运算放大器应用电路的设计与制作
集成运算放大器的应用实验报告

一、实验目的1. 了解集成运算放大器的基本特性和工作原理。
2. 掌握集成运算放大器的基本应用电路的设计与调试方法。
3. 熟悉集成运算放大器在实际电路中的应用,提高电子电路设计能力。
二、实验原理集成运算放大器(Op-Amp)是一种高增益、低输入阻抗、高输入电阻、低输出阻抗的直接耦合放大器。
它广泛应用于各种模拟信号处理和产生电路中。
本实验主要研究集成运算放大器的基本应用电路,包括反相比例放大电路、同相比例放大电路、加法运算电路、减法运算电路等。
三、实验仪器与设备1. 集成运算放大器:TL0822. 直流稳压电源:±15V3. 数字万用表4. 示波器5. 面包板6. 连接线7. 电阻、电容等元件四、实验内容1. 反相比例放大电路(1)电路连接:将集成运算放大器TL082的输入端分别连接到输入电阻R1和地,输出端连接到负载电阻R2,反馈电阻Rf与R1并联后连接到反相输入端。
(2)电路调试:将输入电压信号输入到电路中,使用示波器观察输出电压波形,调整R1和Rf的值,使输出电压与输入电压成反相关系。
(3)实验结果:当R1和Rf的值分别为1kΩ和10kΩ时,输出电压与输入电压成反相关系,放大倍数为-10。
2. 同相比例放大电路(1)电路连接:将集成运算放大器TL082的同相输入端连接到输入电阻R1,反相输入端连接到地,输出端连接到负载电阻R2,反馈电阻Rf与R1并联后连接到同相输入端。
(2)电路调试:将输入电压信号输入到电路中,使用示波器观察输出电压波形,调整R1和Rf的值,使输出电压与输入电压成正比关系。
(3)实验结果:当R1和Rf的值分别为1kΩ和10kΩ时,输出电压与输入电压成正比关系,放大倍数为10。
3. 加法运算电路(1)电路连接:将集成运算放大器TL082的反相输入端连接到地,同相输入端连接到两个输入电阻R1和R2,输出端连接到负载电阻R3,反馈电阻Rf与R1、R2并联后连接到同相输入端。
一阶运算放大器电路

一阶运算放大器电路一、引言运算放大器,作为模拟电子电路的核心元件,广泛应用于各个领域。
一阶运算放大器电路作为运算放大器的基础结构,具有重要的理论和实践价值。
本文将从一阶运算放大器电路的原理、设计、仿真与测试、优化等方面进行全面阐述,以期为读者提供实用的参考。
二、一阶运算放大器电路的原理1.运算放大器的概念运算放大器,又称为模拟乘法器,是一种具有广泛应用的模拟电路。
它能够将两个输入信号的差值放大,并输出与输入信号幅度成比例的电压信号。
2.一阶运算放大器的工作原理一阶运算放大器,即单级运算放大器,是由一个输入级和一个输出级组成的。
输入级实现电压放大,输出级则负责将放大后的信号进行缓冲和输出。
在一阶运算放大器中,输入级的放大倍数远大于1,而输出级的放大倍数接近1。
3.运算放大器的应用领域运算放大器在信号放大、滤波、模拟计算等领域具有广泛的应用。
其中,一阶运算放大器电路作为基础模块,可以方便地搭建各类放大器和滤波器等电路。
三、一阶运算放大器电路的设计1.设计步骤和方法设计一阶运算放大器电路,首先需要确定电路的性能指标,如增益、带宽、输入和输出阻抗等。
然后,选择合适的运算放大器型号,根据电路性能指标计算电阻和电容的值。
最后,进行电路布局和焊接,完成电路设计。
2.电路元件的选择在设计一阶运算放大器电路时,应选择合适的电阻、电容和运算放大器。
