二次函数最大面积
二次函数--最大面积问题.

二次函数动点之最大面积一.选择题(共8小题)1.如图,二次函数y=ax2+bx的图象与一次函数y=x+2的图象交于A、B两点,点A的横坐标是﹣1,点B的横坐标是2.(1)求二次函数的表达式;(2)设点C在二次函数图象的OB段上,求四边形OABC面积的最大值.2.如图,已知抛物线y=ax2+x+c经过A(4,0),B(1,0)两点,(1)求该抛物线的解析式;(2)在直线AC上方的该抛物线上是否存在一点D,使得△DCA的面积最大?若存在,求出点D的坐标及△DCA面积的最大值;若不存在,请说明理由.3.如图,在平面直角坐标系中,直线y=﹣x+3与x轴交于点A,与y轴交于点B.抛物线y=ax2+经过A、B两点,点E是直线AB上方抛物线上的一点.(1)求抛物线所对应的函数表达式.(2)求△ABE面积的最大值,并求出此时点E的坐标.(3)过点E作y轴的平行线交直线AB于点M,连结CM.点Q在抛物线对称轴上,点P在抛物线上.当以P、Q、C、M为顶点的四边形是平行四边形时,请直接写出点P的坐标.4.综合与探究:如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是x=﹣,且经过A,C两点,与x轴的另一个交点为点B,正比例函数y=kx在第二象限与抛物线交于点P,与直线y=x+2交于点D.(1)求抛物线的解析式;(2)求△PAC面积的最大值,并求出此时点P的坐标;(3)是否存在正比例函数y=kx,将△ABC的面积分为2:3的两部分?5.如图,二次函数y=ax2+x+c(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,己知点A(﹣1,0),点C(0,2)(1)求抛物线的函数解析式;(2)若点D是抛物线在第一象限的部分上的一动点,当四边形OCDB的面积最大时,求点D的坐标;(3)若点E为抛物线上任意一点,点F为x轴上任意一点,当以B,C,E,F为顶点的四边形是平行四边形时,写出满足条件的所有点E的坐标.6.如图,在平面直角坐标系中,直线AB和抛物线交于点A(﹣4,0),B(0,4),且点B是抛物线的顶点.(1)求直线AB和抛物线的解析式.(2)点P是直线上方抛物线上的一点,求当△PAB面积最大时点P的坐标.(3)M是直线AB上一动点,在平面直角坐标系内是否存在点N,使以O、B、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.7.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.(1)求二次函数y=ax2+bx+c的表达式;(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行与y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.8.如图,已知二次函数y=﹣x2+bx+c的图象交x轴于点A(﹣4,0)和点B,交y轴于点C(0,4).(1)求这个二次函数的表达式;(2)若点P在第二象限内的抛物线上,求四边形AOCP面积的最大值和此时点P的坐标;(3)在平面直角坐标系内,是否存在点Q,使A,B,C,Q四点构成平行四边形?若存在,直接写出点Q的坐标;若不存在,说明理由.9.如图,已知二次函数y=x2﹣4x+3的图象交x轴于A,B两点(点A在点B的左侧),交y轴于点C.(1)求直线BC的解析式;(2)点D是在直线BC下方的抛物线上的一个动点,当△BCD的面积最大时,求D点坐标.10.二次函数y=﹣x2+x+4的图象与x轴的交点从右向左为A,B两点,与y轴的交点为C,顶点D.(1)求四边形ABCD的面积;(2)在第一象限内的抛物线上求一点D′,使四边形ABCD′的面积最大.11.二次函数y=ax2+x+c(a≠0)的图象交x轴于A,B两点,与y轴交于点C,已知A(﹣1,0),点C(0,2).(1)求抛物线的解析式,并求出该抛物线的顶点坐标;(2)若点D是抛物线在第一象限的部分上的一动点,当四边形OCDB的面积最大时,求点D的坐标.12.已知关于x的方程:有一个增根为b,另一根为c.二次函数y=ax2+bx+c+7与x轴交于P和Q两点.在此二次函数的图象上求一点M,使得△PQM面积最大.13.已知二次函数的图象与坐标轴交于A(0,3)、B(﹣3,0)、c(1,0).若点P是二次函数的图象上位于第二象限的点,过P作与y轴平行的直线与直线AB相交于点Q,则P点在何位置时,以线段BP、PO、OQ、QB围成的凹四边形的面积最大,并求最大值.14.如图,已知O为坐标原点,∠AOB=30°,∠ABO=90°,且点A的坐标为(2,0).(1)求点B的坐标;(2)若二次函数y=ax2+bx+c的图象经过A、B、O三点,求此二次函数的解析式;(3)在(2)中的二次函数图象的OB段(不包括点O、B)上,是否存在一点C,使得四边形ABCO的面积最大?若存在,求出这个最大值及此时点C的坐标;若不存在,请说明理由.15.如图,在平面直角坐标系xOy中,二次函数y=x2﹣3x的图象与x轴相交于O、A两点.(1)求A点和顶点C的坐标;(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;(3)对于(2)中的点B,在直线OB下方的抛物线上是否存在点P,使得△POB 的面积最大?若存在,求出△POB的最大面积;若不存在,请说明理由.16.如图,抛物线经过A(4,0),B(1,0),C(0,﹣2)三点.(1)求抛物线对应的二次函数关系式;(2)在直线AC上方抛物线上有一动点D,求使△DCA面积最大的点D的坐标;(3)x轴上是否存在P点,使得以A、P、C为顶点的三角形是等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.17.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的解析式;(2)当点P运动到什么位置时,四边形ABPC的面积最大,并求出此时P点的坐标和四边形ABPC的最大面积.18.如图,△ABC中,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的二次函数图象经过点B、D.(1)用m的代数式表示点A、D的坐标;(2)求这个二次函数关系式;(3)点Q(x,y)为二次函数图象上点P至点B之间的一点,连接PQ、BQ,当x为何值时,四边形ABQP的面积最大?19.如图,已知点O为坐标原点,∠AOB=30°,∠B=90°,且点A的坐标为(2,0).(1)求点B的坐标;(2)若二次函数y=ax2+bx+c的图象经过A,B,O三点,求此二次函数的解析式;(3)在(2)中的二次函数图象的OB段(不包括O,B点)上,是否存在一点C,使得四边形ABCO的面积最大?若存在,求出点C的坐标及四边形ABCO的最大面积;若不存在,请说明理由.20.如图,△ABC中,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的二次函数图象经过点B、D.(1)用m的代数式表示点A、D的坐标;(2)求这个二次函数关系式;(3)点Q(x,y)为二次函数图象上点P至点B之间的一点,连接PQ、BQ,当x为何值时,四边形ABQP的面积最大?21.用50米长木条,做如图等腰梯形ABCD框子,AD∥BC,AB=CD,∠B=∠C=60°设AB为x米,等腰梯形ABCD面积为y平方米.