常用实验设计类型和方法

合集下载

常用实验设计类型和方法

常用实验设计类型和方法

常用实验设计类型和方法实验设计是科学研究中关键的一环,它决定了研究是否能够达到科学的目标和得出准确的结论。

常用的实验设计类型和方法包括随机化实验设计、区组设计、多因素设计和阶梯设计等。

下面将详细介绍这些实验设计类型和方法。

1.随机化实验设计:随机化实验设计是一种通过随机分配处理来控制可能影响结果的混杂因素的实验设计方法。

这种设计方法可以确保各组实验对象的特征基本一致,减小混杂因素的影响,使得实验结果更加可靠。

常用的随机化实验设计方法包括完全随机设计和随机区组设计。

-完全随机设计(CRD):每个处理组的实验对象是通过随机抽样进行分配的,即每个处理组的实验对象是相互独立的。

这种设计方法适用于处理组之间没有特殊要求的实验研究。

-随机区组设计(RCBD):实验对象被随机分配到不同的区组(或块)中,然后在区组内进行处理的实验设计方法。

这种设计方法适用于处理组之间存在隐含的差异或特殊要求的实验研究。

2.区组设计:区组设计是一种通过将实验对象分为若干区组来控制混杂因素的实验设计方法。

各组实验对象的相似程度较高,但组内差异可被控制。

常用的区组设计方法包括完全区组设计、随机区组设计和拉丁方设计等。

-完全区组设计(RCBD):每种处理在每个区组内都进行一次的实验设计方法。

该设计方法适用于处理之间差异较大或有特殊要求的实验研究。

-随机区组设计(RBD):每种处理在每个区组内进行多次的实验设计方法。

该设计方法适用于处理之间差异较小且均匀的实验研究。

-拉丁方设计(LSD):将处理和区组按照拉丁方阵的方式组合,每个处理在每个区组内只进行一次的实验设计方法。

这种设计方法在处理和区组之间都存在差异时使用,可以减小差异的随机性。

3.多因素设计:多因素设计是一种同时考虑多个因素对实验结果影响的实验设计方法。

这种设计方法可以探究多个因素之间的交互作用,以及每个因素对实验结果的独立和联合效应。

常用的多因素设计方法包括二因素设计和因素碰巧设计等。

实验设计方法-PPT

实验设计方法-PPT
2、设计要求:(1);各组观察对象要同质,满足 均衡性、 (2);采用随机化分组、 (3)合理设置 对照组、 (4);各组例数相等或相近、
3、优缺点;
(1)优点;设计方法简单易行,统计分析也简单; 适用面广,不论两组或多组、不管组间样本含 量相等或不等,均可采用这种设计。
(2)缺点;要求实验设计,故实 验所需样本含量相对较多。
变异来源 总变异 组间变异
01 组内变异
表 方差分析结果 SS υ MS F P 281、65 31 141、17 3 47、057 9、38 <0、
140、465 28 5、017
二、配对设计与分析▲
①、概念---就是将受试对象按一定条件配成对 子,再随机分配每对中得两个受试对象到不同得 处理组、
予以注射、以上剂量、种系与笼子三个 因素得分组如下表,试分析不同因素间 有无差别。
表白兔注射不同剂量甲状腺素后得甲状腺体重量(mg)
种系


种系 种系
1
2 3 4 5 小计 均数

C65 E85 A57 B49 D79 335 67、0

E82 B63 D77 C70 A46 338 67、6
(k-1)(b-1)
MS区组 MS误差
四、 拉丁方设计与方差分析(110)
一、拉丁方设计▲
1、概念;用r个拉丁字母排成r行r列得方阵,使每行、每列中每个 字母都出现一次,这样得方阵叫r阶拉丁方。按拉丁方得字母、 行与列安排处理及影响因素得试验称为拉丁方试验。
拉丁方设计就是随机单位组设计得进一步扩展,可以考虑3个 处理因素。(也可以1个、2个)
4、方法 :完全随机分组设计方案 示意图
预选对象
按纳入 标准

