最全最详细的运放原理应用电路..
运放基本应用电路

运放基本应用电路运放基本应用电路运算放大器是具有两个输入端,一个输出端的高增益、高输入阻抗的电压放大器。
若在它的输出端和输入端之间加上反馈网络就可以组成具有各种功能的电路。
当反馈网络为线性电路时可实现乘、除等模拟运算等功能。
运算放大器可进行直流放大,也可进行交流放大。
R f使用运算放大器时,调零和相位补偿是必须注意的两个问题,此外应注意同相端和反相端到地的直流电阻等,以减少输入端直流偏流 U I 引起的误差。
U O 1.反相比例放大器 电路如图1所示。
当开环增益为 ∞(大于104以上)时,反相放大器的闭环增益为: 1R R U U A f I O uf -== (1) 图1 反相比例放大器 由上式可知,选用不同的电阻比值R f / R 1,A uf 可以大于1,也可以小于1。
若R 1 = R f , 则放大器的输出电压等于输入电压的负值,因此也称为反相器。
放大器的输入电阻为:R i ≈R 1直流平衡电阻为:R P = R f // R 1 。
其中,反馈电阻R f 不能取得太大,否则会 产生较大的噪声及漂移,其值一般取几十千欧 到几百千欧之间。
R 1的值应远大于信号源的 O 内阻。
2.同相比例放大器、同相跟随器 同相放大器具有输入电阻很高,输出电阻很低的特点,广泛用于前置放大器。
电路原理图如图2所示。
当开环增益为 ∞(大于104以上 图2 同相比例放大器 )时,同相放大器的闭环增益为:1111R R R R R U U A f f I O uf +=+== (2) 由上式可知,R 1为有限值,A uf 恒大于1。
同相放大器的输入电阻为:R i = r ic其中: r ic 是运放同相端对地的共模输入电阻,一般为108Ω;放大器同相端的直流平衡电阻为:R P = R f // R 1。
若R 1 ∞(开路),或R f = 0,则A u f 为1,于是同相放大器变为同相跟随器。
此时由于放大器几乎不从信号源吸取电流,因此 U可视作电压源,是比较理想的阻抗变换器。
运放电路的工作原理

运放电路的工作原理运放(Operational Amplifier,简称Op-Amp)是一种重要的电子元件,广泛应用于各种电子设备中。
它具有高增益、高输入阻抗和低输出阻抗等特点,可以实现信号放大、滤波、积分、微分等功能。
那么,运放电路究竟是如何工作的呢?接下来,我们将深入探讨运放电路的工作原理。
首先,让我们来了解一下运放的基本结构。
运放一般由差动放大器、级联放大器和输出级组成。
差动放大器是运放的核心部分,它由两个输入端和一个输出端组成。
其中,一个输入端称为非反相输入端,另一个输入端称为反相输入端。
通过这两个输入端,运放可以实现对输入信号的放大和处理。
在运放电路中,差动放大器起着至关重要的作用。
当输入信号加到非反相输入端时,输出信号将按照放大倍数输出;当输入信号加到反相输入端时,输出信号将按照放大倍数的负值输出。
这种特性使得运放可以实现对信号的放大和反相放大,为后续电路的设计提供了便利。
除了差动放大器,运放还包括级联放大器和输出级。
级联放大器用于进一步放大信号,同时可以实现对信号的滤波和频率选择。
输出级则用于输出最终的放大信号,同时保证输出电路的稳定性和可靠性。
在实际应用中,运放电路可以实现很多功能,比如信号放大、滤波、积分、微分等。
其中,最常见的是信号放大功能。
通过合理设计运放电路,可以实现对各种信号的放大,从而满足不同应用场景的需求。
总的来说,运放电路的工作原理可以归纳为对输入信号的放大和处理。