当x为多少时,才能使y最大?最大面积y是多少?(参考公式:二次函数y=ax2+bx+c,当x=﹣时,y最大(小)值=)二次函数动点之最大面积参考答案与试题解析一.选择题(共8小题)1.(2009•大田县校级自主招生)如图,二次函数y=ax2+bx的图象与一次函数y=x+2的图象交于A、B两点,点A的横坐标是﹣1,点B的横坐标是2.(1)求二次函数的表达式;(2)设点C在二次函数图象的OB段上,求四边形OABC面积的最大值.【解答】解:(1)把x=﹣1和2分别代入y=x+2,得到y的值分别是1、4,因而A、B的坐标分别是(﹣1,1),(2,4).根据题意得到:解得因而二次函数的解析式是y=x2.(2)过点A、B作AM⊥x轴,BN⊥x轴,分别交于M、N.过点C作CP⊥BN于P.设C的坐标是(x,y).梯形AMNB的面积=(AM+BN)•MN=(1+4)×3=;△AOM的面积=AM•OM=;△BCP的面积=CP•BP=(2﹣x)(4﹣y)=(2﹣x)(4﹣x2);四边形CPNO的面积是(CP+ON)•PN=[(2﹣x)+2]•y=(4﹣x)•x2.因而四边形OABC面积s=梯形AMNB的面积﹣△AOM的面积﹣△BCP的面积﹣四边形CPNO的面积=﹣x2+2x+3.当x=1时,函数s=﹣x2+2x+3有最大值是4.2.(2016•湘潭一模)如图,已知抛物线y=ax2+x+c经过A(4,0),B(1,0)两点,(1)求该抛物线的解析式;(2)在直线AC上方的该抛物线上是否存在一点D,使得△DCA的面积最大?若存在,求出点D的坐标及△DCA面积的最大值;若不存在,请说明理由.【解答】解:(1)把A(4,0),B(1,0)代入抛物线的解析式得:,解得:,则抛物线解析式为y=﹣x2+x﹣2;(2)存在,理由如下:设D的横坐标为t(0<t<4),则D点的纵坐标为﹣t2+t﹣2,过D作y轴的平行线交AC于E,连接CD,AD,如图所示,由题意可求得直线AC的解析式为y=x﹣2,∴E点的坐标为(t,t﹣2),∴DE=﹣t2+t﹣2﹣(t﹣2)=﹣t2+2t,∴△DAC的面积S=×(﹣t2+2t)×4=﹣t2+4t=﹣(t﹣2)2+4,=4,当t=2时,S最大∴此时D(2,1),△DAC面积的最大值为4.3.(2016•长春模拟)如图,在平面直角坐标系中,直线y=﹣x+3与x轴交于点A,与y轴交于点B.抛物线y=ax2+经过A、B两点,点E是直线AB上方抛物线上的一点.(1)求抛物线所对应的函数表达式.(2)求△ABE面积的最大值,并求出此时点E的坐标.(3)过点E作y轴的平行线交直线AB于点M,连结CM.点Q在抛物线对称轴上,点P在抛物线上.当以P、Q、C、M为顶点的四边形是平行四边形时,请直接写出点P的坐标.【解答】解:(1)当x=0时,y=3,即B点的坐标为(0,3),当y=0时,有﹣x+3=0,解得x=4,即A点坐标为(4,0).将A、B点坐标代入抛物线的解析式,得,解得,故抛物线所对应的函数表达式为y=﹣x+3.(2)过点E作EF⊥x轴于点F交直线AB与点M,如图1所示.∵点E是直线AB上方抛物线上的点,∴设点E的坐标为(m,﹣m+3),点M的坐标为(m,﹣m+3),∴EM=﹣m+3﹣(﹣m+3)=﹣m,∴S=S△BEM+S△AEM=ME•O A=×(﹣m)×4=﹣+3m=﹣(m﹣2)△ABE2+3,∴当m=2时,△ABE面积最大,且最大值为3,此时点E的坐标为(2,3).(3)抛物线的对称轴为x=﹣=1.设点P的坐标为(n,﹣n+3),Q点的坐标为(1,d).∵点E的坐标为(2,3),∴直线EM的解析式为x=2,∴点M的坐标为(2,).∵令y=0,则有﹣x+3=0,解得x=﹣2,或x=4,∴点C的坐标为(﹣2,0),当以P、Q、C、M为顶点的四边形是平行四边形时,分两种情况:①如图2所示,线段CM为对角线,且CM的中点为点N.∵点C(﹣2,0),点M(2,),∴点N的坐标为(0,).又∵点N为线段PQ的中点,∴有=0,解得n=﹣1,此时P点的坐标为(﹣1,);②线段CM为一条边时,PQ的横坐标之差等于CM的横坐标之差,即|1﹣n|=|2﹣(﹣2)|,解得:n=﹣3或n=5,此时点P的坐标为(﹣3,﹣)或(5,﹣).综上可知:点P的坐标为(﹣3,﹣),(5,﹣)和(﹣1,).4.(2016•孝义市二模)综合与探究:如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是x=﹣,且经过A,C两点,与x轴的另一个交点为点B,正比例函数y=kx在第二象限与抛物线交于点P,与直线y=x+2交于点D.(1)求抛物线的解析式;(2)求△PAC面积的最大值,并求出此时点P的坐标;(3)是否存在正比例函数y=kx,将△ABC的面积分为2:3的两部分?【解答】解:(1)∵对于直线y=x+2,当x=0时,y=2;当y=0时,x=﹣4.∴点C(0,2),A(﹣4,0).∴由抛物线的对称性可知,点A与点B关于x=﹣对称,∴点B的坐标为B(1,0).设抛物线的解析式为y=ax2+bx+c,可得,解得:.∴抛物线的解析式是y=﹣x2﹣x+2;(2)设P(m,﹣m2﹣m+2),如图1,过点P作PQ⊥x轴交AC于点Q.∴Q(m,m+2),∴PQ=﹣m2﹣m+2﹣(m+2)=﹣m2﹣2m,=×PQ×OA=×PQ×4=2PQ,∵S△APC∴S=2(﹣m 2﹣2m )=﹣m 2﹣4m=﹣(m +2)2+4;∴当m=﹣2时,△PAC 的面积有最大值4.此时P 点坐标为(﹣2,3).(3)存在正比例函数y=kx ,将△ABC 的面积分为2:3的两部分.则S △ABC =×AB ×OC=×5×2=5,分两种情况:①如图2,过点D 作DM 1⊥AD ,垂足为M 1,当S △ADO :S 四边形ODCB =2:3时,S △ADO =×5=2, ∴×OA ×DM 1=2,即×4×DM 1=2,∴DM 1=1.把y=1代入y=x +2,得x=﹣2,∴点D 坐标为(﹣2,1).把x=﹣2,y=1,代入正比例函数y=kx 中,解得:k=﹣;②如图3,过点D 作DM 2⊥AD ,垂足为M 2,当S △ADO :S 四边形ODCB =3:2时,S △ADO =×5=3, ∴×OA ×DM 2=3,即×4×DM 2=3,∴DM 2=.把y=代入y=x +2,得x=﹣1,∴点D 坐标为(﹣1,).把x=﹣1,y=,代入正比例函数y=kx 中,解得:k=﹣.综上可得:k 的值为﹣或﹣.5.(2016•苏州一模)如图,二次函数y=ax2+x+c(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,己知点A(﹣1,0),点C(0,2)(1)求抛物线的函数解析式;(2)若点D是抛物线在第一象限的部分上的一动点,当四边形OCDB的面积最大时,求点D的坐标;(3)若点E为抛物线上任意一点,点F为x轴上任意一点,当以B,C,E,F为顶点的四边形是平行四边形时,写出满足条件的所有点E的坐标.【解答】解:(1)∵A(﹣1,0),C(0,2)在二次函数y=ax2+x+c的图象上,∴,解得,∴抛物线的函数解析式为y=﹣x2+x+2;(2)连接BC,过点D作DH⊥x轴于点H,交BC于G,如图所示,令y=0,得﹣x2+x+2=0,解得x1=﹣1,x2=4,∴B(4,0),OB=4,=OB•OC=×4×2=4.∴S△BOC设直线BC的解析式为y=mx+n,则有,解得,∴直线BC的解析式为y=﹣x+2.设点D的横坐标为p,则y D=﹣p2+p+2,y G=﹣p+2,∴DG=(﹣p2+p+2)﹣(﹣p+2)=﹣p2+2p=﹣(p﹣2)2+2,=S△CDG+S△BDG∴S△CDB=DG•OH+DG•BH=DG•OB=×4DG=2DG=﹣(p﹣2)2+4.