电阻可以选择碳膜电阻或金属膜电阻,电容可以选择陶瓷电容或电解电容。
运算放大器应根据电路性能指标选择,如增益、带宽等。
3.设计实例解析以设计一个增益为10、带宽为100kHz的一阶运算放大器电路为例,可以选择一个增益带宽积大于100kHz的运算放大器,如OP07。
然后,根据电路性能指标计算电阻和电容的值,最后进行电路布局和焊接。
四、一阶运算放大器电路的仿真与测试1.电路仿真软件介绍电路仿真软件可以模拟电路的工作状态,预测电路性能。
常见的电路仿真软件有Multisim、PSPICE等。
详解运放七大应用电路设计

详解运放七大应用电路设计运放的基本分析方法:虚断,虚短。
对于不熟悉的运放应用电路,就使用该基本分析方法。
运放是用途广泛的器件,接入适当的反馈(网络),可用作精密的交流和直流放大器、有源(滤波器)、(振荡器)及电压(比较器)。
1、运放在有源滤波中的应用上图是典型的有源滤波电路(赛伦-凯电路,是巴特沃兹电路的一种)。
有源滤波的好处是可以让大于截止频率的(信号)更快速的衰减,而且滤波特性对(电容)、电阻的要求不高。
该电路的设计要点是:在满足合适的截止频率的条件下,尽可能将R233和R230的阻值选一致,C50和C201的容量大小选取一致(两级RC电路的电阻、电容值相等时,叫赛伦凯电路),这样就可以在满足滤波性能的情况下,将器件的种类归一化。
其中电阻R280是防止输入悬空,会导致运放输出异常。
滤波最常用的3种二阶有源低通滤波电路为巴特沃兹,单调下降,曲线平坦最平滑;巴特沃兹低通滤波中用的最多的是赛伦凯乐电路,即(仿真)的该电路。
一个滤波器,要知道其截至频率是多少,或者能写出传递函数和频率响应也可以。
如果该滤波器还有放大功能,要知道该滤波器的增益是多少。
当两级RC电路的电阻、电容值相等时,叫赛伦凯电路,在二阶有源电路中引入一个负反馈,目的是使输出电压在高频率段迅速下降。
二阶有源低通滤波电路的通带放大倍数为1+(Rf)/R1 ,与一阶低通滤波电路相同;截止频率为注明,m的单位为欧姆,N 的单位为u 所以计算得出截止频率为切比雪夫,迅速衰减,但通带中有纹波;贝塞尔(椭圆),相移与频率成正比,群延时基本是恒定。
2、运放在电压比较器中的应用上图是典型信号转换电路,将输入的交流信号,通过比较器LM393,将其转化为同频率的方波信号(存在反相,让软件处理一下就可以),该电路在交流信号测频中广泛使用。
该电路实际上是过零比较器和深度放大电路的结合。
将输出进行(1+R292/R273)倍的放大,放大倍数越高,方波的上升边缘越陡峭。
实验13-1集成运算放大器的应用电路设计

集成运算放大器的 应用电路设计
(黑字的内容为提示,不要写在报告中)
预习报告
一、实验目的 1、了解集成运算放大器的特性及参数; 2、学会用运算放大器设计信号运算电路; 3、培养对集成运算放大器基本器件的综合设计、 应用和调试能力。 二、实验设备与仪器 (做实验时再填写) 三、设计要求 利用集成运算放大器的线性工作区实现信号的线性 运算。自拟表格验证其电路及参数的正确性。
实验结果报告
五、数据处理
1、详细写出设计过程; 2、绘制完整数据表格,整理实验数据; 3、进行理论计算,并与实验结果进行比较,给出相 应结论; 六、思考题 为什么在实验中运算放大器的输出电压不能超过8V?