常用试验设计类型和方法

常用试验设计类型和方法

例 若 将 20 个 实 验 单 位 随 机 等 分 为 四 组 。 对 2 位 随 机 数 字 规 定 , 00~24 为 甲 组 , 25~49 为 乙 组 , 50~74为丙组,75~99为丁组,分组结果如下:(3\4\6)
检验效能
检验效能(power of a test),又称把握度(power), 记作1-β,指当两个(或几个)总体存在差异时,经假 设检验能够发现该差异的可能性大小。 ● 1 与 、 、 、N 有关。
● 假设检验为“阴性”结论(P>0.05)时, 不能
简单地下“处理无效”的结论,而应该检查一下 是否是检验效能不足。
实验设计的作用主要是减小误差、提高实验的 效率。因此,从统计方面说,根据误差的来源, 在设计时必需遵守三个基本统计学原则,即对 照(control)原则、随机化(randomization) 原则及重复( replication )原则。重复和对照 也是观察性研究必须遵循的原则,唯有随机化 分组是实验性研究的显著特征。
简单随机化分组方法不能保证分组后各组例数相等, 但当受试对象总例数较多时(如N>200),两组例数相
差悬殊的概率较小。尽管如此,在正式试验前最好先检
查一下随机分配表(即分组过程及结果表)中各组例数 是否大致相当。如果发现相差悬殊(如100例分两组,A 组15例,B组85例),可以重新制定随机化分配表。 有些研究希望各组例数相同。当各组例数不相等时, 可从例数较多的组中随机抽取一部分受试者补充到例数 较少的组,使各组例数相等。
方法又有许多不同的类型。实验设计是关于数据采集、统计
方法应用和得出结论的关键步骤。如实验设计出现错误,不 论用什么统计方法进行数据处理也无法得到正确的结论。因 此,在医学科研中只要条件允许,应尽量在良好的实验设计 的基础上采集数据。医学研究中常用的实验设计类型和方法

常用研究设计类型

常用研究设计类型

第一节 完全随机设计
假设检验方法

服从正态分布且方差齐同的计量资料:单因素方差分
析、成组资料的t检验(水平组g=2);

非正态分布且方差齐同的资料:可进行数据变换,或 采用两个独立样本比较的Wilcoxon秩和检验、多个独 立样本比较的Kruskal Wallis H检验; 计数资料:χ2检验或Ridit分析
第二节 析因设计和交叉设计
一、析因设计方法
⑴确定处理组数:
⑵随机分组:
注意:
①析因设计的基本要求是各组例数相等,且每组例 数必须在2例以上。 ②析因设计的因素数和水平数不宜过多,一般因素 数不超过4,水平数不超过3。
二、析因设计的优缺点
优点: ①效率高 ②节约样本含量 缺点: 当处理因素增加时,实验组数呈几何 倍数增加。

第一节 完全随机设计
同源配对
指同一受试对象分别接受两种不同的 干预措施,目的是推断两种干预措施的 效果有无差别。


交叉设计(cross-over design,COD) 目的是推断某种处理有无作用。 自身对比(self-contrast) 目的是推断某种处理有无作用。
第一节 完全随机设计
异源配对
交叉设计的假设检验方法 采用三因素无重复试验的F 检验。
第三节 拉丁方设计和正交设计
拉丁方设计

概念: 拉丁方设计(latin square design) 是按拉丁字母组成的方阵来安排实验的 三因素(一般是一个处理因素、两个配伍 组因素)等水平设计。
拉丁方设计要求: ①三个因素无交互作用; ②三个因素水平数相等; ③方差齐。

三、假设检验方法

析因设计资料的方差分析

有下列四种实验设计及操作

有下列四种实验设计及操作

有下列四种实验设计及操作
1. 随机对照实验设计,随机对照实验设计是一种常用的实验设
计方法,它通过随机分配实验对象到对照组和实验组,以消除实验
结果的干扰因素,从而得出准确的实验结论。

