A)碳酸酯,透光率达到93%,聚碳酸酯制品可⽤于玻璃窗、装置设备、标识牌、可回收塑料瓶、太阳能集电器、商务机器、电⼦产品等领域,此外在压缩光盘(CD)中也有⼴泛应⽤;PS:聚苯⼄烯,普通聚苯⼄烯(GPPS)地侧苯基地空间排列为⽆规结构,即⽆规聚苯⼄烯,使得材料具有很⾼地透明性.这些聚合物由于主链结构有序性较低,为⽆定形地⾮晶聚合物,透明性和光学性能⾮常好,因此可⽤于光学材料.5.试分析均聚甲醛和共聚甲醛结构与性能地差异.答:共聚甲醛与均聚甲醛相⽐,其含有环氧⼄烷地结构单元,⽐甲醛地结构单元多了⼀个亚甲基,因⽽链段地柔韧性有所增加、刚性有所下降.但聚合物中氧含量有所降低,因此热稳定性⽐均聚甲醛有明显提⾼.6.分别写出聚苯醚、聚苯硫醚、聚酰亚胺、聚醚醚酮地英⽂名称与缩写,并列举出这⼏类⼯程塑料地特性.答:聚苯醚:Polyphenylene oxide PPO;聚苯硫醚:Polyphenylene sulfide PPS;聚酰亚胺:Polyimide PI;聚醚醚酮:poly(ether-ether-ketone);PEEK;相关特性略(详见讲义).这些聚合物分⼦主链中都含有⼤量刚性地苯环结构,因此具有较⾼地机械性能(强度、模量等)和耐热性能.7.聚硅氧烷俗称为硅胶,其特性和应⽤领域是什么?答:聚硅氧烷(Polysiloxane),也叫硅树脂(Silicone),是⼀类以重复地Si-O键为主链,硅原⼦上直接连接有机基团地聚合物,具有其它聚合物不具备地综合地电、化学以及⼒学性能.这类聚合物具有很多独特地性能,包括较⾼地热氧化稳定性和热稳定性、低地介电损耗、独特地流变和应⼒/应变⾏为、良好地耐溶剂和耐腐蚀性、流变⾏为对温度不敏感、良好地阻燃性燃性、剪切稳定性、⾼地抗压性能以及低地表⾯张⼒等等.聚硅氧烷具有特别宽地温度使⽤范围,可以在-120~200℃甚⾄300o C地温度范围内保持良好地性能,第七章热固性树脂1.热固性树脂与热塑性塑料地定义分别是什么?答:热塑性塑料(thermoplastic):线性或⽀化⾼聚物,可以多次反复地在加热条件下软化,⽽在冷却条件下凝固为固体;热固性树脂(thermosetting resin):指在加热、加压下或在固化剂、紫外光等作⽤下,进⾏化学反应,交联固化成为不溶不熔物质地⼀⼤类合成树脂.这种树脂在固化前⼀般为分⼦量不⾼地固体或粘稠液体,在成型过程前能软化或流动,具有可塑性.⼀经固化,再加压加热也不可能再度软化或流动.2.在酯化反应中,伯醇和仲醇哪个地反应活性⼤?答:伯醇地反应活性⼤,因为伯醇地位阻⼩,易于进攻碳正离⼦形成中间产物.3.家装污染中地甲醛地主要来源是什么?答:家装材料中⼤量使⽤地热固性树脂如酚醛树脂等.由于其在固化过程中需要预聚物与甲醛反应,板材中残留地和未参与反应地甲醛在使⽤过程中会逐渐向周围环境释放,是形成室内空⽓中甲醛地主体.4.醇酸树脂固化地机理有哪些?答:⼤多数醇酸树脂都是在不饱和酸如油酸地存在下,由双官能团地醇与羧酸缩聚制得.在氧地存在下,这些醇酸树脂中地不饱和双键可以进⼀步反应形成交联.在酯化反应中,伯醇⽐仲醇具有更⾼地反应活性,因此在适当地温度条件下,⽢油地两个伯羟基先与⼆酸反应得到地线性预聚物,⽽当温度升⾼后,预聚物中残留地仲羟基将继续发⽣反应将线形地分⼦链交联.5.环氧树脂可以与酚醛树脂共聚交联固化,试分析其机理如何?答:酚醛树脂中地酚羟基地活性较⾼,在弱碱性甚⾄是⽆催化剂条件下都可与环氧基顺利反应,从⽽形成更复杂地交联结构.6.