实验记录及过程报告
四、实验任务与实验步骤 (1) 反相加法运算 uo=-(2.5u1+1.5u2) (自已设计表格13-1-1,记录测试数据) (2) 差分减法运算 uo=2.5u1-1.5u2 (自已设计表格13-1-2,记录测试数据) (3) 同相加法运算 uo=(2.5u1+1.5u2) (自已设计表格13-1-3,记录测试数据)
(1) uo=-(2.5u1+1.5u2) (参照教材p102图16.2.5自已设计电路,令RF=150k, 计算出R11、R12和R2的阻值) (2) uo=2.5u1-1.5u2 (参照教材p104图16.2.6自已设计电路, 令RF=150k, R3=,计算出R1和R2的阻值) (3) uo=(2.5u1+1.5u2) (参照下图自已设计电路,令RF=30k, RF R3=15k, 计算出R1和R4的阻值) R1
u1 u2 R3 R4
+
+
uo
说明:
1. 仔细阅读实验指导书,认真预习; 2. 每个运算电路只能用一个运算放大器来实现; 本次实验使用LM741集成运算放大器,电源电压为 12V,测试前需要调零; 3. 每个运算电路至少测三组实验数据来验证; 4. 要合理选择测试数据u1、u2,保证运算放大器的输出 电压uo不能超过8V; 5. 若计算得出的阻值不是标称值,则通过电阻串并联来 实现,或通过可调电阻(电阻电位器)来获得。
运算放大器的应用实验报告

运算放大器的应用实验报告仪用运算放大器及其应用实验报告实验报告课程名称:电路与模拟电子技术实验指导老师:张冶沁成绩:__________________ 实验名称:仪用运算放大器及其应用实验类型:电路实验同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求1.了解仪表放大器与运算放大器的性能区别;2.掌握仪表放大器的电路结构及设计方法;3.掌握仪表放大器的测试方法; 4.学习仪表放大器在电子设计中的应用。
二、实验内容和原理1.用通用运算放大器设计一个仪表放大器(用LM358芯片)2.用INA128 精密低功耗仪器放大器设计一个仪表放大器仪表放大器是一种高增益放大器,其具有差分输入、单端输出、高输入阻抗及高共模抑制比等特点。
仪表放大器采用运算放大器构成,但在性能上与运算放大器有很大的差异。
标准运算放大器的闭环增益由反馈网络决定;而仪表放大器使用了一个与其信号输入端隔离的内部反馈电阻网络,因此具有很高的共模抑制比KCMR,在有共模信号的情况下也能放大很微弱的差分信号。
当前在数据采集、医疗仪器、信号处理等电子系统设计中普遍采用仪表放大器对弱信号进行高精度处理。
常用的仪表放大器可采用由三个运算放大器构成,也可直接选用单片仪表放大器。
单片仪表放大器具有高精度、低噪声、设计简单等特点以成为优选器件。
三、主要仪器设备LM358芯片INA128 精密低功耗仪器放大器四、操作方法和实验步骤两种仪表放大器的性能测量:一、电压增益和最大不失真输出,并计算出共模抑制比输入正弦波,改变输入信号幅度或频率,用示波器监测输出波形,在不失真的情况下,测量输入电压为最大或最小时的电压增益,及最大不失真输出电压,并计算共模抑制比。
二、输出端噪声电压输入为0,用示波器测量峰峰值。
集成电路运算放大器设计教案

集成电路运算放大器设计教案是电子工程师必须学习的一个重要课程。
运算放大器是一种非常重要的电子器件,广泛应用于各种电子设备、电路的设计和制作过程中。
因此,精心编写一份课程教案,对于学生全面掌握运算放大器的基本原理及应用至关重要。
本文将对集成电路运算放大器设计教案做一个详细地介绍。
一、教案基本内容1.引言本部分主要介绍运算放大器概念的由来、应用和发展历程,并对运算放大器的类型、性质和分类做一个简要的阐述和分析。
2.理论基础本部分主要介绍运算放大器的基本原理,包括运算放大器的电路模型、基本特性和输入输出电压范围等内容。
对于运算放大器的电压跟随、虚地、共模抑制、负载容忍和不稳定因素等方面做一个详尽的讲解。