在操作上,需要先确
定实验的研究目的和假设,然后随机分配实验对象到不同的组别,
进行实验操作,并记录数据,最后进行数据分析和结论推断。

2. 重复测量实验设计,重复测量实验设计是一种实验设计方法,通过对同一实验对象进行多次测量,以减少实验误差,提高实验结
果的可靠性。

在操作上,需要确定实验对象的选择和测量指标,进
行多次测量,并对数据进行统计分析,从而得出实验结论。

3. 因子实验设计,因子实验设计是一种多因素实验设计方法,
通过研究多个因素对实验结果的影响,以揭示不同因素之间的相互
作用。

在操作上,需要确定实验因子的选择和水平,进行实验操作,并记录数据,然后进行方差分析等统计方法,从而得出不同因素对
实验结果的影响。

4. 交叉实验设计,交叉实验设计是一种实验设计方法,通过对
不同实验因素进行交叉组合,以研究不同因素之间的交互作用。


操作上,需要确定实验因素的选择和交叉组合方式,进行实验操作,并记录数据,最后进行数据分析,得出不同因素交互作用的结论。

以上是对四种实验设计及操作的简要介绍,每种实验设计都有
其特定的操作步骤和数据处理方法,需要根据具体实验目的和假设
进行操作。

医学实验设计的种类(一)

医学实验设计的种类(一)



有无盲法等。
三、常用的实验设计类型
(kinds of experimental design)
1 单因素K水平设计
K=1时称为单组设计(one sample); K=2时,有:
配对设计(paired design) 成组设计(two-sample design); K≥3时,叫单因素多水平设计 (completely random design)。
中国·首医
2.实验设计的三个基本要素

实验研究的三个基本要素:处 理因素、受试对象和实验效应。
中国·首医
3.实验设计的基本原则
对照的原则 随机化原则 重复的原则 盲法的原则
中国·首医
某研究者欲说明心理辅导的重要 性,在校外旅游地区选取40人,其中 20作用心理辅导,另20人未作;在校 内有20人采用心理辅导。
表8 甲、乙两药治疗高胆固醇血症的疗效 ━━━━━━━━━━━━━━━━━━━━━━━ 甲药使 胆固醇降低值(mg%) 用与否 乙药使用与否:不用 用 ─────────────────────── 不用 ①16 25 18 ③28 31 23 用 ②56 44 42 ④64 78 80 ━━━━━━━━━━━━━━━━━━━━━━━ 注:表10中的四个号码分别代表原题中的第一组至第 四组
有无问题?
中国·首医

1996年对我国4586篇论文统计(中 华医学会系列杂志占6.9%),数据分析 方法误用达55.7%。 最近几年,军事医学科学院胡良 平教授提及了一个令人触目惊心的数 据:全国各类医学期刊中,有统计学 错误的论著竟占到80%。 从笔者多年来对医学科技杂志审稿 的经历中,也证实了以上统计学专家的 结论。

实验设计方法有哪些

实验设计方法有哪些

实验设计方法有哪些实验设计是科学研究中的一个重要环节,是确定并实施科学实验的计划和步骤,以达到科学研究目的的方法和过程。

实验设计方法根据研究目的和需求的不同可分为多种类型,下面将介绍其中一些常用的实验设计方法。

1. 随机化对照实验设计(Randomized Control Trial, RCT):这是一种在实验研究中常用的实验设计方法,它通过将研究对象随机分配到实验组和对照组,以降低研究中其他因素对结果的干扰。

RCT主要用于评估某种干预措施(例如新药、新疗法等)的效果,对结果进行显著性统计分析,从而判断是否存在因果关系。

2. 前后实验设计(Before-and-After Design):该实验设计方法在实验开始之前和之后对实验群体进行多次观测或测量,比较实验前后的变化,以确定干预措施对变量的影响。

