模拟电子技术 有源滤波电路
实验六 自制RC有源滤波电路

实验六 自制RC 有源滤波电路一 实验目的1.掌握由运算放大器与电阻、电容构成的RC 有源滤波器的电路原理;2.掌握滤波器幅频特性的测试方法。
二 实验原理及实验参考电路滤波电路是一种选频电路, 它是一种能使有用频率的信号通过, 而同时对无用频率的信号进行衰减的电子装置。
本实验采用宽带集成运算放大器LF353和电阻、电容构成RC 有源滤波电子装置。
根据频率特性的基本知识可知, 滤波电路的阶数越高, 过渡带将越窄, 滤波特性越接近理想滤波器的滤波特性, 而高于二阶的滤波电路可以由一阶和二阶滤波电路构成, 本实验制作RC 二阶有源滤波电路。
1.压控电压源二阶低通滤波电路 电路如图1所示。
图 1 压控电压源二阶低通滤波电路实验电路中R1=R2=4.7k(, R3=1k(, R4=586(, C1=C2=10nF(涤仑电容103)。
电路传递函数为式中通带放大倍数341R R A up +=。
电压放大倍数为20)3()(1)(f f A j f f A f A up upu -+-=式中特征频率RCf π210=令 , Q 称为该滤波电路的品质因数。
电路的幅频特性与品质因数的取值相关, 如图2所示。
图2 压控电压源二阶低通滤波电路的幅频特性实验电路中通带放大倍数品质因数Q=1/(3-Aup )=1/(3-1.586)=0.707, 称为巴特沃思滤波器, 电路的上限截止频率fH 则刚好等于特征频率f0。
图1所示电路中如果品质因数Q 1, 则电路的上限截止频率可大于特征频率。
由图2可知Q 大于1的幅频特性曲线的过渡带更陡, 幅频特性更好。
2.压控电压源二阶高通滤波电路 电路如图3所示。
586.110005861134=+=+=R R A up图3 压控电压源二阶高通滤波电路实验电路中R1=R2=56k(, R3=1k(, R4=586(, C1=C2=10nF(涤仑电容103)。
电路传递函数为上式中通带放大倍数341R R A up += 电压放大倍数为为使电路不产生自激振荡, 应使 即通带放大倍数 。
有源高通滤波器电路设计(100Hz截止频率)

长沙学院课程设计说明书题目有源高通滤波器电路设计系(部) 电子与通信工程系专业(班级) 电气工程及其自动化姓名学号指导教师起止日期模拟电子技术课程设计任务书系(部):电子与通信工程系专业:电气工程及其自动化指导教师:长沙学院课程设计鉴定表目录摘要 (5)1.电路设计 (6)1.1.电路元件及参数的选择 (6)1.2.电路原理图绘制 (6)2.电路的仿真 (7)2.1.使用Multisim9仿真波特图示仪 (7)2.2.使用Multisim9仿真示波器 (7)2.2.1.输入信号频率小于截止频率时的仿真 (7)2.2.2.输入信号频率等于截止频率时的仿真 (8)2.2.3.输入信号频率大于截止频率时的仿真 (8)参考文献 (9)设计总结 (9)摘要滤波器是一种能使有用信号通过而大幅抑制无用信号的电子装置。
常用来进行信号处理、数据传输和抑制噪声等。
以往这种滤波电路主要采用无源R、L和C组成,20世纪60年代以来,集成运放获得了迅速发展,由它和R、C组成的有源滤波电路,具有不用电感、体积小、重量轻等优点。
此外,由于集成运放的开环电压和输入阻抗均很高,输出阻抗又低,构成有源滤波电路后还具有一定的电压放大和缓冲作用。
但是,集成运放的带宽有限,所以目前有源滤波电路的工作频率难以做的很高,以及难于对功率信号进行滤波,这是它的不足之处。
]1[在实际电子系统中,有源滤波器运用广泛,输入信号往往是含有多种频率成分的复杂信号,可能还会混入各种噪声、干扰及其它无用频率的信号,因此需要设法将有用频率信号挑选出来、将无用信号频率抑制掉。
完成此任务需要具有选频功能的电路。
本文主要内容是设计一个能阻挡低频信号、输出高频信号的有源高通滤波电路,以及利用Multisim9对电路进行仿真。
本电路所用到的运算放大器LM741EN,它的管脚1和5为调零端,管脚2为运放反相输入端,管脚3为同相输入端,管脚6为输出端,管脚7为正电源端,管脚4为负电源端,管脚8为空端。