聚氨酯是通过逐步聚合制备地聚合物,其反应基团与反应机理是什么?如何调控聚氨酯材料性能?答:反应基团:⼆异氰酸酯,最为⼴泛使⽤地⼆异氰酸酯是甲苯⼆异氰酸酯(TDI, H3C–C6H3(NCO)2).⼆醇HO–(RO–)n H:端羟基地低分⼦量聚酯和聚醚,分别称为聚酯多元醇和聚醚多元醇.产物最终地交联程度则由反应中加⼊地三元醇(如⽢油)地量来控制.因此通过预聚物、多元醇、⼆异氰酸酯地化学结构地控制即可实现对聚氨酯最终性能地调控.第⼋章纤维1.什么样地材料称为纤维?答:纤维是⼀种长径⽐不低于100:1,具有⼀定柔顺性和强度地线性物,是⽤以制造纺织品地基础原料.2.与天然纤维、⼈造纤维相⽐,合成纤维地优势是什么?答:纤维分为天然纤维(natural fiber)和化学纤维(chemical fiber)两⼤类,其中化学纤维⼜分为⼈造纤维(rayon)和合成纤维(synthetic fiber).天然纤维与⼈造纤维地原料均来⾃于天然地动植物资源,⽽合成纤维来源于⽯油化⼯产品,因此具有原料易得、加⼯简单、结构与性能多样.3.试⽐较“熔体纺丝”、“湿法纺丝”、“⼲法纺丝”之间地相同与不同之处?答:纺丝是化学纤维⽣产过程中地关键⼯序,改变纺丝地⼯艺条件,可在较⼤范围内调节纤维地结构,从⽽相应地改变所得纤维地物理机械性能.熔体纺丝法是将纺丝熔体经螺杆挤压机由纺丝泵定量压出喷丝孔,使其成细流状射⼊空⽓中,并在纺丝甬道中冷却成丝.熔体纺丝法地主要特点是卷绕速度⾼,不需要溶剂和沉淀剂,设备简单,⼯艺流程短,是⼀种经济、⽅便和效率⾼地成形⽅法.但喷丝头孔数相对较少.溶液纺丝法包括湿法纺丝与⼲法纺丝.湿法纺丝是将溶液法制得地纺丝熔液从喷丝头地细孔中压出呈细流状,然后在凝固液中固化成丝.由于丝条凝固慢,所以湿法纺丝地纺丝速度较低,⽽喷丝板地孔数较熔体纺丝多.湿法纺丝地特点是⼯艺流程复杂,投次⼤、纺丝速度低,⽣产成本较⾼.⼀般在短纤维⽣产时,可采⽤多孔喷丝头或级装喷丝孔来提⾼⽣产能⼒,从⽽弥补纺丝速度低地缺陷.⼲法纺丝是将溶液纺丝制备地纺丝溶液从喷丝孔中压出,呈细流状,然后在热空⽓中因溶剂声速挥发⽽固化成丝.⼲法纺丝制得地纤维结构紧密,物理机械性能和染⾊性能较发,纤维质量⾼.但⼲法纺丝地投资⽐湿纺还要⼤,⽣产成本⾼,污染环境.⽬前⽤于⼲纺丝产⽣地合成纤维较少,仅醋酯纤维和维纶可⽤此法.4.天然纤维(Natural fiber)与⼈造纤维(Rayon)之间存在何种联系?答:天然纤维:指⾃然界原有地,或从经⼈⼯培植地植物中、⼈⼯饲养地动物中获得地纤维.⼈造纤维:是利⽤⾃然界地天然⾼分⼦化合物——纤维素或蛋⽩质作原料,经过⼀系列地化学处理与机械加⼯⽽制成类似棉花、⽺⽑、蚕丝⼀样能够⽤来纺织地纤维.它是由提纯得到地某些线型天然⾼分⼦物为原料,经直接⽤溶剂溶解或制备成衍⽣物后⽤溶剂溶解,之后再经纺丝加⼯制得地多种化学纤维地统称.5.试从聚丙烯结构与性能地特点分析丙纶纤维地优点与缺点.答:优点:聚丙烯为线性结构,不含极性基团,丙纶质轻保暖性好,⼏乎不吸湿,具有较好地耐溶剂性和耐化学腐蚀性.缺点:由于甲基⽀链结构地存在,丙纶热稳定性差,不耐⽇晒,易于⽼化脆损,为此常在丙纶中加⼊抗⽼化剂,⽆极性基团,容易积聚静电.第九章橡胶1.橡胶是⼀类具有何种特性地⾼分⼦材料答:橡胶是⼀类使⽤温度⾼于玻璃化转变温度Tg (即⾼弹态,以便使聚合物链段运动),并且其常规态是⾮晶态地聚合物.弹性体有记忆功能,也就是说,当它们受外⼒时能变形,⼀旦外⼒移除,它们能恢复其原始未受⼒地状态.2.橡胶地硫化是什么过程。