3.电路设计本部分主要介绍运算放大器电路设计的基本流程和要点,包括运算放大器的放大性能和电源电压的选择、运算放大器的电源反向保护和工作温度的适应等内容。
同时,对于运算放大器的带宽、相位裕度、相位噪声和带内电平等方面做一个详细的讲解。
4.应用实践本部分主要介绍运算放大器的典型应用实践及设计思路,包括基于运算放大器的高精度电压源的设计、自适应PLL的设计、数字判断电路的设计、开环电路的设计以及运算放大器的开环和闭环应用等方面。
5.教学方法本部分主要介绍教学方法的选择和应用方法的讲解,包括教学中制作运算放大器电路实验板、动态演示和运算放大器应用设计仿真等教学方法。
6.教学评估本部分主要介绍教学评估的方案与方法,包括教案制定后对教学效果的评估、学生实验报告和成绩单的评估等内容。
二、教案的设计思路集成电路运算放大器设计教案的设计思路应该是根据教学大纲的要求,并结合实际情况编写设计思路。
具体的设计思路如下所述:1.明确教学目标首先需要明确教学目标,根据教学大纲的要求,制定出相应的教学计划。
明确教学目标后,可以根据学生的实际情况制定出相应的教学方法和策略。
2.制定教学计划根据教学目标制定教学计划。
教学计划应该包括教师的教学内容、教学方法及课堂活动。
实验:集成运算放大器应用(加减运算电路设计)

2021/3/10
讲解:XX
8
图6-3 同相比例放大器
2021/3/10
讲解:XX
9
3.加法器
电路如图6-4所示。当运算放大器开环 增益足够时,运算放大器的输人端为虚地, 三个输入电压可以彼此独立地通过自身的输 入回路电阻转换为电流,能精确地实现代数 相加运算。根据虚断和虚短的概念,有
Ui1 Ui2 Ui3 UO
UO 10Ui
2021/3/10
讲解:XX
14
图6-6 反相比例放大器
2021/3/10
讲解:XX
15
在该比例放大器的输人端加人下列电压值
测出放大器的输出电压值。
2021/3/10
讲解:XX
16
2 同相跟随器 实验电路按图6-7连接,使其满足下列
关系式:
在该放大器的输人端加人下列电压值,
2021/3/10
R1 R2 R3
RF
UOR RF 1Ui1R RF 2Ui2R RF 3Ui3
2021/3/10
讲解:XX
10
4 减法器
电路如图6-5所示。当运算放大器开环 增益足够大时,输出电压Uo为:
在电阻值严格匹配的情况下,电路具有 较高的共模抑制能力。
2021/3/10
讲解:XX
11
图6-5 减法器电路
2021/3/10
讲解:XX
22
4 设计加减法电路
(1)设计一个加法电路,使其满足下列关系式:。
①输入信号Ui1、Ui2都是频率为1kHz的正弦信号,幅度分 别为U1p-p=100mV,U2p-p=200mV,观测输出是否满足 设计要求。
②输入信号Ui1是频率为1kHz,幅度为U1p-p=100mV的正 弦信号,Ui2是直流电压(+0.5V),观测输出是否满足设 计要求(注意输入信号中有直流电压使输出信号中含有直流 分量后与输出为纯交流信号的不同)。
模拟电路应用实验—运算放大器应用综合实验

实验四 运算放大器应用综合实验一、实验目的1、 了解运算放大器的基本使用方法,学会使用通用型线性运放μA741。
2、 应用集成运放构成基本运算电路——比例运算电路,测定它们的运算关系。
3、 掌握加法、减法运算电路的构成、基本工作原理和测试方法。
二、预习要求1、 集成电路运算放大器的主要参数。
2、 同相比例、反相比例电路的构成以及输出、输入之间的运算关系。
3、 加法、减法电路的构成及运算关系。
三、实验设备及仪器模拟电子技术实验台、数字存储示波器、数字万用表、函数信号发生器、数字交流毫伏表。
四、实验内容及步骤运放的线性应用——比例及加减法电路实验 1、反相比例运算反相比例运算电路如图3.1所示,按图接线。
根据表3.1给定的u i 值,测量对应的u o 值并记入表3.1中。
并用示波器观察输入V i 和输出V o 波形及相位。