带通滤波电路带通滤波器

f<f1的信号可从低通滤波器通过
f>f2的信号可从高通滤波器通过
阻带宽度为f2 -fl
频率范围在fl<f<f2的信号被阻断
三、 带阻滤波电路
2. 常用带阻滤波器(BEF)
电路特征:输入信号经过一个由RC元件 组成的双T型选频网络,然后接至集成运 放的同相输入端。
工作原理:当输入信号的频率较高时,可 以认为电容短路,则高频信号从上面由两 个电容和一个电阻构成的T型支路通过;
Ui (s)
1 sC
M
1 sC
P
Uo(s)
UM (s) UP (s) UP (s)
1
R
sC
Ui (s) UM (s) UM (s) UO (s) UM (s) UP (s)
1
R
1
sC
sC
压控电压源二阶HPF电路பைடு நூலகம்
传递函数:
Au
(s)
1
[3
(sRC)2 Aup (s) Aup (s)]sRC (sRC)2
带阻滤波器的作用与带通滤波器相反,即在规定的频带内,信号被 阻断,而在此频带之外,信号能够顺利通过。带阻滤波器也常用于抗干 扰设备中阻止某个频带范围内的干扰及噪声信号通过。
从原理上说,将一个通带截止频率为fl的低通滤波器与一个通带截 止频率为f2的高通滤波器并联在一起,当满足条件fl<f2时,即可组成带 阻滤波器。
1 Q 3 AuP
A u
f f0
A u p 3 A u p
Q A u p
Q是f=f0时的电压放大倍数与通带放大倍数之比
一、高通有源滤波电路
对数幅频特性
模拟电子技术习题及答案

习题55.1在以下几种情况下,应分别采用哪种类型的滤波电路〔低通、高通、带通、带阻〕。
(1)从输入信号中提取100kHz~200kHz的信号;(2)抑制1MHz以上的高频噪声信号;(3)有用信号频率为1GHz以上的高频信号;(4)干扰信号频率介于1 kHz~10 kHz;解答:〔1〕带通滤波器;〔2〕低通滤波器;〔3〕高通滤波器;〔4〕带阻滤波器。
5.2在以下各种情况下,应分别采用哪种类型〔低通、高通、带通、带阻〕的滤波电路。
〔1〕抑制50Hz交流电源的干扰;〔2〕处理具有1Hz固定频率的有用信号;〔3〕从输入信号中取出低于2kHz的信号;〔4〕抑制频率为100kHz以上的高频干扰。
解:〔1〕带阻滤波器〔2〕带通滤波器〔3〕低通滤波器〔4〕低通滤波器5.3填空:〔1〕为了防止50Hz电网电压的干扰进入放大器,应选用滤波电路。
〔2〕输入信号的频率为10kHz~12kHz,为了防止干扰信号的混入,应选用滤波电路。
(3)为了获得输入电压中的低频信号,应选用滤波电路。
〔4〕为了使滤波电路的输出电阻足够小,保证负载电阻变化时滤波特性不变,应选用滤波电路。
解:〔1〕带阻〔2〕带通〔3〕低通〔4〕有源5.4无源一阶RC低通滤波电路的截止频率决定于的倒数,在截止频率处输出信号比通带内输出信号小dB。
解答:时间常数,3dB5.5无源一阶RC高通滤波电路的截止频率决定于的倒数,在截止频率处输出信号比通带内输出信号小dB。
解答:时间常数,3dB5.6 一阶滤波电路阻带幅频特性以 /十倍频斜率衰减,二阶滤波电路那么以 /十倍频斜率衰减。
阶数越 ,阻带幅频特性衰减的速度就越快,滤波电路的滤波性能就越好。
解答:-20 dB ,-40 dB ,高。
5.7 试求题图所示电路的传递函数和频率响应表达式。
题图解答:()1v sR C A s sR C =+,j (j )1j v R CA R Cωωω=+5.8 题图5.8中所示为一个一阶低通滤波器电路,试推导输入与输出之间的传递函数,并计算截止角频率H ω。
《模拟电子技术基础》目录