=S△BOC+S△CDB=﹣(p﹣2)2+8∴S四边形OCDB∵﹣1<0,取最大值,∴当p=2时,S四边形OCDB此时y D=﹣×22+×2+2=3,∴点D的坐标为(2,3);(3)①若BC为平行四边形的一边,则C、E到BF的距离相等,∴|y E|=|y C|=2,∴y E=±2.当y E=2时,解方程﹣x2+x+2=2得,x1=0,x2=3,∴点E的坐标为(3,2);当y E=﹣2时,解方程﹣x2+x+2=﹣2得,x1=,x2=,∴点E的坐标为(,﹣2)或(,﹣2);②若BC为平行四边形的一条对角线,则CE∥BF,∴y E=y C=2,∴点E的坐标为(3,2).综上所述:满足条件的点E的坐标为(3,2)、(,﹣2)、(,﹣2).6.(2016•富顺县校级二模)如图,在平面直角坐标系中,直线AB和抛物线交于点A(﹣4,0),B(0,4),且点B是抛物线的顶点.(1)求直线AB和抛物线的解析式.(2)点P是直线上方抛物线上的一点,求当△PAB面积最大时点P的坐标.(3)M是直线AB上一动点,在平面直角坐标系内是否存在点N,使以O、B、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.【解答】解:(1)设直线的解析式为y=kx+b.∵将A(﹣4,0),B(0,4)代入得:,解得k=1,b=4,∴直线AB的解析式为y=x+4.设抛物线的解析式为y=ax2+4.∵将A(﹣4,0)代入得:16a+4=0,解得a=﹣,∴抛物线的解析式为y=﹣x2+4.(2)如图1所示,过点P作PQ⊥x轴,交AB于点Q.设点P的坐标为(a,﹣+4),则点Q的坐标为(a,a+4).则PQ=﹣+4﹣(a+4)=﹣﹣a.的面积=PQ•(x B﹣x A)=×4×(﹣﹣a)=﹣a2﹣2a=﹣(a+2)∵S△ABP2+2,∴当a=﹣2时△ABP的面积最大,此时P(﹣2,3).(3)如图2所示:延长MN交x轴与点C.∵MN∥OB,OB⊥OC,∴MN⊥OC.∵OA=OB,∠AOB=90°,∴∠BA0=45°.∵ON∥AB,∴∠NOC=45°.∴OC=ON×=4×=2,NC=ON×=4×=2.∴点N的坐标为(2,2).如图3所示:过点N作NC⊥y轴,垂足为C.∵OA=OB,∠AOB=90°,∴∠OBA=45°.∵ON∥AB,∴∠NOC=45°.∴OC=ON×=4×=2,NC=ON×=4×=2.∴点N的坐标为(﹣2,﹣2).如图4所示:连接MN交y轴与点C.∵四边形BNOM为菱形,OB=4,∴BC=OC=2,MC=CN,MN⊥OB.∴点的纵坐标为2.∵将y=2代入y=x+4得:x+4=2,解得:x=﹣2,∴点M的坐标为(﹣2,2).∴点N的坐标为(2,2).如图5所示:∵四边形OBNM为菱形,∴∠NBM=∠ABO=45°.∴四边形OBNM为正方形.∴点N的坐标为(﹣4,4).综上所述点N的坐标为或或(﹣4,4)或(2,2).7.(2016•泰安)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.(1)求二次函数y=ax2+bx+c的表达式;(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P 在AC上方),作PD平行与y轴交AB于点D,问当点P在何位置时,四边形APCD 的面积最大?并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.【解答】解:(1)设抛物线解析式为y=a(x﹣2)2+9,∵抛物线与y轴交于点A(0,5),∴4a+9=5,∴a=﹣1,y=﹣(x﹣2)2+9=﹣x2+4x+5,(2)当y=0时,﹣x2+4x+5=0,∴x1=﹣1,x2=5,∴E(﹣1,0),B(5,0),设直线AB的解析式为y=mx+n,∵A(0,5),B(5,0),∴m=﹣1,n=5,∴直线AB的解析式为y=﹣x+5;设P(x,﹣x2+4x+5),∴D(x,﹣x+5),∴PD=﹣x2+4x+5+x﹣5=﹣x2+5x,∵AC=4,∴S=×AC×PD=2(﹣x2+5x)=﹣2x2+10x,四边形APCD∴当x=﹣=时,=,∴即:点P(,)时,S四边形APCD最大(3)如图,过M作MH垂直于对称轴,垂足为H,∵MN∥AE,MN=AE,∴△HMN≌△AOE,∴HM=OE=1,∴M点的横坐标为x=3或x=1,当x=1时,M点纵坐标为8,当x=3时,M点纵坐标为8,∴M点的坐标为M1(1,8)或M2(3,8),∵A(0,5),E(﹣1,0),∴直线AE解析式为y=5x+5,∵MN∥AE,∴MN的解析式为y=5x+b,∵点N在抛物线对称轴x=2上,∴N(2,10+b),∵AE2=OA2+0E2=26∵MN=AE∴MN2=AE2,∴MN2=(2﹣1)2+[8﹣(10+b)]2=1+(b+2)2∵M点的坐标为M1(1,8)或M2(3,8),∴点M1,M2关于抛物线对称轴x=2对称,∵点N在抛物线对称轴上,∴M1N=M2N,∴1+(b+2)2=26,∴b=3,或b=﹣7,∴10+b=13或10+b=3∴当M点的坐标为(1,8)时,N点坐标为(2,13),当M点的坐标为(3,8)时,N点坐标为(2,3),8.(2016•阜新)如图,已知二次函数y=﹣x2+bx+c的图象交x轴于点A(﹣4,0)和点B,交y轴于点C(0,4).(1)求这个二次函数的表达式;(2)若点P在第二象限内的抛物线上,求四边形AOCP面积的最大值和此时点P 的坐标;(3)在平面直角坐标系内,是否存在点Q,使A,B,C,Q四点构成平行四边形?若存在,直接写出点Q的坐标;若不存在,说明理由.【解答】解:(1)∵二次函数y=﹣x2+bx+c的图象交x轴于点A(﹣4,0)和点B,交y轴于点C(0,4).∴,∴,∴二次函数的表达式为y=﹣x2﹣3x+4,(2)如图1,由(1)有,二次函数的表达式为y=﹣x2﹣3x+4,令y=0,得x=﹣4,或x=1,∴B(1,0)连接AC,PA,PC,∴点P是直线AC平移之后和抛物线只有一个交点时,点P到直线AC的距离最大,所以S△PAC 最大,即:S四边形AOCP最大;∵A(﹣4,0),C(0,4),∴直线AC解析式为y=x+4,设直线AC平移后的直线解析式为y=x+4+b,∴,∴x2+4x+b=0,∴△=16﹣4b=0,∴b=4,∴点P(﹣2,6),过点P作PD⊥y轴∴PD=2,OD=4,∵A(﹣4,0),C(0,4)∴OA=4,OC=4,∴CD=2,=S梯形AODP﹣S△PCD=(PD+OA)×OD﹣PD×CD=(2+4)×6﹣×2∴S四边形AOCP×2=16.(3)存在点Q,使A,B,C,Q四点构成平行四边形,理由:①以AB为边时,CQ∥AB,CQ=AB过点C,平行于AB的直线l,∵C(0,4),∴直线l解析式为y=4,∴点Q在直线l上,设Q(d,4),∴CQ=|d|∵A(﹣4,0),B(1,0),∴AB=5,∴|d|=5,∴d=±5,∴Q(﹣5,4)或(5,4),②以AB为对角线时,CQ必过线段AB中点,且被AB平分,即:AB的中点也是CQ的中点,∵A(﹣4,0),B(1,0),∴线段AB中点坐标为(﹣,0),∵C(0,4),∴直线CQ解析式为y=x+4,设点Q(m,m+4),∴=,∴m=0(舍)或m=﹣3,∴Q(﹣3,﹣4),即:满足条件的点Q的坐标为Q(﹣5,4)或(5,4)或(﹣3,﹣4).二.选择题(共11小题)9.