理论值: i ii f o u V u R R u 10101003-=-=-=注意:①当V i 为直流信号时,u i 直接从实验台上的-5~+5V 直流电源上获取,用数字直流电压表分别测量u i 、u o 。
②当u i 为交流信号时,u i 由函数信号发生器提供频率为1kHz 正弦波信号,用交流毫伏表分别测量u i 、u o 。
(下同)图3.1 反相比例运算电路表3.1测量结束后,将Rf改为电位器Rp,观察输入ui一定,调节Rp,输出的变化规律。
2、同相比例运算同相比例运算电路如图3.2所示,根据表3.2给定的u i值,测量对应的u o值并记入表3.2中。
并用示波器观察输入u i和输出u o波形及相位。
理论值: u O=(1+R f/R3)u i=11u i。
图3.2 同相比例运算电路表3.2测量结束后,将Rf改为电位器Rp,观察输入ui一定,调节Rp,输出的变化规律。
表3.2 同相比例参数测量3、加法运算加法运算原理电路如图3.3。
根据表3.3给定的u i1、u i2值,测量对应的u o值,并记入表3.3中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运算放大器应用电路的设计与制作运算放大器 1.原理运算放大器是目前应用最广泛的一种器件,当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。
在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。
运算放大器一般由4个部分组成,偏置电路,输入级,中间级,输出级。
图1运算放大器的特性曲线 图2运算放大器输入输出端图示图1是运算放大器的特性曲线,一般用到的只是曲线中的线性部分。
如图2所示。
U -对应的端子为“-”,当输入U -单独加于该端子时,输出电压与输入电压U -反相,故称它为反相输入端。
U +对应的端子为“+”,当输入U +单独由该端加入时,输出电压与U +同相,故称它为同相输入端。
输出:U 0= A(U +-U -) ; A 称为运算放大器的开环增益(开环电压放大倍数)。
在实际运用经常将运放理想化,这是由于一般说来,运放的输入电阻很大,开环增益也很大,输出电阻很小,可以将之视为理想化的,这样就能得到:开环电压增益A ud =∞;输入阻抗r i =∞;输出阻抗r o =0;带宽f BW =∞;失调与漂移均为零等理想化参数。
理想运放在线性应用时的两个重要特性输出电压U O 与输入电压之间满足关系式:U O =A ud (U +-U -),由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。
即U +≈U -,称为“虚短”。
由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”,这说明运放对其前级吸取电流极小。
上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。
运算放大器的应用 (1)比例电路所谓的比例电路就是将输入信号按比例放大的电路,比例电路又分为反向比例电路、同相比例电路、差动比例电路。
(a) 反向比例电路反向比例电路如图3所示,输入信号加入反相输入端:图3反向比例电路电路图对于理想运放,该电路的输出电压与输入电压之间的关系为:为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R ’=R 1 // R F 。
输出电压U 0与输入电压U i 称比例关系,方向相反,改变比例系数,即改变两个电阻的阻值就可以改变输出电压的值。
反向比例电路对于输入信号的负载能力有一定的要求。
(b) 同向比例电路同向比例电路如图4所示,跟反向比例电路本质上差不多,除了同向接地的一段是反向输入端:图4 同相比例电路电路图i1fOU R R U -=它的输出电压与输入电压之间的关系为:;R’=R 1 // R F 只要改变比例系数就能改变输出电压,且U i 与U 0的方向相同,同向比例电路对集成运放的共模抑制比要求高。
