《傅里叶变换与拉普拉斯变换区别演讲稿》

合集下载

傅里叶变换和拉普拉斯变换的性质及应用

傅里叶变换和拉普拉斯变换的性质及应用

傅里叶变换和拉普拉斯变换的性质及应用————————————————————————————————作者: ————————————————————————————————日期:1.前言1.1背景利用变换可简化运算,比如对数变换,极坐标变换等。

类似的,变换也存在于工程,技术领域,它就是积分变换。

积分变换的使用,可以使求解微分方程的过程得到简化,比如乘积可以转化为卷积。

什么是积分变换呢?即为利用含参变量积分,把一个属于A函数类的函数转化属于B函数类的一个函数。

傅里叶变换和拉普拉斯变换是两种重要积分变换。

分析信号的一种方法是傅立叶变换,傅里叶变换能够分析信号的成分,也能够利用成分合成信号。

可以当做信号的成分的波形有很多,例如锯齿波,正弦波,方波等等。

傅立叶变换是利用正弦波来作为信号的成分。

拉普拉斯变换最早由法国数学家天文学家Pierre Simon Laplace (拉普拉斯)(1749-1827)在他的与概率论相关科学研究中引入,在他的一些基本的关于拉普拉斯变换的结果写在他的著名作品《概率分析理论》之中。

即使在19世纪初,拉普拉斯变换已经发现,但是关于拉普拉斯变换的相关研究却一直没什么太大进展,直至一个英国数学家,物理学家,同时也是一位电气工程师的Oliver Heaviside奥利弗·亥维赛(1850-1925)在电学相关问题之中引入了算子运算,而且得到了不少方法与结果,对于解决现实问题很有好处,这才引起了数学家对算子理论的严格化的兴趣。

之后才创立了现代算子理论。

算子理论最初的理论依据就是拉普拉斯变换的相关理论,拉普拉斯变换相关理论的继续发展也是得益于算理理论的更进一步发展。

这篇文章就是针对傅里叶变换和拉普拉斯变换的相关定义,相关性质,以及相关应用做一下简要讨论,并且分析傅里叶变换和拉普拉斯变换的区别与联系。

1.2预备知识定理1.2.1(傅里叶积分定理)若在(-∞,+∞)上,函数f (t )满足一下条件:(1)在任意一个有限闭区间上面f (t )满足狄利克雷条件; (2)∫|f (t )|+∞−∞dt <+∞,即f (t )在(-∞,+∞)上绝对可积; 则f (t )的傅里叶积分公式收敛,在它的连续点t 处12π∫(∫f(τ)+∞−∞e −iωτdτ)+∞−∞e iωτdω=f (t ) 在它的间断点t 处12π∫(∫f(τ)+∞−∞e −iωτdτ)+∞−∞e iωτdω=f (t +0)+f (t −0)2 定义1.2.1(傅里叶变换)设函数f (t )满足定理1.2.1中的条件,则称∫e −iωt +∞−∞f (t )dt 为f (t )的傅里叶变换,记作ℱ(ω)=∫e −iωt +∞−∞f (t )dt 。