(2013秋•房山区期末)如图,已知二次函数y=x2﹣4x+3的图象交x轴于A,B两点(点A在点B的左侧),交y轴于点C.(1)求直线BC的解析式;(2)点D是在直线BC下方的抛物线上的一个动点,当△BCD的面积最大时,求D点坐标.【解答】解:(1)设直线BC的解析式为:y=kx+b(k≠0).令x2﹣4x+3=0,解得:x1=1,x2=3,则A(1,0),B(3,0),C(0,3),将B(3,0),C(0,3),代入y=kx+b(k≠0),得,解得:k=﹣1,b=3,BC所在直线为:y=﹣x+3;(2)设过D点的直线与直线BC平行,且抛物线只有一个交点时,△BCD的面积最大.∵直线BC为y=﹣x+3,∴设过D点的直线为y=﹣x+b,∴,∴x2﹣3x+3﹣b=0,∴△=9﹣4(3﹣b)=0,解得b=,∴,解得,,则点D的坐标为:(,﹣).10.二次函数y=﹣x2+x+4的图象与x轴的交点从右向左为A,B两点,与y轴的交点为C,顶点D.(1)求四边形ABCD的面积;(2)在第一象限内的抛物线上求一点D′,使四边形ABCD′的面积最大.【解答】解:(1)如图所示:连接OD,∵二次函数y=﹣x2+x+4,当y=0时,﹣x2+x+4=0,解得:x=4,或x=﹣2,∴A(4,0),B(﹣2,0);当x=0时,y=4,∴C(0,4),∵二次函数y=﹣x2+x+4=﹣(x﹣1)2+,∴D(1,),∴四边形ABCD的面积=△BOC的面积+△OCD的面积+△OAD的面积=×2×4+×4×1+×4×=15;(2)如图2所示:设D′(x,﹣x2+x+4),四边形ABCD′的面积为S,则四边形ABCD′的面积S=△BOC的面积+△OCD′的面积+△OAD′的面积=×2×4+×4×x+×4×(﹣x2+x+4)=﹣x2+4x+12=﹣(x﹣2)2+16,∵﹣1<0,∴S有最大值,当x=2时,S最大,当x=2时,﹣x2+x+4=4,∴D′坐标为(2,4).11.二次函数y=ax2+x+c(a≠0)的图象交x轴于A,B两点,与y轴交于点C,已知A(﹣1,0),点C(0,2).(1)求抛物线的解析式,并求出该抛物线的顶点坐标;(2)若点D是抛物线在第一象限的部分上的一动点,当四边形OCDB的面积最大时,求点D的坐标.【解答】解:(1)把A(﹣1,0),点C(0,2)分别代入y=ax2+x+c,得,解得,则该函数解析式为:y=﹣x2+x+2.因为y=﹣x2+x+2=﹣(x﹣)2+.所以该抛物线的顶点坐标是(,);(2)存在.设点D如图所示,过点D作DE⊥OC于点E,∵A(﹣1,0),对称轴是x=,∴B(4,0).设点D的坐标为(a,﹣a2+a+2),则E点坐标为(0,﹣a2+a+2)∴EC=﹣a2+a+2﹣2=﹣a2+a,DE=aS四边形OCDB=S梯形OEDB﹣S△EDC=(a+4)(﹣a2+a+2)﹣a(﹣a2+a)即S=﹣a2+4a+4=﹣(a﹣2)2+8,当a=2时,S=8,最大当a=2时,﹣×4+×2+2=3,∴此时点D的坐标是(2,3).12.(2015•合肥校级自主招生)已知关于x的方程:有一个增根为b,另一根为c.二次函数y=ax2+bx+c+7与x轴交于P和Q两点.在此二次函数的图象上求一点M,使得△PQM面积最大.【解答】解:由题意可得b=2,a=﹣4代入方程得c=﹣5.∴二次函数为y=﹣4x2+2x+2与x轴的交点为P(﹣,0),Q(1,0),当点M的横坐标为x=﹣或x=或x=时,△PQM的面积可能取最大,经比较可得x=﹣时,△PQM的面积取最大,此时y=﹣10即点M(﹣,﹣10),.13.已知二次函数的图象与坐标轴交于A(0,3)、B(﹣3,0)、c(1,0).若点P是二次函数的图象上位于第二象限的点,过P作与y轴平行的直线与直线AB相交于点Q,则P点在何位置时,以线段BP、PO、OQ、QB围成的凹四边形的面积最大,并求最大值.【解答】解:设抛物线解析式为y=a(x+3)(x﹣1),把A(0,3)代入得a•3•(﹣1)=3,解得a=﹣1,所以抛物线的解析式为y=﹣(x+3)(x﹣1),即y=﹣x2﹣2x+3,设直线AB的解析式为y=kx+m,把A(0,3),B(﹣3,0)代入得,解得,所以直线AB的解析式为y=x+3,设P(t,﹣t2﹣2t+3),则Q(t,t+3),所以PQ=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t,以线段BP、PO、OQ、QB围成的凹四边形的面积S=S△PBQ +S△PCQ=•(﹣t2﹣3t)•3=﹣t2﹣t,当t=﹣=﹣,S有最大值,最大值==,此时P点坐标为(﹣,).即P点坐标为(﹣,)时,以线段BP、PO、OQ、QB围成的凹四边形的面积最大,最大值为.14.(2005•资阳)如图,已知O为坐标原点,∠AOB=30°,∠ABO=90°,且点A 的坐标为(2,0).(1)求点B的坐标;(2)若二次函数y=ax2+bx+c的图象经过A、B、O三点,求此二次函数的解析式;(3)在(2)中的二次函数图象的OB段(不包括点O、B)上,是否存在一点C,使得四边形ABCO的面积最大?若存在,求出这个最大值及此时点C的坐标;若不存在,请说明理由.【解答】解:(1)在Rt△OAB中,∵∠AOB=30°,∴OB=,过点B作BD垂直于x轴,垂足为D,则OD=,BD=,∴点B的坐标为().(1分)(2)将A(2,0)、B()、O(0,0)三点的坐标代入y=ax2+bx+c,得(2分)解方程组,有a=,b=,c=0.(3分)∴所求二次函数解析式是y=x2+x.(4分)(3)设存在点C(x,x2+x)(其中0<x<),使四边形ABCO面积最大∵△OAB面积为定值,∴只要△OBC面积最大,四边形ABCO面积就最大.(5分)过点C作x轴的垂线CE,垂足为E,交OB于点F,=S△OCF+S△BCF=|CF|•|OE|+|CF|•|ED|=|CF|•|OD|=|CF|,(6分)则S△OBC而|CF|=y C﹣y F=x2+x﹣x=﹣x2+x,=x2+x.(7分)∴S△OBC∴当x=时,△OBC面积最大,最大面积为.(8分)此时,点C坐标为(),四边形ABCO的面积为.(9分)15.(2015春•青海校级期中)如图,在平面直角坐标系xOy中,二次函数y=x2﹣3x的图象与x轴相交于O、A两点.(1)求A点和顶点C的坐标;(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;(3)对于(2)中的点B,在直线OB下方的抛物线上是否存在点P,使得△POB 的面积最大?若存在,求出△POB的最大面积;若不存在,请说明理由.【解答】解:(1)当y=0,则0=x2﹣3x,故x(x﹣3)=0,解得:x1=0,x2=3,故A(3,0),y=x2﹣3x=(x﹣)2﹣,故C(,﹣);(2)设B(x,x2﹣3x),因为△AOB的面积等于6,所以•3•|x2﹣3x|=6,当x2﹣3x=4时,解得x1=﹣1,x2=4,则B点坐标为(4,4);当x2﹣3x=﹣4时,方程无实数解.所以点B的坐标为(4,4);(3)∵在直线OB下方的抛物线上是否存在点P,使得△POB的面积最大,∴此时P到OB的距离最大,即PO⊥OB时,∵B(4,4),∴直线OB的解析式为:y=x,∴OP的解析为:y=﹣x,则设P点坐标为:(x,﹣x),∵P点在抛物线上,∴y=x2﹣3x=﹣x,解得:x1=0(不合题意舍去),x2=2,故P(2,﹣2),∴OP=2,∴△POB的面积最大为:×OB×2=×4×2=8.16.(2012秋•文昌校级期末)如图,抛物线经过A(4,0),B(1,0),C(0,﹣2)三点.