通过差动放大器、级联放大器和输出级的协同作用,运放可以实现对信号的精确放大和处理,为各种电子设备的正常工作提供了重要支持。
综上所述,运放电路是一种功能强大的电子元件,具有重要的应用价值。
通过深入理解运放电路的工作原理,我们可以更好地应用它,为电子设备的设计和制造提供技术支持。
希望本文能够帮助读者更好地理解运放电路,为相关领域的研究和应用提供参考。
运放电路的工作原理

运放电路的工作原理运放电路是一种广泛应用于电子电路中的集成电路,它具有高输入阻抗、低输出阻抗、大增益和宽带特性。
运放电路在各种电子设备中都有着重要的作用,比如放大电路、滤波电路、比较电路等。
那么,运放电路是如何实现这些功能的呢?接下来我们将深入探讨运放电路的工作原理。
首先,我们来了解一下运放电路的基本结构。
运放电路由输入端、输出端、电源端和反馈网络组成。
其中,输入端通常包括一个非反相输入端和一个反相输入端,输出端则输出放大后的信号,电源端提供工作电压,反馈网络则用于控制运放的增益和频率特性。
运放电路的工作原理可以用简单的反馈控制理论来解释。
在一个典型的反馈电路中,输出信号会被反馈到输入端,通过反馈网络调节输入端的信号,从而控制输出端的信号。
这种反馈机制可以使运放电路具有稳定的工作特性和精确的控制能力。
在放大电路中,运放电路通过控制输入信号和反馈信号的比例来放大输入信号。
当输入信号进入非反相输入端时,输出端会输出一个放大后的信号。
通过调节反馈网络的参数,可以控制放大倍数和频率响应,从而实现对输入信号的精确放大。
在滤波电路中,运放电路可以通过反馈网络来实现对特定频率范围的信号进行滤波。
通过选择合适的电容和电感参数,可以设计出低通滤波器、高通滤波器、带通滤波器等不同类型的滤波电路,从而满足不同应用场景的需求。
在比较电路中,运放电路可以通过比较两个输入信号的大小来输出一个对应的逻辑电平。
这种比较功能在模拟信号处理和数字信号处理中都有着重要的应用,比如在模拟信号的采样保持电路中,可以利用运放电路来实现对输入信号的采样和保持。
总的来说,运放电路通过精确的反馈控制机制,实现了在电子电路中的多种功能,包括信号放大、滤波、比较等。
它的工作原理基于反馈控制理论,通过精确的设计和调节,可以实现对输入信号的精确处理和控制。
因此,运放电路在现代电子领域中具有着广泛的应用前景,对于提高电子设备的性能和功能起着至关重要的作用。
运放原理图

运放原理图运放(Operational Amplifier,简称Op-Amp)是一种常用的电子元件,它具有高增益、高输入阻抗、低输出阻抗等特点,因此在电子电路中应用广泛。
本文将介绍运放的基本原理和运放的原理图。
首先,我们来了解一下运放的基本原理。
运放是一种差分放大器,它有两个输入端和一个输出端。
其中,一个输入端称为非反相输入端(+),另一个输入端称为反相输入端(-)。
运放的输出电压与非反相输入端和反相输入端之间的电压差成正比,比例系数由运放的增益决定。
运放的增益非常高,通常可以达到几万甚至几十万倍,因此即使输入信号非常微弱,经过运放放大后也能得到较大的输出信号。
接下来,我们将介绍一些常见的运放原理图。
首先是非反相放大电路。
非反相放大电路的原理图如下所示:(图1,非反相放大电路原理图)。
在非反相放大电路中,输入信号通过电阻R1连接到非反相输入端(+),而反相输入端(-)接地。
输出信号则通过电阻R2连接到运放的输出端,同时也通过电阻Rf反馈到非反相输入端。
这样就形成了一个反相放大电路,输入信号经过运放放大后,输出信号与输入信号同相,并且幅度放大了。
另外一个常见的运放原理图是反相放大电路。
反相放大电路的原理图如下所示:(图2,反相放大电路原理图)。