模拟电子技术根底主编:黄瑞祥副主编:周选昌、查丽斌、郑利君杨慧梅、肖铎、赵胜颖目录绪论第1章集成运算放大器1.1 抱负运算放大器的功能与特性抱负运算放大器的电路符号与端口抱负运算放大器的功能与特性1.2 运算放大器的反相输入阐发闭环增益输入、输出阻抗有限开环增益的影响加权加法器运算放大器的同相输入阐发闭环增益输入、输出阻抗有限开环增益的影响电压跟随器1.4 运算放大器的差分输入阐发1.5 仪表放大器1.6 积分器与微分器1.6.1 具有通用阻抗的反相输入方式1.6.2 反相积分器1.6.3 反相微分器1.7 运算放大器的电源供电1.7.1 运算放大器的双电源供电1.7.2 运算放大器的单电源供电本章小结习题第2章半导体二极管及其底子电路2.1 半导体根底常识2 本征半导体2 杂质半导体2 两种导电机理——扩散和漂移2.2 PN结的形成和特性2.2.1 PN结的形成2.2.2 PN结的单向导电性2.2.3 PN结的反向击穿2.2.4 PN结的电容特性2.3 半导体二极管的布局及指标参数2 半导体二极管的布局2 二极管的主要参数2 半导体器件型号定名方法2.4 二极管电路的阐发方法与应用2.4.1 二极管电路模型2.4.2 二极管电路的阐发方法2 二极管应用电路2.5 特殊二极管2.5.1 肖特基二极管2.5.2 光电子器件本章小结习题第3章三极管放大电路根底3.1 三极管的物理布局与工作模式3 物理布局与电路符号3 三极管的工作模式3.2 三极管放大模式的工作道理3.2.1 三极管内部载流子的传递3.2.2 三极管的各极电流3.3 三极管的实际布局与等效电路模型3.3.1 三极管的实际布局3.3.2 三极管的等效电路模型3.4 三极管的饱和与截止模式3.4.1 三极管的饱和模式3.4.2 三极管的截止模式3.5 三极管特性的图形暗示3.5.1 输入特性曲线3.5.2 输出特性曲线3.5.3 转移特性曲线3.6 三极管电路的直流阐发3.6.1 三极管直流电路的阐发方法3.6.2 三极管直流电路阐发实例3.7 三极管放大器的主要参数3.7.1 三极管放大器电路3.7.2 集电极电流与跨导3.7.3 基极电流与基极的输入电阻发射极电流与发射极的输入电阻电压放大倍数3.8 三极管的交流小信号等效模型3.8.1 混合∏型模型3.8.2 T型模型3.8.3 交流小信号等效模型应用3.9 放大器电路的图解阐发3.10 三极管放大器的直流偏置3.10.1 单电源供电的直流偏置3.10.2 双电源供电的偏置电路集电极与基极接电阻的偏置电路恒流源偏置电路3.11 三极管放大器电路3.11.1 放大器的性能指标3.11.2 三极管放大器的底子组态共发射极放大器发射极接有电阻的共发射极放大器共基极放大器共集电极放大器本章小结习题第4章场效应管及其放大电路4.1 MOS场效应管及其特性4 增强型MOSFET〔EMOSFET〕4 耗尽型MOSFET〔DMOSFET〕4 四种MOSFET的比较4 小信号等效电路模型4.2 结型场效应管及其特性4 工作道理4 伏安特性4 JFET的小信号模型4.3 场效应管放大电路中的偏置4 直流状态下的场效应管电路4 分立元件场效应管放大器的偏置4 集成电路中场效应管放大器的偏置4.4 场效应管放大电路阐发4 FET放大电路的三种底子组态4 共源放大电路4 共栅放大电路4 共漏放大电路4 有源电阻本章小结习题第5章差分放大器与多级放大器5.1 电流源5 镜像电流源5 微电流源比例电流源5.2 差分放大器差分放大器模型差分放大器电路差分放大器的主要指标差分放大器的传输特性5.2.5 FET差分放大器5.2.6 差分放大器的零点漂移5.3 多级放大器5 多级放大器的一般布局5 多级放大器级间耦合方式5 多级放大器的阐发计算5.4 模拟集成电路读图操练5.4.1 模拟集成电路内部布局框图5.4.2 简单集成运放电路道理通用型模拟集成电路读图操练集成运算放大器的主要技术指标集成运算放大器的分类正确选择集成运算放大器集成运算放大器的使用要点本章小结习题第6章滤波电路及放大电路的频率响应6.1 有源滤波电路6 滤波电路的底子概念与分类6 低通滤波器高通滤波器带通滤波器带阻滤波器6.2 放大电路的频率响应6 三极管的高频等效模型6 单管共射极放大电路的频率特性阐发多级放大电路的频率特性本章小结习题第7章反响放大电路7.1 反响的底子概念与判断方法7 反响的底子概念7 负反响放大电路的四种底子组态反响的判断方法7.2 负反响放大电路的方框图及一般表达式7.2.1 