(c) 差动比例电路差动比例电路如图5所示,输入信号分别加在反相输入端和同相输入端:图5 差动比例电路电路图其输入和输出的关系为:=-fO i2i11R U (U U )R 可以看出它实际完成的是:对输入两信号的差运算。
(2)和/差电路(a)反相求和电路其电路图如图6所示(输入端的个数可根据需要进行调整):图6 反相求和电路图其中电阻R'满足:f 321'//////R R R R R =它的输出电压与输入电压的关系为:i 1fO )U R R (1U +=⎪⎪⎭⎫ ⎝⎛++-=33f22f 11f 0i i i U R R U R R U R R U它的特点与反相比例电路相同,可以十分方便的通过改变某一电路的输入电阻,来改变电路的比例关系,而不影响其它支路的比例关系。
(b)同相求和电路其电路如图7所示(输入端的个数可根据需要进行调整):图7 同向求和电路图它的输出电压与输入电压的关系为: 它的调节不如反相求和电路,而且它的共模输入信号大,因此它的应用不很广泛。
(c)和差电路其电路图如图8所示,此电路的功能是对U i1、U i2进行反相求和,对U i3、U i4进行同相求和,然后进行的叠加即得和差结果。
图8 和差电路图它的输入输出电压的关系是:由于该电路用一只集成运放,它的电阻计算和电路调整均不方便,因此我们常用二级集成运放组成和差电路。
它的电路图如图9所示:⎪⎪⎭⎫⎝⎛++=c i b i ai R U R U R U R U 321f 0⎪⎪⎭⎫⎝⎛--+=22114433f 0R U R U R U R U R U i i i i图9 二级集成和差电路图它的输入输出电压的关系是:它的后级对前级没有影响(采用理想的集成运放),它的计算十分方便。
(3) 积分电路和微分电路 (a)积分电路其电路图如图10所示:它是利用电容的充放电来实现积分运算,可实现积分运算及产生三角波形等。
图10 积分电路图它的输入、输出电压的关系为:其中: 表示电容两端的初始电压值.如果电路输入的电压波形是方形,则产生三角波形输出。
(b)微分电路微分是积分的逆运算,它的输出电压与输入电压呈微分关系。
电路如图11所示:0101=+-=⎰t ct t i u dt u RCu图11 微分电路图它的输入、输出电压的关系为:(4) 对数和指数运算电路 (a)对数运算电路对数运算电路就是是输出电压与输入电压呈对数函数。
我们把反相比例电路中Rf 用二极管或三级管代替级组成了对数运算电路。
电路图如图12所示:图12 对数运算电路它的输入、输出电压的关系为(也可以用三级管代替二极管):(b)指数运算电路指数运算电路是对数运算的逆运算,将指数运算电路的二极管(三级管)与电阻R 对换即可。
电路图如13所示:图13 指数运算电路它的输入、输出电压的关系为:Sir RI u U u ln 0-≈riu u S I u Re0-=利用对数和指数运算以及比例,和差运算电路,可组成乘法或除法运算电路和其它非线性运算电路。
(二)无源滤波电路滤波电路的作用:允许规定范围内的信号通过;而使规定范围之外的信号不能通过。
滤波电路的分类:*低通滤波器:允许低频率的信号通过,将高频信号衰减;*高通滤波器:允许高频信号通过,将低频信号衰减;*带通滤波器:允许一定频带范围内的信号通过,将此频带外的信号衰减;*带阻滤波器:阻止某一频带范围内的信号通过,允许此频带以外的信号衰减;仅由无源元件(电阻、电容、电感)组成的滤波电路,为无源滤波电路。
它有很大的缺陷如:电路增益小,驱动负载能力差等。
为此我们要学习有源滤波电路。
式中RC 10=ω称为截止角频率,传递函数的模为2)(1)(o vo v A j A ωωω+=幅角为00arctg ωωωϕ-=)(。
(2)二阶有源滤波电路为了使输出电压以更快的速率下降,以改善滤波效果,再加一节RC 低通滤波环节,称为二阶有源滤波电路。