傅立叶变换、拉普拉斯变换、Z变换之间最本质地区别

傅立叶变换、拉普拉斯变换、Z变换之间最本质地区别

傅立叶变换就是将任一个函数展开成一系列正弦函数的形式,从而能够在频域进行频谱分析。

而拉普拉斯变换是复频域,它的的引进主要是对微分方程起到了简便的变换作用,试想2阶的微分方程就够麻烦的了,高阶就别指望手动解了,数学系的牛人别见怪。

所以拉式变换就将时域的微分方程变换成代数方程。

而到了离散系统中,又出现了差分方程,因此人们就想既然连续系统中有拉式变换,那么是不是离散系统中也会有一个方法能够起到相同的简化作用呢?于是Z变化就提了出来。

傅立叶变换:时域变到实频域,主要是想得到频率信息,而且只能得到频域信息。

主要用于信号处理。

拉普拉斯变换:复频域,处理微分方程是一把好手,古典控制就是一个典型的应用。

z变换:现代控制理论的东西,相当于把微分方程离散化了。

第四章Z变换1 Z变换的定义(1) 序列的ZT:(2) 复变函数的IZT:,是复变量。

(3) 称与为一对Z变换对。

简记为或(4) 序列的ZT是的幂级数。

代表了时延,是单位时延。

(5) 单边ZT:(6) 双边ZT:2 ZT收敛域ROC定义:使给定序列的Z变换中的求和级数收敛的z的集合。

收敛的充要条件是它(3) 有限长序列的ROC序列在或(其中)时。

收敛域至少是。

序列的左右端点只会影响其在0和处的收敛情况:当时,收敛域为( 除外)当时,收敛域为( 除外)当时,收敛域为( 除外)右边序列的ROC序列在时。

如果,则序列为因果序列。

ROC的情况:当时,ROC为;当时,ROC为。

左边序列的ROC序列在时。

如果,则序列为反因果序列。

ROC的情况:当时,ROC为;当时,ROC为。

双边序列的ROC序列在整个区间都有定义。

双边序列可以看成是左边序列和右边序列的组合,于是如果存在且,则双边序列的ROC为,否则,ROC为空集,即双边序列不存在ZT。

注意:求得的是级数收敛的充分而非必要条件,实际收敛域可能会更大;实际的离散信号通常都是因果序列,此时单边ZT与双边ZT是一致的,收敛域也相同,都是z平面上的某个圆外面的区域。

傅里叶变换和拉普拉斯变换

傅里叶变换和拉普拉斯变换

傅里叶变换的实质是将一个信号分离为无穷多多正弦/复指数信号的加成,也就是说,把信号变成正弦信号相加的形式——既然是无穷多个信号相加,那对于非周期信号来说,每个信号的加权应该都是零——但有密度上的差别,你可以对比概率论中的概率密度来思考一下——落到每一个点的概率都是无限小,但这些无限小是有差别的所以,傅里叶变换之后,横坐标即为分离出的正弦信号的频率,纵坐标对应的是加权密度对于周期信号来说,因为确实可以提取出某些频率的正弦波成分,所以其加权不为零——在幅度谱上,表现为无限大——但这些无限大显然是有区别的,所以我们用冲激函数表示已经说过,傅里叶变换是把各种形式的信号用正弦信号表示,因此非正弦信号进行傅里叶变换,会得到与原信号频率不同的成分——都是原信号频率的整数倍。

这些高频信号是用来修饰频率与原信号相同的正弦信号,使之趋近于原信号的。

所以说,频谱上频率最低的一个峰(往往是幅度上最高的),就是原信号频率。

傅里叶变换把信号由时域转为频域,因此把不同频率的信号在时域上拼接起来进行傅里叶变换是没有意义的——实际情况下,我们隔一段时间采集一次信号进行变换,才能体现出信号在频域上随时间的变化。

我的语言可能比较晦涩,但我已尽我所能向你讲述我的一点理解——真心希望能对你有用。

我已经很久没在知道上回答过问题了,之所以回答这个问题,是因为我本人在学习傅里叶变换及拉普拉斯变换的过程中着实受益匪浅——它们几乎改变了我对世界的认识。

傅里叶变换值得你用心去理解——哪怕苦苦思索几个月也是值得的——我当初也想过:只要会算题就行。

但浙大校训“求是”时时刻刻鞭策着我追求对理论的理解——最终经过很痛苦的一番思索才恍然大悟。

建议你看一下我们信号与系统课程的教材:化学工业出版社的《信号与系统》,会有所帮助。

傅里叶变换和拉普拉斯变换的意义傅里叶变换(Transformée de Fourier)在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。

傅里叶变换与拉普拉斯变换的关系

傅里叶变换与拉普拉斯变换的关系

傅里叶变换与拉普拉斯变换的关系傅里叶变换(FourierTransform,FT)和拉普拉斯变换(LaplaceTransform,LT)是数学领域中最重要的变换之一,它们的关系也是研究的热点问题。

傅里叶变换是一种重要的计算机图像处理算法,用于变换方程,用于求解复杂的变量关系,在数学上是非常重要的。

而拉普拉斯变换则是一种用于求解常微分方程的数学变换,它能够通过滤波器对信号进行频谱分析,从而对信号进行处理和优化。

这两种变换之间是如何联系在一起呢?本文将讨论两种变换之间的关系。

首先,让我们来看一看傅里叶变换和拉普拉斯变换之间的相似之处。

这两种变换都可以用于求解复杂的变量关系,也都能够变换方程,但是它们之间的重点不一样。

傅里叶变换的重点是对一个函数的时域表达作出变换,把它映射到一个新的“频域”,然后在频域中处理这个函数;而拉普拉斯变换的重点则是把有关时间的函数转换成一个新的“空间”,然后以空间为基础来处理有关时间的关系。