该方法常用于评估政策、项目或干预措施的效果。

3. 重复测量实验设计(Repeated Measures Design):该设计方法在一个实验中对同一组被试进行多次测量,以评估干预措施对被试在时间上的变化效应。

这种设计方法常用于追踪长期治疗的效果。

4. 因子设计实验(Factorial Design):这种实验设计方法通过在实验中考虑多个自变量以及它们之间的交互作用,来深入研究各个因素的影响。

因子设计实验可以帮助研究者更全面地了解各个自变量对因变量的影响。

5. 嵌套设计实验(Nested Design):这种实验设计方法适用于实验中存在层次结构的情况,其中某些因素或处理因素被嵌套在其他因素中。

这种嵌套设计实验可以帮助研究者评估不同因素对实验结果的影响。

6. 反事实实验设计(Counterfactual Design):该实验设计方法通过对同一组个体进行对照,比较干预组和对照组的不同,来评估某种干预措施的效果。

反事实实验设计常常用于评估社会政策或干预措施的影响,例如评估政策改革对就业情况的影响等。

7. 实验蒙特卡罗方法(Experimental Monte Carlo Methods):实验蒙特卡罗方法是指利用计算机模拟来进行实验设计的一种方法。

常用医学实验设计

常用医学实验设计

用随机排列表实现随机化举例3续
对象 编号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 随机 数字 8 7 6 11 14 2 13 5 9 12 0 1 4 10 3 组别 乙 乙 乙 丙 丙 甲 丙 乙 乙 丙 甲 甲 甲 丙 甲
分组结果】6,11,12,13,15号小兔进入甲组; 1,2,3,5,9号小兔进入乙组; 4,5,7,10,14号小兔进入丙组。
完全随机设计数据分析
效应指标为数值变量
参数检验:t检验,u检验或单因素方差分析法;
非参数检验:Wilcoxon符号秩和检验,Kruskal Wallis法秩和检验;
效应指标为分类变量
两个样本率比较的u检验、χ2检验或Fisher’s精
确概率法,秩和检验(Kruskal Wallis法)或Ridit 分析
三、随机区组设计
A 接受甲处理 实验对象→配成区组→随机分配区组中 B 接受乙处理
C 接受丙处理 D 接受丁处理
……
三、随机区组设计
按随机区组设计, 将15只小白鼠分成5个区组,每 个区组的3只小白鼠分别接受A、B、C三种处理
将小白鼠的体重从轻到重编号,体重相近的3只小 白鼠配成一个区组,在随机数字表中任选一行一列开 始的2位数作为一个随机数,如从第8行第3列开始记 录,在每个区组内将随机数按大小排序;各区组序号 为1的接受A药,序号为2的接受乙药、序号为3的接 受C药。
常用医学实验设计
Medical Experimental Design
张合喜 hexich@ 新乡医学院公共卫生学系
实验设计的基本要素
处理因素
降压药
受试对象
高血压病人
实验效应
血压值
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
● 应特别注意那些对实验结果有影响的非处理因素。
● 平衡处理组间的非处理因素是实验设计的重要内容之一。
各因素所处的不同状态称为水平(level),一个处理因素往 往可分为若干个水平,而水平数的多少是确定实验组数的依
据。
实验单位与观察单位
实验单位(experimental unit)是指接受处理的基本单位。 观察单位(observational unit)是指根据研究需要确定 的采集数据的基本单位。一个实验单位可以有多个观察 单位。注意:处理间的差异应在实验单位中比较。
调整