在反相放大电路中,输入信号通过电阻R1连接到反相输入端(-),而非反相输入端(+)接地。
输出信号则通过电阻Rf连接到运放的输出端,同时也通过电阻R2连接到非反相输入端。
同样地,这样就形成了一个反相放大电路,输入信号经过运放放大后,输出信号与输入信号反相,并且幅度放大了。
除了非反相放大电路和反相放大电路,运放还可以用于求和电路、比较器电路、积分电路、微分电路等。
这些原理图都是基于运放的基本原理和特点设计的,通过合理地连接运放的输入端和反馈回路,可以实现各种不同的功能。
总结一下,运放是一种非常重要的电子元件,它具有高增益、高输入阻抗、低输出阻抗等特点,可以用于各种不同的电路设计。
运算放大器电路原理

运算放大器电路原理运算放大器(Operational Amplifier,简称Op-Amp)是一种极为重要的电子元器件,广泛应用于各种电路中。
它具有高增益、差分输入、单端输出等特点,能够放大电压、电流和功率等信号,并提供微弱信号的放大和处理功能。
本文将介绍运算放大器的基本原理及其电路结构。
一、运算放大器的基本原理运算放大器是一个多元件集成电路(IC),通常由几个晶体管、电阻和电容器等元件组成。
它的核心部分是一个差分放大器,具有高增益特性。
运算放大器的输出电压与输入电压之间的关系可以通过下面的公式表示:Vout = Av (V+ - V-)其中,Vout为输出电压,Av为放大器的开环增益,V+和V-分别为非反相输入和反相输入。
二、运算放大器的电路结构运算放大器的电路图可以简化为以下几个主要部分:1.差动放大器:差动放大器是运算放大器的核心部分,它由两个输入电源、两个输入电容和两个晶体管等电路组成。
它的作用是将输入信号进行差分放大,增益高达几千倍。
2.电流镜:电流镜是一个由晶体管组成的电流源,用于提供稳定的电流输出。
它的作用是保持差动放大器的工作点稳定,使得差动放大器的输出可以线性放大。
3.级联放大器:级联放大器由多个差分放大器组成,用于提高整个运算放大器的放大倍数。
每个差分放大器都会放大之前的放大器的输出信号。
4.反馈网络:反馈网络是运算放大器的重要部分,通过它可以实现对输出信号进行控制和调整。
反馈网络可以分为正反馈和负反馈两种形式,具体的选择取决于应用的要求。
三、运算放大器的应用运算放大器在电子电路中具有广泛的应用,主要包括以下几个方面:1.信号放大:运算放大器可将输入信号放大到所需的幅度,用于增强微弱信号。
2.滤波:运算放大器可以配合电容器和电阻等元件,构成滤波电路,用于滤除不需要的频率成分,提取特定频率的信号。
3.比较器:运算放大器可以作为比较器使用,用于判断输入信号的大小关系,并输出相应的逻辑电平。
运放电路工作原理

运放电路工作原理
运放电路是一种基本的电子电路,其工作原理是通过运放输入端的差分放大和反馈机制将输入信号放大并输出一个放大后的信号。
运放电路通常由一个差动放大器和一个输出级组成。
差动放大器是运放电路的核心部分,其输入端有两个引脚,分别为非反相输入端(+)和反相输入端(-)。
当有输入信号时,差动放大器会将两个输入信号进行放大。
如果非反相输入端的电压高于反相输入端的电压,差动放大器会输出一个正的放大信号;如果非反相输入端的电压低于反相输入端的电压,差动放大器会输出一个负的放大信号。
反馈机制是运放电路实现放大功能的关键。
通过将部分输出信号反馈到输入端,可以控制放大倍数和增加稳定性。
具体来说,反馈一般分为两种类型:正反馈和负反馈。
正反馈会使输出信号持续增加,很少被使用;而负反馈会减小放大倍数,但可以提高电路的稳定性和减小失真。
在运放电路中,输出级负责将放大后的信号输出到负载中。