此外,傅里叶变换主要用于信号处理,用来解决信号分析、调制、滤波等问题,而拉普拉斯变换则用来求解常微分方程,这是它们之间的关系。

傅里叶变换和拉普拉斯变换可以相互配合来处理复杂的信号与系统的动态特性,以及运用滤波器来分析和处理不同频率特征的信号。

此外,傅里叶变换和拉普拉斯变换之间还有一个重要的联系,那就是它们之间的变换关系。

拉普拉斯变换可以看做是傅里叶变换的一种特殊形式。

实际上,通过恰当地变换,拉普拉斯变换可以展开为傅里叶变换的线性组合,这就是所谓的拉普拉斯-傅里叶变换。

普拉斯-傅里叶变换主要用于处理时间域中的损耗被称为“偏振”的信号,其特点是可以根据频率特征变换信号,使信号能够以灵活、实时的方式被处理和优化。

由此可见,傅里叶变换和拉普拉斯变换之间有着密切的联系,它们具有明显的相似性,同时又具有独特的特性。

它们可以结合来处理复杂的信号与系统的动态特性,以及分析和处理不同频率变化的信号,这里的结合不仅比单独使用更有效,而且可以节省大量的计算时间。

傅里叶变换和拉普拉斯变换的性质及应用

傅里叶变换和拉普拉斯变换的性质及应用

1.前言1.1背景利用变换可简化运算,比如对数变换,极坐标变换等。

类似的,变换也存在于工程,技术领域,它就是积分变换。

积分变换的使用,可以使求解微分方程的过程得到简化,比如乘积可以转化为卷积。

什么是积分变换呢?即为利用含参变量积分,把一个属于A函数类的函数转化属于B函数类的一个函数。

傅里叶变换和拉普拉斯变换是两种重要积分变换。

分析信号的一种方法是傅立叶变换,傅里叶变换能够分析信号的成分,也能够利用成分合成信号。

可以当做信号的成分的波形有很多,例如锯齿波,正弦波,方波等等。

傅立叶变换是利用正弦波来作为信号的成分。

Pierre Simon Laplace 拉普拉斯变换最早由法国数学家天文学家(拉普拉斯)(1749-1827)在他的与概率论相关科学研究中引入,在他的一些基本的关于拉普拉斯变换的结果写在他的著名作品《概率分析理论》之中。

即使在19世纪初,拉普拉斯变换已经发现,但是关于拉普拉斯变换的相关研究却一直没什么太大进展,直至一个英国数学家,物理学家,同时也是一位电气工程师的Oliver Heaviside奥利弗·亥维赛(1850-1925)在电学相关问题之中引入了算子运算,而且得到了不少方法与结果,对于解决现实问题很有好处,这才引起了数学家对算子理论的严格化的兴趣。

之后才创立了现代算子理论。

算子理论最初的理论依据就是拉普拉斯变换的相关理论,拉普拉斯变换相关理论的继续发展也是得益于算理理论的更进一步发展。

这篇文章就是针对傅里叶变换和拉普拉斯变换的相关定义,相关性质,以及相关应用做一下简要讨论,并且分析傅里叶变换和拉普拉斯变换的区别与联系。

1.2预备知识定理1.2.1(傅里叶积分定理)若在(-∞,+∞)上,函数满足一下条件:(1)在任意一个有限闭区间上面满足狄利克雷条件;(2),即在(-∞,+∞)上绝对可积;则的傅里叶积分公式收敛,在它的连续点处在它的间断点处定义1.2.1(傅里叶变换)设函数满足定理 1.2.1中的条件,则称为的傅里叶变换,记作。