(1)求抛物线对应的二次函数关系式;(2)在直线AC上方抛物线上有一动点D,求使△DCA面积最大的点D的坐标;(3)x轴上是否存在P点,使得以A、P、C为顶点的三角形是等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【解答】解:(1)∵该抛物线过点C(0,﹣2),∴可设该抛物线的解析式为y=ax2+bx﹣2.将A(4,0),B(1,0)代入,得,解得,,故该二次函数的解析式为:y=﹣x2+x﹣2.(2)如图,设D点的横坐标为t(0<t<4),则D点的纵坐标为﹣t2+t﹣2.由题意可求得直线AC的解析式为y=x﹣2.∴E点的坐标为(t,t﹣2).∴DE=﹣t2+t﹣2﹣(t﹣2)=﹣t2+2t.∴S=×(﹣t2+2t)×4=﹣t2+4t=﹣(t﹣2)2+4.△DAC∴当t=2时,△DAC面积最大.∴D(2,1).(3)假设存在这样的点P.∵A(4,0),C(0,﹣2),∴AC=2.设P(x,0).①当AC=PC时,=2,解得,x=4(不合题意,舍去)或x=﹣4,即P1(﹣4,0);②当AP=AC时,|x﹣4|=2,解得,x=4+2或x=4﹣2,即P2(4﹣2,0)、P3(4+2,0);③当AP=PC时,|x﹣4|=,解得,x=,即P4(,0).综上所述,符合条件的点P的坐标分别是:P1(﹣4,0)、P2(4﹣2,0)、P3(4+2,0)、P4(,0).17.(2010秋•吴兴区期末)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的解析式;(2)当点P运动到什么位置时,四边形ABPC的面积最大,并求出此时P点的坐标和四边形ABPC的最大面积.【解答】解:(1)∵点B(3,0),C(0,﹣3)在二次函数y=x2+bx+c的图象上,∴将B、C两点的坐标代入得,解得:∴二次函数的表达式为:y=x2﹣2x﹣3;(2)过点P作y轴的平行线与BC交于点Q,与OB交于点E,设P(x,x2﹣2x﹣3),设直线BC的解析式为y=kx+b(k≠0),∵B(3,0),C(0,﹣3),∴,解得,∴直线BC的解析式为y=x﹣3.∴Q点的坐标为(x,x﹣3),=S△ABC+S△BPQ+S△CPQ∴S四边形ABPC=AB•OC+QP•OE+QP•EB=×4×3+(3x﹣x2)×3=﹣(x﹣)2+,∴当x=时,四边形ABPC的面积最大.此时P点的坐标为(,﹣),四边形ABPC的面积.18.(2012春•上城区校级月考)如图,△ABC中,∠ACB=90°,AC=BC,点A、C 在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的二次函数图象经过点B、D.(1)用m的代数式表示点A、D的坐标;(2)求这个二次函数关系式;(3)点Q(x,y)为二次函数图象上点P至点B之间的一点,连接PQ、BQ,当x为何值时,四边形ABQP的面积最大?【解答】解:(1)由B(3,m)可知OC=3,BC=m,又∵△ABC为等腰直角三角形,∴AC=BC=m,OA=m﹣3,∴点A的坐标是(3﹣m,0),∵∠ODA=∠OAD=45°,∴OD=OA=m﹣3,则点D的坐标是(0,m﹣3);(2)又抛物线顶点为P(1,0),且过点B、D,所以可设抛物线的解析式为:y=a(x﹣1)2,将D,B坐标代入:a(3﹣1)2=m,a(0﹣1)2=m﹣3,得:a=1,m=4,∴抛物线的解析式为y=x2﹣2x+1,B坐标(3,4),A(﹣1,0);(3)如图,过点Q作QM⊥AC于点M,设点Q的坐标是(x,x2﹣2x+1),则PM=(x﹣1),QM=x2﹣2x+1,MC=(3﹣x),=S△ABC﹣S△PQM﹣S梯形BCMQ,∴S四边形ABQP=×4×4﹣•(x﹣1)•(x2﹣2x+1)﹣•(3﹣x)•(x2﹣2x+1+4)=﹣x2+4x+1=﹣(x﹣2)2+5,所以当x=2时,四边形ABQP的面积最大为5.19.(2007•陆丰市校级模拟)如图,已知点O为坐标原点,∠AOB=30°,∠B=90°,且点A的坐标为(2,0).(1)求点B的坐标;(2)若二次函数y=ax2+bx+c的图象经过A,B,O三点,求此二次函数的解析式;(3)在(2)中的二次函数图象的OB段(不包括O,B点)上,是否存在一点C,使得四边形ABCO的面积最大?若存在,求出点C的坐标及四边形ABCO的最大面积;若不存在,请说明理由.【解答】解:(1)在Rt△OAB中,∵∠AOB=30°,∴OB=,过点B作BD垂直于x轴,垂足为D,则OD=cos30°=,BD=BO=,∴点B的坐标为(,);(2)将A(2,0)、B(,)、O(0,0)三点的坐标代入y=ax2+bx+c,得:,解方程组,,∴所求二次函数解析式是y=﹣x2+x;(3)设存在点C(x,﹣x2+x)(其中0<x<),使四边形ABCO面积最大,而△OAB面积为定值,只要△OBC面积最大,四边形ABCO面积就最大.过点C作x轴的垂线CE,垂足为E,交OB于点F,=S△OCF+S△BCF=|CF|•|OE|+|CF|•|ED|=|CF|•|OD|=|CF|,则S△OBC而|CF|=y C﹣y F=﹣x2+x﹣x=﹣x2+x,=﹣x2+x,∴S△OBC∴当x=时,△OBC面积最大,最大面积为.此时C点坐标为(,),故四边形ABCO的最大面积为:.三.解答题(共2小题)20.(2012春•上城区校级月考)如图,△ABC中,∠ACB=90°,AC=BC,点A、C 在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的二次函数图象经过点B、D.(1)用m的代数式表示点A、D的坐标;(2)求这个二次函数关系式;(3)点Q(x,y)为二次函数图象上点P至点B之间的一点,连接PQ、BQ,当x为何值时,四边形ABQP的面积最大?【解答】解:(1)由B(3,m)可知OC=3,BC=m,又∵△ABC为等腰直角三角形,∴AC=BC=m,OA=m﹣3,∴点A的坐标是(3﹣m,0),∵∠ODA=∠OAD=45°,∴OD=OA=m﹣3,则点D的坐标是(0,m﹣3);(2)又抛物线顶点为P(1,0),且过点B、D,所以可设抛物线的解析式为:y=a(x﹣1)2,将D,B坐标代入:a(3﹣1)2=m,a(0﹣1)2=m﹣3,得:a=1,m=4,∴抛物线的解析式为y=x2﹣2x+1,B坐标(3,4),A(﹣1,0);(3)如图,过点Q作QM⊥AC于点M,设点Q的坐标是(x,x2﹣2x+1),则PM=(x﹣1),QM=x2﹣2x+1,MC=(3﹣x),=S△ABC﹣S△PQM﹣S梯形BCMQ,∴S四边形ABQP=×4×4﹣•(x﹣1)•(x2﹣2x+1)﹣•(3﹣x)•(x2﹣2x+1+4)=﹣x2+4x+1=﹣(x﹣2)2+5,所以当x=2时,四边形ABQP的面积最大为5.21.(2009秋•哈尔滨校级期中)用50米长木条,做如图等腰梯形ABCD框子,AD∥BC,AB=CD,∠B=∠C=60°设AB为x米,等腰梯形ABCD面积为y平方米.当x为多少时,才能使y最大?最大面积y是多少?(参考公式:二次函数y=ax2+bx+c,当x=﹣时,y最大(小)值=)【解答】解:过A作AF∥CD交BC于F,AE⊥BC于E,∵AD∥BC,AF∥CD,∴四边形ADCF是平行四边形,∴AD=CF,∠AFB=∠C=∠B=60°,∴AB=AF,∴三角形ABF是等边三角形,∴AB=BF=AF=x,∵AE⊥BC,∴∠BAE=30°,∴BE=AB=x,由勾股定理得:AE=x,∵AD+DC+BC+AB=50,∴x+x+x+2AD=50,∴AD=,BC=+x=,梯形ABCD的面积y=(AD+BC)×AE=×(+)×x,即y=﹣x2+x,∵a=﹣<0,∴y有最大值,当x=﹣=时,y的最大值是:y==,答:当x为时,才能使y最大,最大面积y是.。