负反响放大电路的方框图7.2.2 负反响放大电路的一般表达式7.3 负反响对放大电路性能的影响7.3.1 提高增益的不变性7.3.2 改变输入电阻和输出电阻7.3.3 减小非线性掉真和扩展频带7.4 深度负反响放大电路的阐发深度负反响条件下增益的近似计算虚短路和虚断路7.5 负反响放大电路的不变性问题负反响放大电路自激振荡及不变工作的条件负反响放大电路不变性的阐发负反响放大电路自激振荡的消除方法本章小结习题第8章功率放大电路8.1 概述8 功率放大电路的主要特点8 功率放大电路的工作状态与效率的关系8.2 互补对称功率放大电路8.2.1 双电源互补对称电路〔OCL电路〕8.2.2 单电源互补对称功率放大器〔OTL〕8.2.3 甲乙类互补对称功率放大器8.2.4 复合管互补对称功率放大器8.2.5 实际功率放大电路举例8.3 集成功率放大器8.3.1 集成功率放大器概述8.3.2 集成功放应用简介8.4 功率放大器实际应用电路OCL功率放大器实际应用电路OTL功率放大器实际应用电路集成功率放大器实际应用电路功率放大器应用中的几个问题本章小结习题第9章信号发生电路9.1 正弦波发生电路9.1.1 正弦波发生电路的工作道理和条件9.1.2 RC正弦波振荡电路9.1.3 LC正弦波振荡电路9.1.4 石英晶体正弦波振荡电路9.2 电压比较器单门限电压比较器迟滞比较器窗口比较器集成电压比较器9.3 非正弦波发生电路9.3.1 方波发生电路9.3.2 三角波发生电路9.3.3 锯齿波发生电路集成函数发生器简介本章小结习题第10章直流稳压电源10.1 引言10.2 整流电路10.2.1 单相半波整流电路单相全波整流电路10.2.3 单相桥式整流电路10.3 滤波电路10.3.1 电容滤波电路10.3.2 电感滤波电路10.3.3 LC滤波电路Π型滤波电路10.4 线性稳压电路10.4.1 直流稳压电源的主要性能指标10.4.2 串联型三极管稳压电路10.4.3 提高稳压性能的办法和庇护电路10.4.4 三端集成稳压器10.5 开关式稳压电路10.5.1 开关电源的控制方式10.5.2 开关式稳压电路的工作道理及应用电路10.5.3 脉宽调制式开关电源的应用电路本章小结习题。
电路与模拟电子技术:滤波器简介

H ( j) UO jRC Ui 1 jRC
H ( j) RC (RC)2 1
高通
( j) arctan(RC) 超前
2
11
C
C
C
ui
L uoΒιβλιοθήκη uiLLuo
L形
C
ui
L
T形
C
L
uo
Π形
9
LC带通滤波器
L1 C1
ui
C2 L2
uo
10
一阶RC无源滤波器
R
ui
C
uo
RC一阶低通滤波器
H ( j) UO 1
Ui 1 jRC
H ( j)
1
(RC)2 1
低通
( j) arctan(RC) 滞后
ui C R
uo
RC一阶高通滤波器
滤波器简介 (补充)
滤波器的概念
工程上根据输出端口对信号频率范围的要求,设计专门的 网络,置于输入-输出端口之间,使输出端口所需要的频率分量 能够顺利通过,而抑制或削弱不需要的频率分量,这种具有选 频功能的中间网络,称为滤波器。
仅仅由RLC无源元件构成的滤波器称为无源滤波器。 利用有源元件(如运算放大器)构成的滤波器称为有源滤波 器。 无源滤波器的输出信号总是受到衰减的;而有源滤波器由于 具有有源器件的放大,输出信号可以大于输入信号。
2
滤波器的概念
滤波电路的传递函数定义
ui 滤波电路分类
滤波 电路
uo H () Uo () Ui ()
① 按所处理信号分
模拟和数字滤波器
② 按所用元件分
无源和有源滤波器
③ 按滤波特性分
低通滤波器(LPF) 高通滤波器(HPF) 带通滤波器(BPF) 带阻滤波器(BEF)
模电实验-有源滤波电路

2
Rf 1 R3
1
Rf 1 R3
为通带增益 Aup。
求得通带截止频率 带入数据: f p 125.4 Hz
f p 0.37 f 0
通带增益: Aup 2
2
通过交流分析所得幅频特性曲线如下:
通过幅频特性曲线知:通带增益为 2. 截止频率大致为 150Hz 左右。
压控电压源二阶低通滤波电路
3
理论分析:
R1 R2 R
C1 C2 C
f0
1 2 RC
Rf 1 R3
电压放大倍数: Au
f f 1 f j (3 Aup ) f 0 0
2
Aup
通带增益 Aup 1
品质因素: Q 实则当 f
1 3 - A up Au
f f0
4
【总结】 :
根据以上理论计算与仿真结果, 压控电压源二阶低通滤波电路由于引 入了适当的正反馈, 时在 f=f0 处的电压放大倍数比通带电压放大倍数 还大, 其滤波特性时比简单滤波电路更为理想的。 简单低通滤波电路 的衰减速度虽然也有-40dB/十倍频, 其通带增益也和压控电路的通带 增益一致,但是在截止频率处的特性时不够理想的。
5
f 0 时,也有 Q
Aup
当 2 Aup 4 时,Q 1
Q 代表截止频率处幅频特性曲线得形状
此种情况下,截止频率处的增益大于通带增益。然后随着频 率的增加,增益迅速下降,特性很好。
通过交流分析所得得幅频特性曲线如下:
根据图像可以看出,通带增益仍为 2,但在截止频率附近的 增益会高于通带增益,然后以-40dB/十倍频速度减少。
模拟电子技术实验报告
实验九 有源滤波电路
模拟有源滤波器的电路设计

. .. . . . .. . . . . . .. . . . .. . . . .. . . . 。 .. . . . . .. . . . .. . . . . ..
合 金蒸发 ,从而使 瓷棒表面形成 一层导 电金属膜 。 刻 槽 和改变 金属 膜厚 度可 以控 制 电阻值 。该 电阻
乘法 器 型号有 多种 ,本 文 不作 罗列 。相对 于 现 代模 拟 电子器 件 的宽频 带而 言 .有源 电力 滤 波
器 对带 宽要求 不 高 。如要求 能滤 除5 次谐 波 则其 0 带 宽 要 求 为5 x 0H = . k z D 3 、A 6 3 0 5 z 25 H 。A 6 2 D 3 、 A 54 D 3 等加 法器 的带 宽 、输 入 及满 功 率输 出范 围 相 当 。本 文在乘 法器 电路 中选 用A 6 3 D 3 乘法 器 。
由乘 法 、加减 法 以及低 通有 源滤 波 电路 组 成 。通
过模 拟器 件获 取单 相谐 波参 考 电流 的i q 。 法所 实 、i
ቤተ መጻሕፍቲ ባይዱ
现 的单 相谐 波检测 的原 理框 图如 图2 示 。 所
由于本 滤波 器是 基 于全模 拟 器件 的 ,其 电路 全 部 由常规 电路 元件 构成 。故 此 滤波 器 的性 能也
第 2 0 第 1期 l卷 年 0 2 0 10 1 月
蓬钸
V1 oO 0 2 . . N1 1
0c .2 0 t 01
d i 03 6 / i n1 6 - 7 52 1 .00 0 o: . 9 .s . 3 4 9 . 01 .2 1 9 js 5 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 相同之处
– 电路中均引入深度负反馈,因而集成运放均工作在 线性区。 – 均具有“虚短”和“虚断”的特点,均可用节点电 流法求解电路。
• 不同之处
– 运算电路研究的是时域问题,有源滤波电路研究的 是频域问题;测试时,前者是在输入信号频率不变 或直流信号下测量输出电压与输入电压有效值或幅 值的关系,后者是在输入电压幅值不变的情况下测 量输出电压幅值与输入电压频率的关系。 – 运算电路用运算关系式描述输出电压与输入电压的 关系,有源滤波器用电压放大倍数的幅频特性描述 滤波特性。
1 (R 1 ) // 1
特征频率
Au ( s ) (1
Sc 2 sc 2 sc 1 R2 R 1 ) (1 2 ) R1 R 1 R1 1 3 sRC ( sRC ) 2 R ( R 1 ) // 1 sc 2 sc 2 sc 1 1 1 ( f 2 f ) 3j f0 f0
(1 R2 ) A u R1
截止频率 fp ≈ 0.37f0
(3)压控电压源二阶LPF