负载可以是其他电路或器件,比如扬声器、显示器等。
输出级的基本原理是将差动放大器输出的信号进行电流放大和电压放大,以驱动负载。
总的来说,运放电路的工作原理是通过差分放大和反馈机制将输入信号放大,并通过输出级将放大信号输出到负载中。
这种原理使得运放电路成为广泛应用于各种电子设备中的重要组成部分。
运放电路的工作原理

运放电路的工作原理
运放电路是一种常用的电子电路,它可以放大电压信号、电流
信号或功率信号。
运放电路通常由运算放大器(简称运放)和外部
电阻、电容等元件组成。
运放电路的工作原理是利用运算放大器的
高增益特性和反馈原理来实现信号放大、滤波、比较、积分等功能。
运放电路的基本原理是利用运算放大器的高增益特性来放大输
入信号。
运算放大器是一种高增益、差分输入、单端输出的电子元件,它的输入阻抗非常高,输出阻抗非常低,可以理想地放大输入
信号。
运放电路通常由运算放大器、反馈电阻和输入电阻组成。
通
过合理选择反馈电阻和输入电阻的数值,可以实现不同的放大倍数
和功能。
运放电路的工作原理还涉及到反馈原理。
在运放电路中,通过
反馈电阻将部分输出信号反馈到运算放大器的负输入端,从而控制
输出信号。
负反馈可以改善运放电路的线性度、稳定性和频率特性,使其更加可靠和精确。
运放电路可以实现多种功能,如放大、滤波、比较、积分等。
通过合理设计电路结构和选择元件数值,可以实现不同的功能。
例
如,通过串联电阻和电容可以实现滤波功能,通过比较电路可以实
现比较功能,通过积分电路可以实现积分功能。
总之,运放电路是一种常用的电子电路,它利用运算放大器的
高增益特性和反馈原理来实现信号放大、滤波、比较、积分等功能。
合理设计电路结构和选择元件数值可以实现不同的功能。
运放电路
在电子电路中有着广泛的应用,是现代电子技术中不可或缺的重要
组成部分。
运放基本电路

运放基本电路包括反相放大电路、非反相放大电路、比较器电路和积分器电路等。
1.反相放大电路:反相放大电路的基本组成部分是一个运放和两
个电阻。
输入信号通过一个电阻输入到运放的负输入端,正输
入端接地,输出信号通过另一个电阻反馈到负输入端。
这种电
路的特点是输入信号和输出信号反相,增益可以通过两个电阻
的比值来控制。
2.非反相放大电路:非反相放大电路的基本组成部分也是一个运
放和两个电阻,但是输入信号是通过一个电阻输入到正输入端,负输入端接地,输出信号通过另一个电阻反馈到正输入端。
这
种电路的特点是输入信号和输出信号同相,增益同样可以通过
两个电阻的比值来控制。
3.比较器电路:比较器电路的基本组成部分是一个运放和两个输
入端,其中一个输入端为参考电压,另一个输入端为输入信号。
当输入信号大于参考电压时输出高电平,小于参考电压时输出
低电平。
这种电路常用于模拟信号和数字信号之间的转换。
4.积分器电路:积分器电路的基本组成部分是一个运放、一个电
阻和一个电容。
输入信号通过电阻输入到运放的负输入端,正
输入端接地,输出信号通过电容反馈到负输入端。
这种电路的
特点是输出信号是输入信号的积分,可以用于信号的滤波和积
分运算等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
波形变换
输入方波 积分输出三角波
0
0
vs vo vo
0
t t t
微分输出尖脉冲
对数、反对数变换器
对数变换器
R vs+ -
+
vBE VT
A
vo
利用运算法得: vs I Se
R
由于 vBE vo
整理得
vs vo VT ln IS R
缺点: vs必须大于0。 vo受温度影响大、动态范围小。
拉氏反变换得
1 vo RC
v dt
o s
t