二次函数的最值问题面积

二次函数的最值问题面积全文共四篇示例,供读者参考第一篇示例:二次函数是高中数学中非常重要的一个概念,它的图像是一个拱形或者倒置的碗形,最常见的表达式为f(x) = ax^2 + bx + c。
在二次函数中,最值问题是许多学生觉得比较困难的一个问题,今天我们就来一起讨论一下关于二次函数的最值问题和与之相关的面积计算。
让我们来回顾一下二次函数的最值问题。
当我们在解题的时候,通常会遇到两种情况,一种是求二次函数的最大值,另一种是求二次函数的最小值。
对于f(x) = ax^2 + bx + c这个二次函数来说,最值问题就是求出这个函数的最大值或最小值。
而最值点一般都在抛物线的顶点处,也就是拱形或者碗形的中心点。
接下来,让我们来看一下如何求解二次函数的最值问题。
我们需要知道二次函数的顶点公式:x = -b/2a。
通过这个公式,我们可以求出二次函数的顶点坐标,进而得到最值点。
如果a大于0,则顶点是一个最小值点,如果a小于0,则顶点是一个最大值点。
通过这个简单的方法,我们就可以得到二次函数的最值点。
现在,让我们来讨论一下关于二次函数最值问题和面积的联系。
在解决二次函数的最值问题的过程中,有时候我们会遇到需要求解二次函数所围成的区域的面积的问题。
这个时候,我们需要利用计算积分的方法来求解。
通常情况下,我们可以通过二次函数与x轴所围成的图形的面积就是二次函数的定积分,即∫[a,b]f(x)dx。
通过这个公式,我们可以方便地计算出二次函数与x轴所围成的图形的面积。
二次函数的最值问题和面积计算是高中数学中非常重要的一个知识点,它不仅需要我们掌握二次函数的最值问题的解法,还需要我们了解如何通过计算面积来更深入地理解二次函数。
希望通过今天的讨论,大家对于二次函数的最值问题和面积计算有了更深入的认识。
希望大家在学习数学的过程中能够多加练习,提高自己的解题能力,做好数学知识的应用。
【字数不足,还需要再添加一些内容】第二篇示例:二次函数是高中数学中的重要内容之一,许多学生在学习过程中会遇到与二次函数有关的最值问题。
初中二次函数最大面积

初中二次函数最大面积
要求寻找初中二次函数的最大面积,我们需要先明确问题。
通常情况下,二次函数的标准形式为:y = ax^2 + bx + c,其中a、b和c分别是常数。
如果我们要寻找二次函数的最大面积,可以考虑将二次函数表示为一个抛物线,并且要求该抛物线与x轴交于两个不同的点。
在这种情况下,最大面积可以通过确定两个交点之间的距离,然后乘以抛物线上对应点的高度来计算。
设抛物线与x轴交于两个点(x1, 0)和(x2, 0),则抛物线上对应的高度可以由函数值y = ax^2 + bx + c得到。
因此,最大面积可以表示为:
最大面积= (x2 - x1) * max(y1, y2)
其中,y1和y2分别是抛物线上对应于x1和x2的函数值。
要找到最大面积,我们可以通过以下步骤进行求解:
1. 首先,确定抛物线与x轴的交点。
这可以通过将二次函数设置为零来解方程ax^2 + bx + c = 0。
根据二次方程的求根公式,我们可以找到两个交点的x坐标。
2. 然后,计算这两个交点对应的函数值y1和y2。
3. 最后,计算最大面积,即(x2 - x1) * max(y1, y2)。
需要注意的是,在特定的题目中,可能会有一些限制条件或额外的约束条件。
因此,在具体问题中,我们需要根据给定的信息进行相应的调整和计算。
希望以上解答能够帮助到您!如果您有任何其他问题,请随时提问。
1。
3.11二次函数的应用 最大面积1

二次函数的应用(最大面积1)学习目标:能够运用二次函数的知识解决最大面积问题,进一步感受数学模型思想和数学的应用价值。
交流预习:如图在Rt △ABC 中,AC=4, BC=3, DE ∥AB,分别与AC 、BC 相交于D 、E, CH ⊥AB 于点H,交DE 于点F 、G 为AB 上任意一点,设CF=x ,△DEG 的面积为y ,限定DE 在△ABC 的内部平行移动.⑴求x 的取值范围.⑵求函数y 与自变量x 的函数关系式.⑶当DE 取何值时,△DEG 的面积最大?求出最大值.典型例题 如图,在Rt △ABC 的内部做一个内接矩形DEFG ,AC=30m ,AB=40m ,设矩形DEFG 的面积为y ㎡,当EF 取何值时,y 的值最大?最大值为多少?巩固练习:1. 如图:在△ABC 中,BC=4,AB=3 2,∠B=45°,M 、N 分别为AB ,AC 边上的点,且MN ∥ BC ,设MN 为x ,△MNC 的面积为y 。
(1)试求y 与x 之间的函数关系式,并写出x 的取值范;(2)试问MN 处在什么位置时,△MNC 的面积最大?并求出最大值;(3)当△MNC 的面积为98时,试问MN 的值。
2、要在底边BC=160, 高AD=120的△ABC铁皮余料上截取一个矩形EFGH, 使点H 在AB上,点G在AC上,点E、F在BC上,设矩形EFGH的长HG=x,宽HE=y,(1)试确定y与x之间的函数表达式.(2)当x为何值时,矩形EFGH的面积S最大?拓展延伸、如图在矩形ABCD中,AB=12cm,BC=6cm,点P沿BA从点B开始向点A以2cm/秒的速度移动;点Q沿CB边从点C开始向点B以1cm/秒的速度移动,如果P、Q同时出发,用t秒表示移动时间(0≤t≤6)那么(1)当t=2秒时,请你猜想下△QPB是个什么特殊三角形,并证明你的结论;(2)求:四边形PBQD的面积s与时间t的关系式。
二次函数最大面积问题

F
P( xp , yp )
yp
xp
H
C、O、B为定点
H
P(xp, yp) C、A、B为定点
化归为梯形和三角形的面积之和
火线绿版B32-例1 如图,抛物线 y 2x2 2x 4 经过B(2,0),C(0,4)两点,P为第一象
限内抛物线上一点.设四边形COBP的面积为S,求S最大值。
S四边形PCOB SPCH S梯形PBOH
Smax 2 (1)2 4 1 4 6
(0,4)
xp (m)
(Pm ,2m 2 2m 4)
yp(2m 2 2m 4)
(2,0)
一、不规则四边形最大面积问题
2、过动点作x轴(y轴)垂线化归为梯形和三角形的面积之和 S四边形PCOB S梯形PCOH SPHB
h1
yP yD
D
h2
E
S 水平距离(OB) 垂直距离(PD) SPCB SPCD SPBD
12 △PSCBP=CB
1 2
PD h1
1 2
PD h2
1 2
P×D(h1
h2 )
1 2
PD OB
抛物线中不规则三角形最大面积问题(方法3)
如图,抛物线 y x2 2x 3 与x轴交于A,B两点,与y轴交于点C(0,-3),
SBCE S S HCE HBE
SBCE
1 2
3 (m2
1 OB EH
2 3m)
3
m2
2
9 2
m
当m
b 2a
二次函数的应用-——最大面积问题教学设计

二次函数的应用-——最大面积问题教学设计《二次函数的应用——面积最大问题》教学设计二次函数的应用——面积最大问题。
所用教材是山东教育出版社材九年级上册第三章第六节二次函数的应用,本节共需四课时,面积最大是第一节。
下面我将从教材内容的分析、教学目标、重点、难点的确定、教学方法的选择、教学过程的设计和教学效果预测几方面对本节课进行说明。
一、教学内容的分析1、地位与作用:二次函数的应用本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查。