它比一阶低通滤波器的滤波效果更好。
二阶有源滤波器的典型结构如图15所示:图15 二阶有源滤波器典型结构图中,Y 1~Y 5为导纳,考虑到U P =U N ,可列出相应的节点方程式为: 在节点A 有:在节点B 有:联立以上二等式得:考虑到:则:A(S)即是二阶压控电压源滤波器传递函数的一般表达式。
只要适当选择Y i (i =1~5),就可以构成低通、高通、带通等有源滤波器。
)()()(4321=-++-+-Y U U Y U Y U U Y U U P A A O A i A 0)(54=+-Y U Y U U P A P 0))((2144321454=--⎥⎦⎤⎢⎣⎡-++++Y U Y U Y Y Y Y Y Y Y Y U O i P )(ba aO N P R R R U U U +=≈[]43214321541)1()()()()(Y Y A Y Y Y Y Y Y Y Y Y A s U S U S A UF UF i O +-+++++==二、运算放大器的偏置设置在双电源运放在接成单电源电路时,工程师朋友在偏置电压的设置方面会遇到一些两难选择,比如作为偏置的直流电压是用电阻分压好还是接参考电压源好?有的网友建议用参考电压源,理由是精度高,此外还能提供较低的交流旁路,有的网友建议用电阻,理由是成本低而且方便,对此,张世龙没有特别指出用何种方式,只是强调双电源运放改成单电源电路时,如果采用基准电压的话,效果最好。
这种基准电压使系统设计得到最小的噪声和最高的PSRR。
但若采用电阻分压方式,必须考虑电源纹波对系统的影响,这种用法噪声比较高,PSRR比较低。
三、如何解决运算放大器的零漂问题?有网友指出,一般压电加速度传感器会接一级电荷放大器来实现电荷——电压转换,可是在传感器动态工作时,电荷放大器的输出电压会有不归零的现象发生,如何解决这个问题?对此,网友“Frank”分析道,有几种可能性会导致零漂:1)反馈电容ESR特性不好,随电荷量的变化而变化;2)反馈电容两端未并上电阻,为了放大器的工作稳定,减少零漂,在反馈电容两端并上电阻,形成直流负反馈可以稳定放大器的直流工作点;3)可能挑选的运算放大器的输入阻抗不够高,造成电荷泄露,导致零漂。
运算放大器设计与应用1.用运算放大器做正弦波振荡有哪些经典电路问:用运算放大器做正弦波振荡器在学校时老师就教过,应该是一个常用的电路。
现在我做了几款,实际效果都不理想。
哪位做过,可否透露些经验或成功的电路?答:(1)用以下方法改进波形质量:选用高品质的电容;对运放的电源进行去耦设计;对震荡器的输出信号进行滤波处理。
(2)我曾经在铃流源电路中用到一种带有AGC电路的文氏电桥振荡器,用来产生25Hz的正弦波,如图所示。
图中使用二极管限幅代替非线性反馈元件,二极管通过对输出电压形成一个软限幅来降低失真。
文氏电桥或低失真的特性要求有个辅助电路来调节增益,辅助电路包括从在反馈环路内插入的一个非线性元件,到由外部元件构成的自动增益控制(AGC)回路。
通过D1对正弦波的负半周取样,且所取样存于C1中,选择R1和R2,必须使Q1的偏置定在中心处,使得输出电压为期望值时,(RG+RQ1)=RF/2。
当输出电压升高时,Q1增大电阻,从而使增益降低。
在上图所示的振荡器中,给运算放大器的正输入端施加0.833V电源,使输出的静态电压处在中心位置处(Vcc/2=2.5V),这里Q1多数用的是小信号的MOSFET 2N7000(N沟道,60V,7.5欧),D1则选用1N4148。
以上供你参考。
(3)为克服RC移相振荡器的缺点,常采用RC串并联电路作为选频反馈网络的正弦振荡电路,也称为文氏电桥振荡电路,如图Z0820所示。
它由两级共射电路构成的同相放大器和RC串并联反馈网络组成。
由于φA= 0,这就要求RC串并联反馈网络对某一频率的相移φF=2nπ,才能满足振荡的相位平衡条件。
下面分析RC串并联网络的选频特性,再介绍其它有关元件的作用。