傅里叶变换 拉普拉斯变换 z变换

傅里叶变换 拉普拉斯变换 z变换

傅里叶变换拉普拉斯变换 z变换主题:傅里叶变换、拉普拉斯变换和z变换引言:在信号与系统领域,傅里叶变换、拉普拉斯变换和z变换是三种重要的数学工具。

它们被广泛应用于信号处理、图像处理、电路分析等领域。

本文将介绍这三种变换的基本概念和应用,并探讨它们之间的关系和特点。

一、傅里叶变换1.1 基本概念傅里叶变换是将一个函数表示为正弦和余弦函数的线性组合。

对于一个函数f(t),其傅里叶变换F(ω)定义如下:F(ω) = ∫[f(t)e^(-jωt)]dt其中,ω是频率,e^(-jωt)表示复指数函数。

1.2 特点和应用傅里叶变换具有如下特点:- 可以将一个信号分解成不同频率的分量,进而进行频谱分析。

- 可以将时域信号转换为频域信号,便于对信号的时频属性进行分析。

- 在信号处理中,傅里叶变换在滤波、频谱分析等方面有着重要的应用。

1.3 傅里叶变换的逆变换傅里叶变换的逆变换可以将频域信号恢复为时域信号。

逆变换的定义如下:f(t) = ∫[F(ω)e^(jωt)]dω二、拉普拉斯变换2.1 基本概念拉普拉斯变换是将一个函数表示为指数衰减函数的线性组合。

对于一个函数f(t),其拉普拉斯变换F(s)定义如下:F(s) = ∫[f(t)e^(-st)]dt其中,s是复数变量,表示频域变量。

2.2 特点和应用拉普拉斯变换具有如下特点:- 可以对连续时间信号进行频域分析,并描述系统的稳定性。

- 可以求解线性时不变系统的微分方程。

- 在控制系统、电路分析等方面有着广泛的应用。

2.3 拉普拉斯变换的逆变换拉普拉斯变换的逆变换可以将频域信号恢复为时域信号。

逆变换的定义如下:f(t) = (1/2πj)∫[F(s)e^(st)]d s,积分路径为垂直于Im(s)轴的线。

三、z变换3.1 基本概念z变换是傅里叶变换和拉普拉斯变换的离散形式,也是一种离散时间信号的频域分析方法。

对于一个离散时间信号f[n],其z变换F(z)定义如下:F(z) = ∑[f[n]z^(-n)]其中,z是复数变量。

(完整word版)傅里叶变换和拉普拉斯变换的性质及应用

(完整word版)傅里叶变换和拉普拉斯变换的性质及应用

1.前言1.1背景利用变换可简化运算,比如对数变换,极坐标变换等。

类似的,变换也存在于工程,技术领域,它就是积分变换。

积分变换的使用,可以使求解微分方程的过程得到简化,比如乘积可以转化为卷积。

什么是积分变换呢?即为利用含参变量积分,把一个属于A函数类的函数转化属于B函数类的一个函数。

傅里叶变换和拉普拉斯变换是两种重要积分变换。

分析信号的一种方法是傅立叶变换,傅里叶变换能够分析信号的成分,也能够利用成分合成信号。

可以当做信号的成分的波形有很多,例如锯齿波,正弦波,方波等等。

傅立叶变换是利用正弦波来作为信号的成分。

Pierre Simon Laplace 拉普拉斯变换最早由法国数学家天文学家(拉普拉斯)(1749-1827)在他的与概率论相关科学研究中引入,在他的一些基本的关于拉普拉斯变换的结果写在他的著名作品《概率分析理论》之中。

即使在19世纪初,拉普拉斯变换已经发现,但是关于拉普拉斯变换的相关研究却一直没什么太大进展,直至一个英国数学家,物理学家,同时也是一位电气工程师的Oliver Heaviside奥利弗·亥维赛(1850-1925)在电学相关问题之中引入了算子运算,而且得到了不少方法与结果,对于解决现实问题很有好处,这才引起了数学家对算子理论的严格化的兴趣。

之后才创立了现代算子理论。

算子理论最初的理论依据就是拉普拉斯变换的相关理论,拉普拉斯变换相关理论的继续发展也是得益于算理理论的更进一步发展。

这篇文章就是针对傅里叶变换和拉普拉斯变换的相关定义,相关性质,以及相关应用做一下简要讨论,并且分析傅里叶变换和拉普拉斯变换的区别与联系。

1.2预备知识定理1.2.1(傅里叶积分定理)若在(-∞,+∞)上,函数f(t)满足一下条件:(1)在任意一个有限闭区间上面f(t)满足狄利克雷条件;(2)∫|f (t )|+∞−∞dt <+∞,即f (t )在(-∞,+∞)上绝对可积;则f (t )的傅里叶积分公式收敛,在它的连续点t 处12π∫(∫f(τ)+∞−∞e −iωτdτ)+∞−∞e iωτdω=f (t ) 在它的间断点t 处12π∫(∫f(τ)+∞−∞e −iωτdτ)+∞−∞e iωτdω=f (t +0)+f (t −0)2定义1.2.1(傅里叶变换)设函数f (t )满足定理 1.2.1中的条件,则称∫e −iωt +∞−∞f (t )dt为f (t )的傅里叶变换,记作ℱ(ω)=∫e −iωt +∞−∞f (t )dt 。