高分子科学导论

高分子科学导论

高分子科学导论是关于高分子材料的合成、结构和性能以及应用等方面的一门科学。

它涵盖了高分子的合成反应、聚合物的结构与性能、聚合物的成型加工以及通用高分子材料和新型高分子材料等方面的基本内容。

在高分子合成反应方面,高分子科学导论介绍了自由基聚合反应、离子型聚合、配位聚合反应等聚合实施方法,以及逐步聚合反应等反应类型。

此外,还介绍了高分子的合成原理,包括单体、引发剂、催化剂等原料的选择和制备,聚合反应的条件和实施方法等。

在聚合物的结构和性能方面,高分子科学导论介绍了聚合物的分子结构、聚集态结构以及分子运动等方面的知识。

此外,还介绍了聚合物的力学性能、溶液性质、物理性能等方面的实验测定方法和技术。

在聚合物的成型加工方面,高分子科学导论介绍了塑料、橡胶、纤维等高分子材料的成型加工技术,包括挤出成型、注塑成型、压缩成型、压注成型等塑料成型方法,以及橡胶的挤出成型和注射成型等加工技术。

此外,还介绍了纤维纺丝的原料制备、熔体或溶液的制备以及纺丝成型等方面的知识。

在通用高分子材料和新型高分子材料方面,高分子科学导论介绍了塑料、橡胶、纤维等通用高分子材料的种类、性能和用途,以及新
型高分子材料的研发和进展。

此外,还介绍了高分子材料的应用领域和市场前景等方面的知识。

总之,高分子科学导论是一门涉及高分子材料合成、结构与性能以及应用等方面的综合性学科,对于深入了解高分子材料的性质和应用具有重要意义。

大学一年级材料学导论PPT课件-6-高分子材料

大学一年级材料学导论PPT课件-6-高分子材料
③习惯名称是沿用已久的习惯叫法。 如聚酰胺类的习惯名称为尼龙,聚 对苯二甲酸乙醇酯的习惯名称为涤 纶等。
2020/10/29
9
4.1.3聚合物的分类
①按大分子主链结构分类:
碳链、杂链和元素有机高分子
举例:碳链
(CH2—CH)n
CH3
杂链 (CH2—O)n
元素有机高分子
CH3 (Si—O)n CH3
高分子化合物的分子式: A—M—M······M—B 高分子的通式: [M]n [M]:结构单元或重复单元,又称为链节。 n:聚合度(常以DP表示)。
Байду номын сангаас
2020/10/29
5
4.1.1聚合物材料的基本概念
聚合物的分子量:M=n·M0 低分子化合物分子量:<500 高分子化合物分子量:> 104 聚合物分子量:104 ~106
12
4.1.5 高分子材料的成型加工
高分子材料的成型加工是将高分子材料 转变成所需形状和性质的实用材料或制 品的工程技术。
通常是使固体状态(粉状或粒状)、糊 状或溶液状态的高分子化合物熔融或变 形,经过模具形成所需的形状,并保持 其已经取得的形状,最终得到制品的工 艺过程。
2020/10/29
13
2020/10/29
6
4.1.2聚合物材料的命名
①化学名称根据大分子链的化学结构而 确定的。
以单体或假想单体名称为基础,前面冠 以“聚”字,就成为聚合物名称。
由两种单体缩聚而成的聚合物,如果结 构比较复杂或不太明确,则往往在单体 名称后面加上“树脂”二字来命名。
2020/10/29
7
4.1.2聚合物材料的命名
4.1.6高分子材料的的发展趋势