甲组5例,乙组8例,丙组5例,丁组2例,需要从乙组中 再抽出3例放入丁组。按组别调整步骤,读一随机数3, 除以8(乙组例数)后,余数为3,则将乙组中第3例 (第4号)放入丁组。同理,再读一随机数4,除以7 (乙组现有7例),余数为4,再将乙组中第4例(第10 号)放入丁组。最后再读一随机数6,除以6(乙组现有 6例),余数为6,将乙组第6例(第17号)放入丁组。
No RAN rRAN group
1 17
4 T1
2 2 22 10 T3
3 3 31 12 T3
4 4 15
8 T2
5 58
7 T2
6 6 35 14 T4
7 7 17
9 T3
8 8 22 11 T3
9 93
2 T1
10 10 5
3 T1
11 11 7
5 T2
12 12 2
1 T1
13 13 31 13 T4
简单随机化分组方法不能保证分组后各组例数相等, 但当受试对象总例数较多时(如N>200),两组例数相 差悬殊的概率较小。尽管如此,在正式试验前最好先检 查一下随机分配表(即分组过程及结果表)中各组例数 是否大致相当。如果发现相差悬殊(如100例分两组,A 组15例,B组85例),可以重新制定随机化分配表。
•随机化分组步骤
1. 将N个实验单位从1到N编号。如动物可按体重大小、 患者可按就诊顺序。
2. 取随机数字,随机数字的位数一般要求与N相同。
3. 将读取的N个随机数字按分组要求划分区段。
即:根据随机数所在区间决定实验单位应接受的处 理。例如,按二位随机数分两组时,可规定随机数 00~49为第1组,50~99为第2组;分三组时,01~33为第1 组,34~66为第2组,67~99为第3组,余类推。同理,如 按2:1的比例分两组,则01-66为第1组,67-99为第2组。 另外,分两组时,亦可按随机数的奇、偶决定组别。
14 14 8
6 T2
15 15 36 15 T4
16 16 46 16 T4
Transform -------->Random Number Seed -------->Set seed to 2000000(默认) --------> Transform -------->Compute… -------->Target Variable 填入ran(变量名) -------->Numeric Expression:
是否是检验效能不足。
1.0 0.8
α=0.05
α=0.01
0.6 检 验 效 能 0.4 (1-β)
0.2
0.0
0
200
400
600
800 1000 1200
样本总量(N)
图8.3.1 样本大小与检验效能、显著性水平的关系
(α=0.05,α=0.01,δ=0.5cm,σ=2cm)
•实验设计的基本原则
反应变量 处理因素 反应变量 处理因素
(瘤重g, y) (药物浓度,T)
y
T
3.6
1
0.4
3
4.5
1
1.7
3
4.2
1
2.3
3
4.4
1
4.5
3
3.0
2
3.3
4
2.3
2
1.2
4
2.4
2
0.0
4
1.1
2
2.7
4
One-Way ANOVA
(二)随机单位组设计(randomized block design)
R
7 10 8 1 4 11 6 9
处理
T2 T3 T2 T1 T1 T3 T2 T3
分组的均衡性比较
干预 随机数大小序号(R) 实验单位编号
T1
1
2
3
4 3,8,12,13
T2
7
8
65
4,9,11,15
T3
11 10 12 9
2,10,14,16
T4
15 16 14 13 1,5,6,7
实验单位 属性
有些研究希望各组例数相同。当各组例数不相等时, 可从例数较多的组中随机抽取一部分受试者补充到例数 较少的组,使各组例数相等。
例 若 将 20 个 实 验 单 位 随 机 等 分 为 四 组 。 对 2 位 随 机 数 字 规 定 , 00~24 为 甲 组 , 25~49 为 乙 组 ,
50~74为丙组,75~99为丁组,分组结果如下:(3\4\6)
一、基本概念
总体与样本(注意:样本要有代表性)
总体(population)是指根据研究目的所确定的所有同质的 观察个体的集合(全体),样本(sample)是指来自总体的 部分观察个体。
处理因素与非处理因素、水平
处理因素(实验因素、研究因素,简称因素),是指在实验 中根据研究目的而施加给实验对象的各种人为设置的干预措 施。非处理因素是指实验中非人为干预的因素,如实验动物 的雌雄、体重,受试者的性别、年龄、病情,实验时的季节、 气温等。
随机分组步骤: (N=16,G=4)
实验单位编号:1 2 3 4 5 6 7 8
随机数: 76 63 10 21 85 90 63 08
R
14 12 3 5 15 16 13 2
处理
T4 T3 T1 T2 T4 T4 T4 T1
实验单位编号:9 10 11 12 13 14 15 16
随机数: 27 54 31 03 13 61 24 37
检验效能
检验效能(power of a test),又称把握度(power), 记作1-β,指当两个(或几个)总体存在差异时,经假 设检验能够发现该差异的可能性大小。
● 1 与 、 、 、N 有关。
● 假设检验为“阴性”结论(P>0.05)时, 不能
简单地下“处理无效”的结论,而应该检查一下
编号 1 2 3 4 5 6 7 8 9 10
随机数 47 50 36 29 02 31 93 71 23 47
组别 乙 丙 乙 乙 甲 乙 丁 丙 甲 乙
调整