傅里叶变换与拉普拉斯变换的区别与联系

傅里叶变换与拉普拉斯变换的区别与联系

傅里叶变换与拉普拉斯变换的区别与联系摘要通过对复变函数的学习,我基本上了解了傅里叶变换与拉普拉斯变换的基本理论知识,并且知道了他们在数学、物理以及工程技术等领域中有着广泛的应用,傅氏变换与拉氏变换存在许多类似之处,都能够在解决广义积分、微分积分方程、偏微分方程、电路理论等问题中得到应用。

下面通过对他们做一些比较研究,来更清楚地认识他们。

关键词:两种积分变换积分与微分方程电路理论正文(一)前言:1、傅里叶变换与拉普拉斯变换都属于积分变换,是两种常见的数学变换手段,而所谓的积分变换就是通过积分运算,把一个函数变成另一个函数的变换,其作用就是将复杂的函数运算变成简单的函数运算,当选取不同的积分域和变换核时,就得到不同名称的积分变换,傅里叶变换与拉普拉斯变换就是因取不同的积分域与变换核得来的。

2、傅里叶变换是拉普拉斯变换的特例。

拉普拉斯变换是将时域信号变换到“复频域”,与变换的“频域”有所区别。

拉普拉斯变换主要用于电路分析,作为解微分方程的强有力工具(将微积分运算转化为乘除运算)。

傅里叶变换则随着FFT算法的发展已经成为最重要的数学工具应用于数字信号处理领域。

(二)提出问题:已知傅里叶变换是拉氏变换的特例,如何用例子进一步说明他们的关系,如何运用它们解决积分与微分方程和电路问题。

(三)解决问题:傅里叶变换与拉普拉斯变换两种变换的性质有许多相似之处,故两者在求解问题时也会有许多类似,另外,由于傅氏变换的积分区间为(-∞,+∞),拉氏变换的积分区间为(0,+∞),两者又 会在不同的领域中有着各自的应用。

下面通过一些具体的例子来对两种变换的应用做一些研究:3.1 两种积分变换在求解积分、微分方程中的应用例1 求解积分方程()()()()g t h t f g t d τττ+∞-∞=+-⎰其中(),()h t f t 都是已知的函数,且()g t 、()h t 和()f t 的傅里叶变换都存在。

分析:该积分方程中的积分区间是()+∞∞-,,故首先应考虑用傅里叶积分变换法求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《傅里叶变换与拉普拉斯变换区别演讲稿》这个演讲分为三部分进行展开。

在介绍两者区别之前,首先将给大家带来的是两种变换的背景以及两种变换的给我们带来的便利。

最后进入到正题,两种变换之间的差别。

第一部分两种变换的背景。

首先是傅里叶变换的背景。

这个背景想必大家在高数课,电分课和之前的信号与系统课上已经阅读过了,那么在这里大家可以稍稍再重温一遍。

接下来是拉普拉斯变换的背景。

大家一定没有想到,拉普拉斯变换并不是由拉普拉斯发明的,而是由这为heaviside先生发明的。

拉普拉斯对这项变换的贡献是进行了严密的数学定义,确定其可行性后进行了推广。

因此这项变换被称为拉普拉斯变换。

说一句额外的话,在准备内容时,我本指望能像傅里叶变换一样,找到有关拉普拉斯变换发展的波澜历史,却因拉普拉斯变换并不是被其发明者命名,所以有关heaviside先生如何得到这种变换的资料少之又少,而拉普拉斯对其定义的过程相对来说又很枯燥,并没有什么值得记载的故事,因此大家可以从刚刚这段说明中看出拉普拉斯的发展历史只是草草陈述。

这也告诉我们,做事一定要完备,知识一定要渊博,否则发现了什么却忘记对其进行推广,或者知道要去推广却因数学功底不足而无法给出严格定义以及证明,流芳百世的机会也只能拱手让人。