高分子材料论文

高分子材料论文

高分子材料论文课题名称:高分子材料导论学院:班级:姓名:学号:高分子材料回收利用与发展可降解材料现代文明以经济腾飞和生活水平的提高为主要标志。

随着经济发展,大规模的物质循环不可避免地引起各种问题,如资源短缺、环境恶化已为全球所关注。

科学家预言地球能源(煤、石油、天然气等)不久将消耗完,会发生严重的能源危机;现代工业以及消费业的发展已给大自然带来严重的影响,大气、海洋等受污染,温室效应发生和臭氧层的破坏等等。

所有这些已严重影响着自然界的生态平衡,最终必然会阻碍世界经济的高速发展。

材料的制造、加工、应用等均与环境和资源有直接的关系。

高分子材料自从上世纪初问世以来,因重量轻、加工方便、产品美观实用等特点,颇受人们欢迎,其应用越来越广,从而使用过的高分子材料日益增加。

据统计,2011年,我国塑料制品的产量达5474万吨,同比增长22%。

其中,塑料薄膜的产量为844万吨,占总产量的15%;日用塑料制品的产量为458万吨,占总产量的8%;塑料人造革、合成革的产量为240万吨,占总产量的4%。

如何处理这些废料已成为非常重要的课题。

处理废旧高分子材料比较科学的方法是再循环利用。

循环是废旧高分子材抖利用的有利途径,不仅使环境污染得到妥善的解决,而且资源得到最有效的节省和利用。

从资源利用的角度,对废旧高分子材料的利用首先应考虑材料的循环,然后考虑化学循环及能量回收。

回收:我国塑料回收面临的困难是数量大、分布广、品种多、体积大,许多废塑料与其它城市垃圾混在一起。

处理废塑料的主要方法是:填埋和简单焚烧,但可供填埋场地不断减少,填埋费用急剧上升以及简单焚烧带来的二次污染等问题也给我们敲响了警钟。

国外在废塑料回收方面已积累了不少经验,他们把废塑料的回收作为一项系统工程,政府、企业、居民共同参与。

德国于1993年开始实施包装容器回收再利用,1997年回收再利用废塑料达到60万t,是当年消费量(80万t)的75%。

目前,德国在全国设立300多个包装容器回收、分类网点,各网点统一将塑料制品分为瓶、薄膜、杯、PS发泡制品及其他制品,并有统一颜色标志[2]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高分子材料导论2009.5.14 张福 著高分子聚合物在人类的生活中占有非常重要的地位,举凡衣用的纤维,食品包装,建筑和车,船,飞机等都必须用到高分子聚合物材料.所谓的石油化学工业,90%以上的产品都是与聚合物有关.本章将说明和高分子聚合物相关的名词,以及由小分子化合物形成高分子聚合物的过程.1.1沿革产自自然界而为人类所知的聚合物包括有:1.天然纤维:如棉,毛,丝,麻,纸等。

2.天然橡胶。

3.漆等。

人类对天然聚合物的深度加工,始自1850年左右对天然橡胶的加硫交联和利用碳黑加强其物性。

最早商业上市的人工合成聚合物是1909年由L.Baekelend所研发(德国Bayer公司)的由酚与甲醛所缩合(poly condensation)而成的酚醛树脂。

由1910年到二次世界大战之间,若干至今仍在使用的聚合物已商业化生产,如PVC(polyvinylchloride,聚氯乙烯),PS(polystyrene,聚苯乙烯),NBR(nitrilerubber,丁腈橡胶),Teflon(聚四氟乙烯)和Nylon6/6(尼龙6/6)等。

德国在乳化聚合上做了很多的研究,杜邦公司的Crother兄弟对聚合物的型态做了一些基本的研究和整理工作,也研发出Nylon6/6。

二次世界大战之后,石油化学工业,也就是聚合物工业,正式开始成为化学工业最大的主流。

获得诺贝尔化学奖的Zeigler 和Natta,发明了使聚合物单体在聚合反应时,分子能定向或配位(coordinated)排列的配位催化剂(coordination catalyst),而导致可以聚合出分子排列规则而容易形成结晶(crystalline)的聚合物,是聚合物产业上的重要里程碑;后续的Metallocene 催化剂,其配位功能更高于Zeigler Natta催化剂。