有源微分器
利用拉氏变换:
Z f ( s) vo ( s ) vs ( s ) Z1 ( s ) R vs ( s ) sRCvs ( s) 1 /( sC )
C vs+ -
R
+
A
vo
拉氏反变换得
dv s v o RC dt
实际运放低频工作时特性接近理想化,因此可利用“虚 短、虚断”运算法则分析运放应用电路。此时,电路输出 只与外部反馈网络参数有关,而不涉及运放内部电路。
集成运放基本应用电路
反相放大器
类型:电压并联负反馈 因
if Rf
v v
则 v 0
i1 vs+ R1
+
反相输入端“虚地” 0 因 i。 则 i1 if 由图
v s v vs i1 R1 R1
A
vo
v vo vo if Rf Rf
输出电压表达式:
因 v 0
Rf vo vs R1
输入电阻 Ri R1
因深度电压负反馈 , 输出电阻 Ro 0
同相放大器
类型:电压串联负反馈 因
if
Rf
v v
则 v vs
得 vo ( t )
注:拉氏反变换时 s
d dt
1 dt s
6.1.2 运算电路 加、减运算电路
反相加法器
因 v v 因 i 0 则 v 0 则 i1 i2 if
i1 vs1+
R1 i2 R2
if
Rf
-
vs2+ -
+
A
vo
Rf Rf vs1 vs 2 即 整理得 vo R1 R2 说明:线性电路除可以采用“虚短、虚断”概念外,还可 采 用叠加原理进行分析。 Rf v s1 令vs2=0 则 vo1 R1 例如 vo vo1 vo2 Rf vs 2 令vs1=0 则 vo2 R2
i1
R1
+
注:同相放大器不存在“虚地” 。 i 0 因 则 i1 if
vs 0 v 由图 i1 R1 R1
A
vo
+ vs -
v vo vs vo if Rf Rf
Rf Rf 输出电压表达式: vo (1 )v s (1 )v R1 R1
因 i 0 输入电阻 Ri
反对数变换器
R
T
vs+ vBE VT
+
A
vo
利用运算法则得
I Se
vo R
由于 vBE vs
v s VT
整理得
vo I S R e
缺点: vs必须小于0。 vo受温度影响大。
乘、除法器
iX iX vX RX iY -A + 1 R1 T1 vo1 iO R4 -A + 4 vO iZ iZ
三运放仪器放大器
由 v v 得 iG I1 I 2 vI1 RG 由 i 0 得 vo1 vo2 iG ( R1 R2 RG )
R6 R R vo 4 vo1 (1 4 ) vo 2 R3 R3 R5 R6
v v
+A 1 R1 iG R2 vo1 R3 R4
因深度电压负反馈 , 输出电阻 Ro 0
同相跟随器
因 由图得
v v vo v vs
+ vs -
-
Ri Ro 0 由于 Avf 1 所以,同相跟随器性能优于射随器。
+
A
vo
归纳与推广
当R1 、Rf为线性电抗元件时,在复频域内: 反相放大器 同相放大器
Z f ( s) vo ( s ) vs ( s ) 拉氏反变换 Z1 ( s ) Z f ( s) vo ( s ) [1 ]vs ( s ) Z1 ( s )
电流传输器:通用集成器件,广泛用于模拟信号处理电路中。
电流传输器电路符号及特点
vY vX iX iY=0
Y
CC
X
iZ
Z
vZ
Y输入端: iY= 0,即 RY ;
X输入端: vX = vY ,且vX与 iX 大小无关,RX0 ;
由减法器A3得:
RG
若R1 = R2 、 R3 = R5 、 R4 = R6
vI2
-A v o2 2 +
R5
-A 3 + R6
vO
整理得 Avf