新课标中要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图象的性质解决简单的实际问题,而最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生比较感兴趣,对于面积问题学生易于理解和接受,故而在这儿作专题讲座,为求解最大利润等问题奠定基础。
目的在于让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和函数有关的应用问题。
此部分内容是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础。
2、课时安排教材中二次函数的应用只设计了3个例题和一部分习题,无论是例题还是习题都没有归类,不利于学生系统地掌握解决问题的方法,我设计时把它分为面积最大、利润最大、运动中的二次函数、综合应用四课时,本节是第一课时。
3.学情及学法分析学生由简单的二次函数y=x2学习开始,然后是y=ax2,y=ax2+c,最后是y=a(x-h)2,y =a(x-h)2+k,y=ax2+bx+c,学生已经掌握了二次函数的三种表示方式和图像的性质。
对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,本节课正是为了弥补这一不足而设计的,目的是进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。
二次函数面积最值问题

如何求解二次函数中的面积最值问题二次函数中求面积最值问题常用方法:1.补形、割形法2.“铅垂高,水平宽”面积法3.切线法4.三角函数法如图1,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC 的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;(3)如图2,在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.解答(1)抛物线解析式为y=-x2-2x+3;(2)Q(-1,2);下面着重探讨求第(3)小题中面积最大值的几种方法.一、补形、割形法几何图形中常见的处理方式有分割、补形等,通过对图形的这些直观处理,一般能辅助解题,使解题过程简捷、明快.此类方法的要点在于把所求图形的面积进行适当的补或割,变成有利于表示面积的图形.方法一如图3,设P点(x,-x2-2x+3)(-3<x<0).方法二如图4,设P点(x,-x2-2x+3)(-3<x<0).(下略.)二、“铅垂高,水平宽”面积法如图5,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”,我们可得出一种计算三角形面积的另一种方法:S△ABC=ah,即三角形面积等于水平宽与铅垂高乘积的一半.根据上述方法,本题解答如下:解如图6,作PE⊥x轴于点E,交BC于点F.设P点(x,-x2-2x+3)(-3<x<0).∴点P坐标为(-,)三、切线法若要使△PBC的面积最大,只需使BC上的高最大.过点P作BC的平行线l,当直线l与抛物线有唯一交点(即点P)时,BC上的高最大,此时△PBC的面积最大,于是,得到下面的切线法.解如图7,直线BC的解析式是y=x+3,过点P作BC的平行线l,从而可设直线l的解析式为:y=x+b.=.四、三角函数法本题也可直接利用三角函数法求得.解如图8,作PE⊥x轴交于点E,交BC于点F,怍PM⊥BC于点M.设P点(x,-x2-2x+3)(-3<x<0),则F(x,x+3).从以上四种解法可以看到,本题解题思路都是过点P作辅助线,然后利用相关性质找出各元素之间的关系进行求解.如此深入挖掘一道题的多种解法,可使我们摆脱题海战术,提高解题能力.同时,善于总结一道题的多种解法能加快解题速度,提高解题效率,也有利于培养我们的钻研能力和创新精神.用分割面积法求二次函数动点面积最值考纲解读二次函数动点面积最值1. 二次函数在历年中考中都为重点内容,占分为40%。
二次函数的应用——最大面积问题教学设计

二次函数的应用——最大面积问题的教学设计一、学情分析:众所周知,二次函数与解析几何是初中数学的两个难点,而在中考中往往都是将二者融合形成综合性问题,当然也是学生一直感觉头疼的一个问题。
新课程标准指出,学生对有关的数学内容进行探索、实践和思考的过程就是数学学习的过程,也是学生获得数学活动经验的过程。
将时间还给学生、以学生为主体是每一节课的追求。
通过学生自主学习在反比例函数中求三角形时所用到的方法分享,对其中分割法中的竖直高乘以水平宽的一半进行着重分析,探究其基本原理,从而用此通法解决二次函数中三角形最大面积问题,当然重点分析此发的同时也鼓励一题多解、多解归一。
二、教学目标1、借助反比例函数中三角形面积的几种计算方法总结得出通法:“水平宽乘以竖直高的一半”。
2、通过自主学习小组合作讨论,从特殊的图形出发、层层深入让学生在探索过程中体会“水平宽乘以竖直高的一半”这一方法。
从而从本质理解“水平宽乘以竖直高的一半”。
3、运用“水平宽乘以竖直高的一半”表示出二次函数中基本三角形的面积结合二次函数的最值思想求出三角形面积的最值问题。
三、教学重难点:教学重点:运用“水平宽乘以竖直高的一半”表示出二次函数中基本三角形的面积结合二次函数的最值思想求出三角形面积的最值问题教学难点:从特殊的图形出发、层层深入让学生在探索过程中体会“水平宽乘以竖直高的一半”这一方法。
从而从本质理解“水平宽乘以竖直高的一半”。
四、教学设计【自主学习】学生课前自主完成、并在上课时小组讨论、交流并与大家分享。
的图象都引例:如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=mx经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.方法提炼:补:补成矩形减去三个直角三角形。
补:延长CA与y轴交于点D,用三角形BCD面积减去三角形BAD面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2 把t=8代入,得S= 8 2 8 16 2
16-10.5=5.5 答:第8个月公司获利润5.5万元.
last
练习5:如图,已知半圆O的直径AB=8,M是半圆的中点,
P是弧MB上的一个动点,PC=PA,PC与AB的延长线 相交于点C,D是AC的中点,连接PO、PD,设PA=x, 动画 BC=y; 演示 (1)求y与x之间的函数关系式,并指出定义域; (2)当x为何值时,PC与⊙O相交? M
了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关 系(即前t个月的利润总和s与t之间的关系). 根据图象提供的信息,解答下列问题: (1)由已知图象上的三点坐标,求累积利 润s(万元)与时间t (月)之间的函 数关系式; (2)求截止到几月末公司累积利润可达到 30万元;
(3)求第8个月公司所获利润是多少万元?
1 2 ∴s= t 2t 2
last
(2)求截止到几月末公司累积利润可达到30万元; 1 2 解: 把s=30代入s= 2 t 2t 1 2 得30= t 2t 2
解得t1=10,t2= - 6(舍去)
答:截止到10月末公司累积 利润可达到30万元
last
(3)求第8个月公司所获利润是多少万元?