Paul J。

Flory于1953年出版的“Principle of Polymer Chemis-try”,是讨论聚合物物理和化学理论的经典之作,影响迄今。

本书的内容集中于人工合成聚合物。

1.2 聚合物与大分子聚合物(polymer)是分子量很大的大分子(macromolecule),但是并不是所有的大分子量的化合物都是聚合物。

在本节中将依次说明聚合物的定义以及其分子结构和形态。

1.2.1聚合物,结构单元和单体聚合物是由分子量较小的重复(repeating)单元[亦称之为结构(structure)单元]所组成,也只有重复单元所组成的大分子才能称之为聚合物。

聚合反应(polymerization)的原料称之为单体(monomer),是低分子量化合物;单体在经过聚合反应之后形成结构单元,结构单元以化学键(chemical bond)连接为聚合物。

表1-1列出了若干单体,聚合物及结构单元。

从表1-1之中,可以归纳出三种不同的单体与结构单元之间的关系.或者是一种化合物如果要能作为聚合物的单体,必须要能遵循下列三模式之一而形成聚合物.这三种形式分别是:1.单体上最少具有一个(序号1-3和6-11)或以上(序号4和5)的双键,在聚合时双键打开而连接成大分子.同时(1)单体和结构单元所含有的原子种类以及数量均相同.(2)单体和结构单元的差异,是单体有双键,而结构单元没有双键;除此之外,原子之间的排列没有改变.具有可打开的双键是这一类单体的必要条件.2.单体的分子重组为结构单元,例如序号12,13和14三种聚合物.序号为12的己内酰是将环打开(ring opan)为直链,原子的种类和数量不变.序号为13的甲醛,其单体中所含有的原子种类和数量不变,但是分子结构由H—C=O改H O变为—O—CH2—。

过程是HCHO先形成H2C CH2,在开环为OCH2—O—CH2—。

而序号为14的PPO,其结构单元比单体少了一个氢原子,其他不变。

以上1和2均是由一个单体转变为一个结构单元。

4.结构单元是由两种单体所组成,这两种单体各自具有二个或二个以上可以和另一单体上所有带有的官能基反应的官能基(functionalgroup),这些官能基包括:—COOH和—OH,—COOH 和NH2,及—NCO和—OH等。

同时当两种单体结合为结构单元时,官能基上的一些原子会组合成结构单元以外的小分子,例如:O O—O—H+—OH —O—+H2O结构单元不包含在的一部分结构单元中的小分子这一类的结构单元所需要的是一组(至少两种)单体,而每一种单体必须有两个(或以上的)官能基,这些官能基必须能和另一种单体上的官能基反应。

在商业上,第一类的单体用量最大,第三类次之。

请注意:(1) 第一类,即是单体中含有双键的单体,所形成的聚合物是由碳链—C—C—链连结在一起的。

(2) 第三类和第二类单体所构成的聚合物,则除了碳链之外尚含有其他的原子,例如:—O——N—S —SI—或是苯环链等,称之为杂链(heterochain)聚合物链结构对聚合物的性质有很大的影响,将在第二章中加以说明。

1.3聚合反应将单体转换为聚合物的主要聚合反应(polymerization)可以分为:1.单体逐个加到分子链上去的加成(additional)聚合。

2.单体逐步形成由两个单体组成的二聚物(dimer),再连接为三或四聚物(trimer,tetramer),逐步变成大分子的逐步(stepwise)聚合。

分述如下:1.3.1 加成聚合在加成聚合的过程中,起始剂(initiator)先活化(activated),然后再使单体活化(initiation),其他的单体再逐个加在已活化的分子链上,使链继续成长(propagation),最后两个活性键可相互反应而失去活性,使得分子链终止生长(termination)。

令起始剂为I,单体为M,I和M代表活化后的起始剂和单体:I→I起始I+M→IM链成长IM+M→IMM。

IM N+M→IM N+1终止IM N+IM M→IM N M M按链终止的机理(mechanism)很多,不一一例举。

单体在活化时形成下列三形态之一,分别代表三种不同的聚合化学过程:(1) 自由基(free redical)。

(2) 离子(ion)(3) 与催化合剂形成络合物(complex)分述如下:1.3.1.1 自由基聚合单体以自由基的形态活化后,再形成聚合物的过程,即称之为自由基聚合。