vo R 2R 4 (1 ) vI1 vI 2 R3 RG
有源反馈仪器放大器
T1、T2差放 T3、T4差放
vI1 R5 R6 T1 R1 R2 VCC -A 1 + vI2
组成:集成运放外加深度负反馈。
因负反馈作用,使运放小信号 工作,故运放处于线性状态。
vs1 vs2 Z1
Zf
i
+
A
vo
Z1或Zf采用线性器件(R、C),则可构成加、减、积分、微 分等运算电路。
Z1或Zf采用非线性器件(如三极管),则可构成对数、反 对数、乘法、除法等运算电路。
非线性应用电路
组成特点:运放开环工作。
vs1 vs2 v o R1 R2 Rf
同相加法器
利用叠加原理: R2 vs1 R1vs 2 v R1 R2 R1 R2
R3 R1 vs1+ R2
Rf
+
R 则 vo (1 f )v R3 R2 vs1 R1vs 2 Rf (1 )( ) R3 R1 R2 R1 R2
则
R3 R2 vO ( v I VR ) R3 R1
精密转折点电路实现非线性的函数
vO1
vO2
vO3
vO3
R R (vI 1 VR1 ) R1 Rr1 R2 R (vI VR2 ) R2 Rr 2 R R (vI 3 VR3 ) R3 Rr 3 (vO1 vO2 vO3 )
A3 +
T4
iO T3 vo3 R 3
iY
vY RY -A + 2
T2
R2 vo2
RZ
vZ
分析方法一: 因T1、T2、T3、T4 构成跨导线性环, 则 iX iY iZ iO 由图 iX vX / RX
iY vY / RY iZ vZ / RZ
iO vO / R4
整理得
vO
第六章 集成运算放大器及其应用电路
6.1 集成运放应用电路的组成原理 6.2 集成运放性能参数及对应用电路的影响 6.3 高精度和高速宽带集成运放
6.4 集成电压比较器
6.1 集成运放应用电路的组成原理
根据集成运放自身所处的工作状态,运放应用电路分: 线性应用电路和非线性应用电路两大类。
线性应用电路
A1、A2、A3对数放大器
A4反对数放大器2 vo3 VT
vX I S RX v v BE1 VT ln Y v BE1 I S RY vZ VT ln I S RZ
R4 RZ v X v Y RX RY vZ
6.1.3 精密整流电路
利用集成运放高差模增益与二极管单向导电特性,构成 对微小幅值电压进行整流的电路。
A1放大器
vO
RG iG RS iS
T2 T4 IO
A2
+A 3 T3 IO
+ -
R3
A3跟随器
R4
A2跟随器
VEE
可证明 Avf
vo R R4 RS 3 vI1 vI 2 R4 RG
采用严格配对的低噪声对管和精密电阻,可构成低噪声、 高精度、增益可调的仪器放大器。
仪器放大器的应用
A
vo
+ vs2 Rf vs1
减法器
Rf v s1 令vs2=0, vo1 R1
R1
Rf R3 v s 2 R2 v ( 1 ) 令vs1=0, o2 vs2 R1 R2 R3 R3 则 vo vo1 vo2 (1 Rf ) R3 v s 2 Rf v s1 R1 R1 R2 R3
vo1
D1 R
R R1 D2
VR1 Rr1
-A 1 +
R
R
vo2
D3 R
D4
vI
R2
-A 4 +
vO
vO
传输特性
VR2 Rr2
-A 2 + vo3
R D5 R D6
R/R1 R/R2 R/R3
R3
vI1 vI2 vI3
vI
VR3 Rr3
-A 3 +
6.1.3 仪器放大器
仪器放大器是用来放大微弱差值信号的高精度放大器。 特点:KCMR很高、 Ri 很大, Av 在很大范围内可调。
-R2 / R1 R1 D2
R2 D1
+
RL
vo