为使 fp=f0,且在f=f0时幅频特性按-40dB/十倍频下降。 f→0时,C1断路,正反馈 断开,放大倍数为通带放大 倍数; f →∞, C2短路,正反馈 不起作用,放大倍数小→0 ;
引入正反馈
因而有可能在f = f 0时放大倍数等于或大于通带放大倍数。 对于不同频率的信号正反馈的强弱不同。
U o (s) R 1 (1 2 ) U i (s) R1 1 sRC
为了使过渡带变窄,需采 用多阶滤波器,即增加RC环 节。在Au(s)表达式分母中s的 方次就是滤波器的阶数。
(2)简单二阶LPF
分析方法:电路引入了负反馈利用节点电流法求解输出电 压与输入电压的关系。
1 f0 2π RC
二、低通滤波器
1. 同相输入 (1)一阶电路
1 R2 A up R1
fp
A u
频率趋于0时的放大 倍数为通带放大倍数 决定于RC环节 表明进入高频段 的下降速率为 -20dB/十倍频
1 2πRC A
up
1 j
f fp
1 Uo ( s) R2 1 sC (1 R2 ) Au ( s ) (1 ) U i ( s) R1 R 1 R1 1 sRC sC
R2 1 Au ( s) R1 1 sR2C
三、高通、带通、带阻有源滤波器
1. 高通滤波器(HPF)
与LPF有对偶性,将LPF的电阻和电容互换,就可得一阶 HPF、简单二阶HPF、压控电压源二阶HPF电路。
一阶同相输入高通滤波器
一阶反相输入高通滤波器
压控电压源二阶HPF 2. 带通滤波器(BPF) 3. 带阻滤波器(BEF)
O
无限增益多路反馈HPF
fH<fL
fH>fL
O O
二阶带通滤波器
压控电压源二阶带通滤波电路
二阶带阻滤波器
常用有源带阻滤波电路
填空
(1)为了避免50Hz电网电压的干扰进入放大器,应选用带阻 滤
波电路。 (2)已知输入信号的频率为10kHz~12kHz,为了防止干扰信号 的混入,应选用 带通 滤波电路 。
经拉氏变换得传递函数
一阶LPF
对于LPF,频率趋于0时的放大倍数即为通带放大倍数。 求解传递函数时,只需将放大倍数中的 jω用 s 取代即可。
1. 同相输入 (1)一阶电路:幅频特性
1 R2 A up R1 A up Au f 1 j fp
( fp
1 ) 2 πRC
Au ( s)
(3)为了获得输入电压中的低频信号,应选用 低通 滤波电路 。
(4)为了使滤波电路的输出电阻足够小,保证负载电阻变化时滤
波特性不变,应选用 有源 滤波电路 。
(5)处理具有1Hz固定频率的有用信号,应选用 带通 滤波电路
(6)从输入信号中取出低于2kHz的信号,应选用 低通 滤波电路
(7)抑制频率为100kHz以上的高频干扰,应选用 低通 滤波电路 。
第二十三讲 有源滤波电路
一、概述 二、低通滤波器 三、高通、带通、带阻滤波器
一、概述
1. 滤波电路的功能
使指定频段的信号顺利通过,其它频率的信号被衰减。
2. 滤波电路的种类
低通滤波器(LPF)
通带放大倍数
理想幅频特性 无过渡带
下降速率 ( f 、下降速率)。 用幅频特性描述滤波特性,要研究 Aup 、A u P
2. 反相输入低通滤波器
R2 1 Au R1 1 j f f0 fp f0 1 2 πR2C
fH
积分运算电路的传递函数为
1 。 Au ( s) ,即 f 0,A u sR1C
R R 加R2后, f→0,C 断开,通带放大倍数, A up 2 1
RL R RL
空载时 带负载时
1 fp 2 π ( R ∥ RL )C A 负载变化,通 up Au 带放大倍数和截 f 1 j 止频率均变化。 fp
有源滤波电路
用电压跟随 器隔离滤波电 路与负载电阻
无源滤波电路的滤波参数随负载变化;有源滤波电 路的滤波参数不随负载变化,可放大,不能输出高电 压大电流。
通带截止频率
理想滤波器的幅频特性
高通滤波器(HPF)
阻容耦合
带通滤波器(BPF)
通信电路
带阻滤波器(BEF))
抗已知频率的干扰
全通滤波器(APF))
f-φ转换
3. 无源滤波电路和有源滤波电路
1 空载: A up 1 fp 2 πRC 1 A u f 1 j fp
带载: A up