编号 11 12 13 14 15 16 17 18 19 20
随机数 23 46 04 26 69 61 25 54 90 18
组别 甲 乙 甲 乙 丙 丙 乙 丙 丁 甲
填入UNIFORM(50) 0~X -------->OK Transform -------->Rank Cases… ---->Variable 填入ran --------> OK (自动产生序号rran, 完成分组,
group)
统计分析
数据表:16行2列( dependent + factor )
优点:条件一致或相近的受试对象组成同一单位组 (非随机),并随机分配于各处理组中,使处理组间 的可比性更强,能改善组间生物学特点的均衡性,既 缩小了误差,又可分析出处理组间与配伍组间两因素 的影响,实验效率较高。
缺点:分组较繁,要求单位组内实验单位数与处理数 相同,有时实际应用有一定困难。实验结果中若有缺 失,统计分析较麻烦。
单独效应、主效应与交互作用
单独效应(simple effect)是指其他因素的水平固定时,同 一因素同水平间的平均差别。主效应(main effect)指某 一因素各水平间的平均差别。当某因素的各个单独效应 随另一因素水平的变化而变化,且相互间的差别超出随 机波动范围时,则称这两个因素间存在交互作用 (interaction)。注意:在统计分析时,若存在交互作用, 须逐一分析各因素的单独效应。反之,如果不存在交互 作用,则两因素的作用相互独立,分析某一因素的作用 只需考察该因素的主效应。
常用实验设计类型与分析方法
•研究设计
以最少的人力、物力和时间,最大限度地获得丰富、准确、 可靠的信息与结论。研究设计:专业设计与统计设计
专业设计:选题,建立假说、确定研究对象和技术方法等。 统计设计:围绕专业设计,确定统计设计类型、样本大小、 分组方法、统计分析指标及统计分析方法等,
根据处理因素、控制因素和实验单位的特征,实验设计 方法又有许多不同的类型。实验设计是关于数据采集、统计 方法应用和得出结论的关键步骤。如实验设计出现错误,不 论用什么统计方法进行数据处理也无法得到正确的结论。因 此,在医学科研中只要条件允许,应尽量在良好的实验设计 的基础上采集数据。医学研究中常用的实验设计类型和方法 有以下十几种。
随机单位组设计(N=12,b=3,k=4)
单位组
干预(随机数大小序号,R )
2
3
4
1
1
4
2
3
4
2
3
1
No block RAN rRAN
111 221 331 441 552 662 772 882 993 10 10 3 11 11 3 12 12 3
71 22 3 31 4 15 2 81 35 4 17 2 22 3 32 53 74 21
亦称配伍组设计或随机区组设计,实际上是配对设计 (将多方面条件近似的受试对象配成对子)的扩大,也是 对完全随机设计的改进(即加强了均衡可比性)。而这种 设计是将多方面条件相同或相近的受试对象组成单位组 ( block,亦称区组或配伍组),适用于三组或三组以上 的实验。每个随机单位组的受试对象数目取决于处理的数 目。如果一个实验安排了四种不同处理,那么每个单位组 就应有四个受试对象。有多少个单位组,则每种处理就可 以分配到多少个受试对象。
相关文档
最新文档