欢迎各位老师光临 听课指导
二次函数的应用
何时面积最大
练习1:请研究二次函数y=x2+4x+3的图象及其性质, 并尽可能多地写出有关结论。
解(1)图象的开口方向: 向上 (-2,-1) (2)顶点坐标: 直线x=-2 (3)对称轴: (-3,0),(-1,0) (4)图象与x轴的交点为: (0,3) (5)图象与y轴的交点为: (6)图象与y轴的交点关于 对称轴的对称点坐标为: (-4,3) 当x=-2时,y最小值= -1; (7)最大值或最小值: (8)y的正负性: 当x=-3或-1时,y=0;当-3<x<-1时y<0;当x>-1或x<-3时,y>0 (9)图象的平移: 抛物线y=x2向左平移2个单位,再向下平移1个单位得到抛物线y=x2+4x+3 (10)图象在x轴上截得的线段长为2 (11)对称抛物线:
next
例1.如图,在一个直角三角形的内 3 部作一个矩形ABCD,其中AB和 AD分别在两直角边上.
(1).设矩形的一边AB=xm,那么AD边的长度 如何表示? (2).设矩形的面积为ym² ,x取何值时,y的最大 值是多少?
M 30m D
C N
A
40m B
练习3.如图,在一个直角三角形的内部作一 个矩形ABCD,其顶点A和点D分别在两直 角边上,BC在斜边上. • (1).设矩形的一边BC=xm,那么AB边的长 度如何表示? • (2).设矩形的面积为ym² ,当x取何值时,y的 最大值是多少?
last
归纳总结:
(1)二次函数与一元二次方程关系密切,解题的关键 是要善于进行转化,且注意根的判别式的取值。 (2)二次函数的最值在实际问题中的运用广泛, 求解时应注意自变量的取值范围。 (3)二次函数在几何问题中的运用,在求解进应注 意图形位置的变化,注意运用分类讨论的思想 方法。
Email:xwq0812@
•
(0<x<6) =12√3㎡
3 3 2 S x 6 3x 4
2
x=4m时S最大
2.(2007 江西)
• 如图在Rt△ABC中,∠A=90 °,AB=8,AC=6.若 动点D从点B出发,沿线段BA运动到点A为止, 运动速度为每秒2个单位长度。过点D作 DE∥BC交AC于点E,设点D运动时间为x秒, AE的长为y. • (1)求出y关于x的函数关系式,并写出自变量x A 的取值范围
D B E C
(2)当x为何值时,△BDE面积S 有最大值,最大值为多少?
A D B E C
例2:如图,等腰Rt△ABC的直角边AB=2,点P、Q分别从A、C两
点同时出发,以相等的速度作直线运动,已知点P沿射线AB运
动,点Q沿边BC的延长线运动,PQ与直线相交于点D。 (1)设 AP的长为x,△PCQ的面积为S,求出S关于x的函数关系式; (2)当AP的长为何值时,S△PCQ= S△ABC 解:(1)∵P、Q分别从A、C两点同时出发,速度相等 ∴AP=CQ=x 当P在线段AB上时
∴ 4 x (4 y ) 1 2 又∵ y 4 x 8
2 2 2
M
动画 演示
P x Y A C B
∴ 4 2 32 4 y (4 y) 2 解得,y1= 4, y2= - 8(舍去)
Hale Waihona Puke O D 此时x= 4 3 当x= 4 3 时,PC与圆O相切 当 4 2 x 8 ,且x≠ 4 3时,PC与圆O相交
动画 演示
1 1 1 x(2 x) CQ•PB = AP•PB = S△PCQ= 2 2 2 1 2 即S= x x (0<x<2) 2
Q
当P在线段AB的延长线上时
1 S△PCQ= 2
CQ PB
1 x( x 2) 2
1 2 即S= x x 2
(x>2)
C
D
P A B
(2)当S△PCQ=S△ABC时,有
解:(1)∵OA=OP,PA=PC ∴∠A=∠APO, ∠A=∠C, ∴∠APO=∠C,∠A=∠A ∴⊿AOP∽⊿APC
AO AP ∴ AP AC
P x Y A O D B C
4 x ∴ x 8 y
1 2 ∴ y x 8 4
(4 2 x 8 )
last
解:(2)PC与半圆O一定有公共点P,可能相切,可能相 交所以只要排除相切即可。 如果PC与半圆O相切,∴ OP⊥PC, ∴ OP 2 PC 2 OC 2
E C C
A
B
解:连结EC,作DF⊥EC,垂足为F
• ∵∠DCB=∠CDE=∠DEA, ∠EAB=∠CBA=90°, • ∴∠DCB=∠CDE=∠DEA=120°, • ∵DE=CD, ∴∠DEC=∠DCE=30° • ∴∠CEA=∠ECB=90° • ∴四边形EABC为矩形 • DE=xm,AE=6-x, 1 DF xm , EC 3 xm •
①
1 2 x x=2 2
此方程无解
②
Q
1 2 x x =2 2
x 2x 4 0
2
D C
∴ x1=1+ 5 ,
x2=1- 5 (舍去)
P A B
∴当AP长为1+ 5 时,S△PCQ=S△ABC
练习4:某公司推出了一种高效环保型洗涤用品,年初上市后,公
司经历了从亏损到盈利的过程.下面的二次函数图象(部分)刻画
“二次函数应用” 的思路
• 1理解问题; • 2.分析问题中的变量和常量,以及它们之 间的关系; • 3.用数学的方式表示出它们之间的关系; • 4.做数学求解; • 5.检验结果的合理性,拓展等.
智能提升(2007宁波)
• 1.用长为12m的篱笆,一边利用足够长的 墙围出一块苗圃。如图,围出的苗圃是 五边形ABCDE,AE⊥AB,BC⊥AB, ∠C=∠D=∠E设CD=DE=xm,五边形的 面积为S㎡,问当x取什么值时,S最大? 并求出S的最大值 D
解: (1) ∵ AB为x米、篱笆长为24米
∴ 花圃宽为(24-4x)米
∴ S=x(24-4x) =-4x2+24 x (0<x<6)
b 3 X= 2a
A B
D C
4ac b 2 =36 S= 4a
(3) ∵墙的可用长度为8米
∴ 0<24-4x ≤8 4≤x<6 ∴当x=4cm时,S最大值=32 平方米
抛物线y=x2+4x+3关于x轴对称的抛物线为y=-(x+3)(x+1) next
练习2、已知:用长为12cm的铁丝围成一个矩形,一边长为xcm.,面 练积为ycm2,问何时矩形的面积最大? 解: ∵周长为12cm, 一边长为xcm , ∴ 另一边为(6-x)cm ∴ y=x(6-x)=-x2+6x (0< x<6) =-(x-3) 2+9 ∵ a=-1<0, ∴ y有最大值 当x=3cm时,y最大值=9 cm2,此时矩形的另一边也为3cm 答:矩形的两边都是3cm,即为正方形时,矩形的面积最大。
last
解:(1)设s与t的函数关系式为s=at2+bt+c
a b c 1.5 由题意得 4a 2b c 2 25a 5b c 2.5
1 a 2 解得 b 2 c 0
a b c 1.5 或 4a 2b c 2 c 0
M 30mA N B C
D 40m
Q
练习4
• 如图,某厂有许多为形状为直角梯形的 铁皮边角料,为节省资源,现如要图中 所示的方法从这些边角料上截取矩形铁 皮备用,当截取的矩形面积最大时,矩 形两边长应分别为多少?
8 20
y
x
24
例2:如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有 二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米。 (1)求S与x的函数关系式及自变量的取值范围; (2)当x取何值时所围成的花圃面积最大,最大值是多少? (3)若墙的最大可用长度为8米,则求围成花圃的最大面积。