而单体形成自由基有两种不同的过程:1.一是利用如前述的起始剂,常用的起始剂有:(1) 有机过氧化物(organic peroxide),其通式为:ROOR当温度升高时,ROOR分解成自由基,以BPO为例:O O O—C—O—OC—→—C—O→+2CO2有机过氧化物的种类很多,各具不同的分解温度,用途很广。

第六章中的交联剂,亦属于此类。

(2) 偶氮类(azo)化合物,例如AIBN:(CH3)2CN=NC(CH3)2→N2+2(CH3)2C(3) 无机过氧盐,例如过硫酸钾;O O OKO—S—O—O—S—OK→2KO—S—OO O O无机盐溶于水,当聚合反应在水中进行时,例如乳化聚合(emulsion polymerization),是用无机过氧盐作为引发剂。

2.利用热,光和辐射线或电子束来活化:(1)在高温,单体可以形成自由基。

工业上,PS即是用热聚合(thermal polymerization)。

热聚合可应用的范围,视能否控制支链的成长和能否有效的控制聚合速率而定。

(2)利用光来引发起始剂,进而引发聚合反应,是光敏类(photosensitive)聚合物的基础;或者是光剂(蚀)(photo etching)的基础,在电子工业中应用极广,例如印刷电路板和IC制程中就必须用到。

(3)辐射线和电子束,这种引发聚合反应的方法成本比较高,电缆外层的PE,在工业上是用电子束来引发交联反应,以达到高强度和耐磨擦的目的。

1.3.1.2离子聚合令A+B-为可解离为A+和B—的起始剂,则单体与起始剂可以形成正离子(ca-tion)或是负离子(anion):A+B—+CH2CH→A—CH2C+H B——(CH2—CH)—nRA+B—+CH2=CH→B—CH2C—H A+—(CH2—CH)—nRA+如果是亲电性,既是产生碳正离子的阳离子聚合(cationic poly-merization)。

如果是亲核性,则是产生碳负离子的阴离子聚合(anionicpolymerization)。

1.阴离子聚合的起始剂主要是lewis酸,例如:BF3,BF3O(C2H5)2,BCL3,TiCL3,TiBr4,ALCL3,SnCL4等;和酸,例如:H2SO4,HCLO4,H3PO4CL3CCOOH等。

2.阴离子聚合的起始剂主要是卤金属及其有机化合物,例如悬浮于溶剂中的金属钠,芳香族和烷基的有机锂(C4H9Li),RMgX(R为烷基或芳香基),ALR3等。

开环聚合,在广义上可以看作是离子聚合中的一种。

1.3.1.3 配位聚合单体与催化剂上活性点(active site)以一定的形态(分子排列)形成洛合物而活化,聚合,其简化的化学反应式是:催化剂—R+CH2=CH→R—CH2—CH—催化剂R R—(CH2—CH)—n由于单体是以一定的分子排列活化,故而所得到的聚合物的主链上侧基(side group)的排列方向可以受到控制,这是其他聚合方法所做不到的。

HDPE,PP(—CH2—CH—),PIB(—CH2—CH—)和高顺聚丁CH3 C2H5 烯(high cis poly-butadiene)等均是采用此法聚合。

配位聚合的催化剂有以下三个主要系列:1.Ziegler系列,这是以:(1)过度金属(transition metal)的卤化物,例如TiCL3为主催化剂。

(2)金属的有机化合物,例如AL(C2H5)3为共催化剂(Co—cata-lyst)。

(3)一种电子供给(electron donner)物。

(4)将前列三种成分分散固定(supported)在一无机化合物,例如MgCl2上2.氧化铬(chromium oxide)CrO3分散固定在氧化矽和氧化铝上,此一系列是由Phillips石油公司所开发使用。

3.Metallocene系列是在1988年开始生产的商业产品,亦称之为Kaminsky类催化剂或单活性点(single site)催化剂。

单活性点是相对于Ziegler催化剂而言,其主要特点在于可以更精密的控制聚合物的分子结构。

其通式为:L2MX2其中M为第四族的过渡金属,例如:Zr,Ti和Hf。

X为卤素或烷基(alkyl),苯(基)(phenyl)或苯甲(基)(benzyl)。

L为用∏键与金属相联结的ligand,例如cyclopentadienyl(CP)。

例如CP2ZRCL2结晶的PS,比重为0.86的PP均用此法聚合。

相关文档
最新文档