因为现实生活中的信号多为因果信号,因此在此考虑拉普拉斯的现实意义,引入拉普拉斯单边变换。

下述有关拉普拉斯变换的讨论均基于拉普拉斯单边变换。

第二部分
两种变换带来的便利。

首先是傅里叶变换带给我们的方便。

求解线性电路有了通法。

面对三角函数信号,以及电容电感这类原件,时域中求解电路状态变得十分困难。

但通过电分的学习,我们掌握了频域解法。

又通过傅里叶变换,我们可以将任何信号变成虚指数或者说三角函数形式,对于线性系统,我们可以依次求解这些三角函数分量作用时的电路状态,再加和。

所以只要是线性系统我们都可以求解。

我们能够从一个不随时间变换的空间中观察函数或者信号。

傅里叶就是通往这个世界的大门,把时域信号转换至频域。

在这个域中,时间不是变量,频率才是变量。

并且在这个域中,人们可以方便地观察不同频率的信号分量。

其次是拉普拉斯变换带给我们的便利。

其实这两项优点是同一项,求解微分方程十分便利。

大家可以回想一下学习高数时,用经典法求解常系数微分方程时的痛苦。

现在拉普拉斯变换将微分方程统统化成简单的多项式方程,并且把用于求解特解的初值自动引入,可谓是十分便利。

下面是最后一部分
两种变换之间的区别
首先是两种变换后得到的信号从频域角度来看是否直观。

以这个信号为例,利用matlab对其进行傅里叶展开。

这幅图是其幅度频谱。

(在黑板上写出傅里叶展开的f(t)12f(j)ej td)从这张图以及相位频谱,各位就可以描述
j tf(j)e出f(j)的表达式。

又知道,f(t)即由一系列的d加和得到,所以从频域上我们可以直观看出不同频率的各个三角函数分量。

这一点是拉普拉斯变换所不能企及的。

这也是为什么傅里叶变换多用于针对信号的分析和处理,主要是频谱分析。

第二个方面是求解微分方程的简易性差别
一方面是可以将时域内的微分与积分的运算转换为乘法与除法的运算,将微分积分方程转换为代数方程,从而使计算量大大减少。

这一点个大家都十分清楚,在许多书中也给出了证明。

另一方面是可以将初始状态包含到微分方程中直接求解。

主要利用的就是时域微分性质。

这里,我查阅许多资料与书籍发现都没有这个性质的证明,只是告诉我们如何使用,但这里我们需要从最本质的地方探究傅里叶与拉普拉斯在求解微分方程简易程度上的差别,因此课后通过推导,在这里给出证明:
而傅里叶的时域微分性质如下:
可以看到一个包含了初始状态,一个并没有。

最后一个就是拉普拉斯变换相比傅里叶变换可以对更多函数进行变换,这也是我们最后一个,也是最显著的一个区别。

我们稍后再谈。

综上,可以发现拉普拉斯变换在求解微分方程上更占优势
我们来到了最后一个差别,也是最本质的差别,处理的函数范围不同。

在查阅了高等数学教材后,得到了数学上对傅里叶变换成立的收敛定理,如下:1函数f(x)在每个有限区间上可积;2存在数m>0,当|x|≥m时,f(x)单调,且
lim
f(x)=0。

那么对于一些函数,例如eαtu(t)(α>0),无法满足上述收敛定理,因此不存在傅里叶变换下面是利用matlab进行求解的过程,可以看到,对于e^3t这个函数,无法求解出其傅里叶变换。

与此同时,一些函数并不满足绝对可积条件,从而不能直接从定义而导出它们的傅里叶变换。

虽然通过求极限的方法可以求得它们的傅里叶变换,但其变换式中常常含有冲激函数,使分析计算较为麻烦。

以斜坡信号tu(t)为例,对其用matlab进行求解,可以看到包含了dirac函数,也就是冲激函数。

因此我们在信号后乘上一个衰减速度十分快的衰减因子e t,使得信号容易满足绝对可积条件,而得到的变换式也即拉普拉斯变换式
好的,接下来让我们看看同样的函数,使用拉普拉斯变换看会得到什么样的结果。

对于e^3txu(t),得到了1/(s-3);对于tu(t),得到了1/s^2。

傅里叶变换与拉普拉斯变换广泛应用于工程实际问题中,不仅仅在数学领域有着应用,在测试技术及控制工程领域应用更为广泛,搞清两者的应用特点,对将来会频繁使用这两种变换的我们极其重要。

希望本文指出的一些方面能给各位带来一些启发以及想法,在未来给各位带来些许帮助。

谢谢大家。

内容仅供参考。

相关文档
最新文档